Skip to main content

Appendix E Hints and Answers to Selected Exercises

I Calculus I
1 Differentiation
1.2 Derivatives
1.2.1 Rules of Differentiation

Checkpoint 1.10.

Solution.
Let \(f(x)\) be a differentiable even function. So \(f(-x) = f(x)\) for all \(x\) in the domain of \(f\text{.}\) Taking derivative on both sides, yields, according to the Chain Rule,
\begin{equation*} f'(x) =(f(-x))' = -f'(-x). \end{equation*}
This shows that \(f'(x)\) is an odd function.
Similarly, if \(f(x)\) is an odd function, then
\begin{equation*} -f'(x) = (-f(x))' = (f(-x))' = -f'(-x). \end{equation*}
Thus, \(f'(x) = f'(-x)\) and so \(f'(x)\) is even.

1.3 Derivatives of Elementary Functions
1.3.2 Derivatives of Exponential and Logarithmic Functions

2 Integration
2.2 Integration by Substitution

Checkpoint 2.8.

Hint.
\(u= 3x \text{.}\)
Solution.
\(u=3x\text{.}\)\(du =3 dx\)\(\sin(3x) dx = \frac{1}{3}\sin(u)du\text{.}\)
\begin{equation*} \int \sin(3x)dx = \frac{1}{3}\int \sin(u) du = -\frac{1}{3}\cos(u)+C = - \frac{1}{3}\cos(3x)+C \end{equation*}

Checkpoint 2.9.

Hint.
\(u=e^x\text{.}\)
Solution.
\(u=e^x\text{.}\)\(du =e^xdx\)\(1+e^{2x} = 1+u^2\text{.}\)
\begin{equation*} \int \frac{du}{1+u^2} = \arctan(u) +C = \arctan(e^x) + C. \end{equation*}

Checkpoint 2.10.

Hint.
\(u=\ln x\text{.}\)

II Calculus II
3 Techniques of Integration
3.1 Integration by Parts

Checkpoint 3.2.

Solution.
\(u=x\)\(dv = \cos(x)dx\text{.}\)\(v(x)\)\(dv = \cos(x)dx\)\(\int \cos(x)dx\text{.}\)\(\frac{d}{dx} \sin(x) = \cos(x)\text{,}\)\(v=\sin(x)\text{.}\)(3.1)
\begin{align*} \int x\cos(x)dx & = x\sin(x)-\int \sin(x)dx \\ & =x\sin(x)- (-\cos(x)) + C \\ & =x\sin(x) +\cos(x) + C. \end{align*}

Checkpoint 3.3.

Hint.
Set \(u=x^2\) and \(dv = \sin(x)dx\text{.}\) Then apply IBP twice.

3.2 Trigonometric Integrals
3.2.1 Products of Trigonometric Functions

Checkpoint 3.10.

Solution.
(A.10)
\begin{align*} \int \cos(3x)\cos(4x)dx &= \frac{1}{2}\left( \int \cos(3x-4x)\ dx + \int \cos(3x+4x)\ dx \right)\\ &= \frac{1}{2}\sin(x) + \frac{1}{14}\sin(7x)+C. \end{align*}

Checkpoint 3.11.

Hint.
Solution.
\begin{align*} \int \sin(mx) &\cos(nx)dx = \int\dfrac{1}{2}(\sin(m+n)(x) + \sin(m-n)(x))dx\\ &= \begin{cases} -\dfrac{1}{2(m+n)}\cos(m+n)(x) - \dfrac{1}{2(m-n)}\cos(m-n)(x) + C & m \neq n \\ - \dfrac{1}{4m}\cos(2mx) + C. & m = n \end{cases} \end{align*}

3.2.2 Powers of Trigonometric Functions

Checkpoint 3.14.

Solution.
Making the substitution \(u = \sin(x)\text{,}\) we get
\begin{align*} \int\sin^4(u)\cos^7(x)dx &= \int u^4(\cos^2(x))^3 \cos(x)dx = \int u^4 (1-u^2)^3\ du\\ &= \frac{1}{5}u^5 - \frac{3}{7}u^7 + \frac{3}{9}u^9 - \frac{1}{11}u^{11} + C\\ & = \frac{1}{5}\sin^5 x - \frac{3}{7}\sin^7 x + \frac{1}{3}\sin^9 x - \frac{1}{11}\sin^{11} x + C. \end{align*}

Checkpoint 3.15.

Solution.
\begin{align*} \sin^4(x) &= (\sin^2(x))^2 = \left( \frac{1-\cos(2x)}{2} \right)^2\\ &= \frac{1}{4}\left( 1 - 2\cos(2x) + \cos^2(2x) \right) \\ &= \frac{1}{4}\left( 1 - 2\cos(2x) + \frac{1+\cos(4x)}{2} \right)\\ &= \frac{3}{8} - \frac{\cos(2x)}{2} + \frac{\cos(4x)}{8} \end{align*}
\begin{align*} \int \sin^4(x)dx &= \int\frac{3}{8}dx - \int\frac{\cos(2x)}{2}dx + \int\frac{\cos(4x)}{8}dx \\ &= \frac{3x}{8} - \frac{1}{4}\sin(2x) + \frac{1}{32}\sin(4x) + C. \end{align*}

Checkpoint 3.16.

Solution 1.
First, the substitution \(w = 3x\) will simplify the integral to
\begin{equation*} \int \sin^2(3x)\cos^2(3x) dx = \frac{1}{3}\int\sin^2(w)\cos^2(w) dw. \end{equation*}
According to (A.14),
\begin{align*} \int \sin^2(w)\cos^2(w)dw &= \int\frac{1-\cos(2w)}{2}\frac{1+\cos(2w)}{2} dw \\ & = \frac{1}{4} \int 1-\cos^2(2w) \end{align*}
Apply (A.14) to \(\cos^2(2w)\) and we get
\begin{align*} \frac{1}{4} \int 1-\cos^2(2w) dw & = \frac{1}{4} \int 1- \frac{1+\cos(4w)}{2} dw = \frac{1}{4}\int \frac{1}{2} - \frac{\cos(4w)}{2} dw \\ &= \frac{1}{8}\int 1 - \cos(4w) dw\\ & = \frac{1}{8} \left(w - \frac{1}{4}\sin(4w)\right) +C\\ & = \frac{3x}{8} - \frac{\sin(12x)}{32} + C \end{align*}
Putting all these together, we get
\begin{align*} \int \sin^2(3x)\cos^2(3x) dx & = \frac{1}{3}\int\sin^2(w)\cos^2(w) dw.\\ & = \frac{1}{3}\left( \frac{3x}{8} - \frac{\sin(12x)}{32}\right)+C\\ & = \frac{x}{8} - \frac{\sin(12x)}{96} + C \end{align*}
Solution 2.
\begin{align*} \sin^2(3x)\cos^2(3x) &= \left( \frac{e_{3x}-e_{-3x}}{2i} \right)^2 \left( \frac{e_{3x}+e_{-3x}}{2} \right)^2\\ &=-\frac{1}{16}[(e_{3x}-e_{-3x})(e_{3x}+e_{-3x})]^2\\ & = -\frac{1}{16}(e_{6x} -e_{-6x})^2 \\ & = \frac{1}{16}(2-(e_{12x}+e_{-12x}))\\ & = \frac{1}{8}\left(1 - \frac{e_{12x}+e_{-12x}}{2}\right) = \frac{1}{8}(1-\cos(12x)). \end{align*}
\begin{align*} \int \sin^2(3x)\cos^2(3x) dx & = \frac{1}{8} \int 1-\cos(12x) dx\\ & = \frac{x}{8} - \frac{\sin(12x)}{96} + C. \end{align*}

Checkpoint 3.21.

Hint.
\(u = \cos(x)\)\(u=\tan(x)\)

3.3 Trigonometric Substitutions

Checkpoint 3.32.

Solution.
Completing the square yields \(4x^2 + 8x -5= 4(x+1)^2 - 9\text{.}\) So, the substitution \(u=2(x+1)\) turns the integral into
\begin{equation*} \frac{1}{2} \int \frac{1}{\sqrt{u^2-9}} du. \end{equation*}
Note that the integrand \(f(u) = 1/\sqrt{u^2-9}\) is an even function of \(u\text{,}\) so if \(F(u)\) is an antiderivative of \(f(u)\) on \(u \gt 3\text{,}\) then \(-F(-u)\) would be an anti-derivative \(f(u)\) on \(u \lt 3\text{.}\) On \(u \gt 3\text{,}\) we can evaluate the integral by the substitution \(u=3\sec(\theta)\text{:}\)
\begin{align*} \frac{1}{2} \int \frac{3\sec(\theta)\tan(\theta)}{3\tan(\theta)} d\theta & = \frac{1}{2}\int\sec(\theta) d\theta\\ & = \frac{1}{2}\ln|\sec(\theta) + \tan(\theta)|+C\\ & = \frac{1}{2}\ln\left| \frac{u}{3} + \frac{\sqrt{u^2-9}}{3}\right| + C\\ & = \frac{1}{2}\ln\left| u + \sqrt{u^2-9} \right| + C. \end{align*}
Let \(F(u)\) be the anti-derivative of \(f(u)\) displayed above. Then \(\frac{F(u)-F(-u)}{2}\) will be an odd antiderivative of \(f(u)\) on the whole domain of \(f(u)\text{.}\) Note that
\begin{align*} F(u)-F(-u) & = \frac{1}{2}\left(\ln\left|u+\sqrt{u^2-9}\right| - \ln\left|-u + \sqrt{(-u)^2-9}\right|\right) \\ &= \frac{1}{2}\ln \left|\frac{u+\sqrt{u^2-9}}{u-\sqrt{u^2-9}}\right| \\ & = \frac{1}{2}\ln\left|\frac{(u+\sqrt{u^2-9})^2}{9}\right|\\ &= \ln|u+\sqrt{u^2-9}|-\ln(3). \end{align*}
Therefore, the integral can be expressed as
\begin{equation*} \frac{1}{2}\ln|u+\sqrt{u^2-9}|+C = \frac{1}{2}\ln|2(x+1) + \sqrt{4x^2+8x-5}| +C \end{equation*}
where \(C\) denotes the class of locally constant functions on the domain of the integrand.

4 Improper Integrals
4.1 Definitions and Examples

Checkpoint 4.2.

Checkpoint 4.4.

Hint.
Make the substitution \(u = 1/x\)
Solution.
For \(t > 0\text{,}\)
\begin{equation*} \int_t^a f(x) dx \stackrel{u=1/x}{=} \int_{1/t}^{1/a} f(1/u)\frac{-du}{u^2} = \int_{1/a}^{1/t}\frac{f(1/u)}{u^2}du. \end{equation*}
As \(t \to 0^+, 1/t \to \infty\text{,}\) the first assertion follows. Apply that to \(f(x) = 1/x^p\text{,}\) we have
\begin{equation*} \int_0^a \frac{1}{x^p} dx = \int_{1/a}^{\infty} \frac{1}{u^{2-p}} du. \end{equation*}
As a result, the second assertion follows from Proposition 4.3.

Checkpoint 4.6.

Hint.
Use integration by parts with \(u=\ln(x)\) and \(dv = x^p dx\text{.}\)

Checkpoint 4.7.

Hint.
Use the substitution \(u=\ln(x)\) and then use Proposition 4.3

Checkpoint 4.8.

Hint.
Recognize the area is given by the integral
\begin{equation*} \int_{-2}^0 \frac{1}{\sqrt{x+2}} dx. \end{equation*}
To find the integral, make the substitution \(u=x+2\) then use the result in Checkpoint 4.4.

4.2 Comparison Test for Integrals

Checkpoint 4.13.

Solution.
Since \(0 \le \cos^2(x) \le 1\text{,}\) \(0 \le \frac{\cos^2(x)}{1+x^2} \le \frac{1}{1+x^2}\text{,}\) it follows from the comparison test for integrals that
\begin{align*} 0 & \le \int_1^{t} \frac{\cos^2(x)}{1+x^2}dx \le \int_1^{t} \frac{1}{1+x^2}dx \\ & = \arctan(t)-\frac{\pi}{4} \end{align*}
which tends to \(\pi/2 - \pi/4 = \pi/4\) as \(t\) tends to \(\infty\text{.}\) This establishes the inequality.

Checkpoint 4.15.

Hint.
The integrand is
\begin{equation*} \frac{(3-C)x^2 +x - C}{(x^2+1)(3x+1)} \end{equation*}
By degree consideration and Proposition 4.11, we know that \(C\) must be \(3\text{.}\) So original integrand must be
\begin{equation*} \frac{x}{x^2+1} - \frac{3}{3x+1} \end{equation*}
Now find an anti-derivative of each term above then find the value of the improper integral by computing suitable limits.

5 Sequence and Series
5.1 Sequences
5.1.2 Algebraic Operations on Sequences

Checkpoint 5.7.

Solution.
The \(n\)-th of their sum is \(n^2 + 1/n\) and that of their product is \((n^2)(1/n) = n\text{.}\)