MAT 421 Complex Analysis, #
42082, Fall 2008
Class
meets MW
Instructor:
e-mail address: sraianu@csudh.edu,
, URL: http://www.csudh.edu/math/sraianu;
office hours: Monday, Wednesday,
Course Description: This course covers the algebra and geometry of the complex numbers; point sets, sequences and mappings; analytic functions; elementary functions; differentiation; integration; power series; the calculus of residues; and applications.
Text:
Complex Analysis, by
Objectives: After completing MAT 421 the student will
Prerequisites: MAT 211 and MAT
271 or
equivalent with a grade of "C" or better.
Grades: Grades will be based on three in‑class full‑period examinations (60% total), a comprehensive final examination (25%), and quizzes, homework, and other assignments (15%) for the remainder. The exact grading system for your section is the following: each of the three full-period exams will be graded on a 100 scale, then the sum of the scores is divided by 5 and denoted by E. Homework will be collected every Monday, and each homework is worth 5 points. No late homework will be accepted. The average of all homework scores is denoted by H.
5 to 10 minutes quizzes will be given in principle every Monday, with the exception of the review and exam days, and will be graded on a scale from 1 to 5. The average of the quizzes scores is denoted by Q. There are also 5 points awarded for attendance and class participation, this portion of the grade is denoted by A. The final exam will be graded out of a maximum possible 200, then the score is divided by 8 and denoted by F.
To determine your final grade compute E+H+Q+A+F. The maximum is 100, and the grade will be given by the rule:
A: 93‑100; A‑: 90‑92; B+: 87‑89; B: 83‑86; B‑: 80‑82
C+: 77‑79; C: 73‑76; C‑: 70‑72; D: 60‑69; F: Less than 60.
Makeups: No makeup examinations or quizzes will be given. If you must miss an examination for a legitimate reason, let me know in advance, and I may then substitute the relevant score from your final examination for the missing grade.
Accomodations for Students with Disabilities: Cal State Dominguez Hills adheres to all applicable federal, state, and local laws, regulations, and guidelines with respect to providing reasonable accommodations for students with temporary and permanent disabilities. If you have a disability that may adversely affect your work in this class, I encourage you to register with Disabled Student Services (DSS) and to talk with me about how I can best help you. All disclosures of disabilities will be kept strictly confidential. Please note: no accommodation may be made until you register with the DSS in WH B250. For information call (310) 243-3660 or to use telecommunications Device for the Deaf, call (310) 243-2028.
Academic Integrity: The mathematics department does not tolerate cheating. Students who have questions or concerns about academic integrity should ask their professors or the counselors in the Student Development Office, or refer to the University Catalog for more information. (Look in the index under "academic integrity".)
Tentative
schedule:
M 9/1: Labor Day
W 9/3: 1.1 Complex numbers. Introduction; 1.2 Geometry
M 9/8: 1.3 Polar coordinates; 2.1 Functions of a real variable
W 9/10: 2.2 Functions of a complex variable; 2.3 Derivatives
M 9/15: 3.1 Elementary
functions. Introduction; 3.2 The exponential function
W 9/17: 3.2 The exponential function; 3.3 Trigonometric functions
M 9/22: 3.4 Logarithms and complex exponents
W 9/24: Review
M 9/29: Exam I
W 10/1: 4.1 Integration. Introduction; 4.2 Evaluating integrals
M 10/6: 4.2 Evaluating
integrals; 4.3 Antiderivatives
W 10/8: 5.1 Homotopy; 5.2 Cauchy’s Theorem
M 10/13: 5.2 Cauchy’s Theorem; 6.1 Cauchy’s Integral Formula
W 10/15: 6.2 Functions defined by integrals; 6.3 Liouville’s Theorem
M 10/20: 6.3 Liouville’s Theorem; 6.4 Maximum moduli
W 10/22: 7.1 The Laplace equation; 7.2 Harmonic functions
M 10/27: 7.2 Harmonic
functions; 7.3 Poisson’s integral formula
W 10/29: Review
M 11/3: Exam II
W 11/5: 8.1 Sequences
M 11/10: 8.2 Series
W 11/12: 8.3 Power series
M 11/17: 8.4 Integration of
power series; 8.5 Differentiation of
power series
W 11/19: 8.5 Differentiation
of power series; 9.1
M 11/24: 9.2 Laurent series
W 11/26: Review
M 12/1: Exam III
W 12/3: 10.1 Residues; 10.2 Poles and other singularities
M 12/8: 11.2 Argument principle; 11.2 Rouché’s Theorem
W 12/10: Review
Final exam: Monday, December 15,