Completing the square gives \(4x^2 + 8x -5= 4(x+1)^2 - 9\text{.}\) Let \(u=2(x+1)\text{.}\) The integral becomes:
\begin{equation*}
\frac{1}{2} \int \frac{1}{\sqrt{u^2-9}} du.
\end{equation*}
The integrand \(f(u) = 1/\sqrt{u^2-9}\) is even. If \(F(u)\) is an antiderivative for \(u \gt 3\text{,}\) then \(-F(-u)\) is one for \(u \lt 3\text{.}\) For \(u \gt 3\text{,}\) use \(u=3\sec(\theta)\text{:}\)
\begin{align*}
\frac{1}{2} \int \frac{3\sec(\theta)\tan(\theta)}{3\tan(\theta)} d\theta
& = \frac{1}{2}\int\sec(\theta) d\theta\\
& = \frac{1}{2}\ln|\sec(\theta)
+ \tan(\theta)|+C\\
& = \frac{1}{2}\ln
\left| \frac{u}{3} + \frac{\sqrt{u^2-9}}{3}\right| + C\\
& = \frac{1}{2}\ln
\left| u + \sqrt{u^2-9} \right| + C.
\end{align*}
Extending to the full domain by symmetry (as \(\frac{F(u)-F(-u)}{2}\) provides an odd antiderivative):
\begin{align*}
F(u)-F(-u) & =
\frac{1}{2}\left(\ln
\left|u+\sqrt{u^2-9}\right| -
\ln
\left|-u + \sqrt{(-u)^2-9}\right|\right) \\
&= \frac{1}{2}\ln
\left|
\frac{u+\sqrt{u^2-9}}{u-\sqrt{u^2-9}}\right| = \ln|u+\sqrt{u^2-9}|-\ln(3).
\end{align*}
Thus, the general solution is:
\begin{equation*}
\frac{1}{2}\ln|u+\sqrt{u^2-9}|+C = \frac{1}{2}\ln|2(x+1) +
\sqrt{4x^2+8x-5}| +C
\end{equation*}