Compute the partial fraction decomposition of
\begin{equation*}
\frac{P}{Q} = \frac{2x^2+7x-8}{x^3 - x^2 + 8x +10}.
\end{equation*}
Since \(\deg Q=3\text{,}\) \(Q\) has a real root. Here
\begin{equation*}
Q(-2) \lt 0 \lt Q(0)
\end{equation*}
so a root lies in \((-2,0)\text{.}\) Factoring
\begin{equation*}
x^3 - x^2 +8x + 10 = (x-r)(x^2 + bx + c)
\end{equation*}
with integer \(r\text{,}\) we need \(-rc=10\text{,}\) so \(r\) is a factor of \(10\text{.}\) Checking gives \(r=-1\text{.}\) Thus
\begin{equation*}
x^3 - x^2 + 8x + 10 = (x+1)(x^2 - 2x +10)
\end{equation*}
and \(x^2-2x+10=(x-1)^2+9\) is irreducible. Therefore
\begin{equation*}
\frac{2x^2+7x-8}{x^3 - x^2 + 8x +10} =\frac{A}{x+1} + \frac{Bx
+C}{(x-1)^2 + 9}.
\end{equation*}
Multiplying by \(Q(x)\) yields
\begin{equation*}
2x^2+ 7x - 8 \equiv A ( (x-1)^2 + 9) + (Bx+C) (x+1).
\end{equation*}
Setting \(x=-1\) gives \(-13=13A\text{,}\) so \(A=-1\text{.}\) Setting \(x=0\) gives
\begin{equation*}
-8 = (-1)( (-1)^2 + 9) +C = -10 + C,
\end{equation*}
so \(C=2\text{.}\) Comparing \(x^2\) coefficients gives \(2=A+B=-1+B\text{,}\) so \(B=3\text{.}\)
\begin{equation*}
\frac{2x^2+7x-8}{x^3 - x^2 + 8x +10} =\frac{-1}{x+1} + \frac{3x
+2}{(x-1)^2 + 9}.
\end{equation*}