$\newcommand{\la}{\langle}$ $\newcommand{\ra}{\rangle}$ $\newcommand{\vu}{\mathbf{u}}$ $\newcommand{\vv}{\mathbf{v}}$ $\newcommand{\vw}{\mathbf{w}}$ $\newcommand{\vzz}{\mathbf{z}}$ $\newcommand{\Cc}{\mathbb{C}}$ $\newcommand{\Rr}{\mathbb{R}}$ $\newcommand{\Qq}{\mathbb{Q}}$ $\newcommand{\Nn}{\mathbb{N}}$ $\newcommand{\cB}{\mathcal{B}}$ $\newcommand{\cE}{\mathcal{E}}$ $\newcommand{\cC}{\mathcal{C}}$ $\newcommand{\cD}{\mathcal{D}}$ $\newcommand{\mi}{\mathbf{i}}$ $\newcommand{\ol}[1]{\overline{#1} }$ $\newcommand{\norm}[1]{\left\| #1 \right\|}$ $\newcommand{\abs}[1]{\left| #1 \right|}$ $\newcommand{\spp}[1]{\langle #1 \rangle}$ $\newcommand{\vz}{\mathbf{0}}$ $\newcommand{\vo}{\mathbf{1}}$ $\newcommand{\va}{\mathbf{a}}$ $\newcommand{\vb}{\mathbf{b}}$ $\newcommand{\vx}{\mathbf{x}}$ $\newcommand{\ve}{\mathbf{e}}$ $\newcommand{\vd}{\mathbf{d}}$ $\newcommand{\vh}{\mathbf{h}}$ $\newcommand{\ds}{\displaystyle}$ $\newcommand{\bm}[1]{\begin{bmatrix} #1 \end{bmatrix}}$ $\newcommand{\gm}[2]{\bm{\mid & \cdots & \mid \\ #1 & \cdots & #2 \\ \mid & \cdots & \mid}}$ $\newcommand{\MN}{M_{m \times n}(K)}$ $\newcommand{\NM}{M_{n \times m}(K)}$ $\newcommand{\NP}{M_{n \times p}(K)}$ $\newcommand{\MP}{M_{m \times p}(K)}$ $\newcommand{\PN}{M_{p \times n}(K)}$ $\newcommand{\NN}{M_n(K)}$ $\newcommand{\im}{\mathrm{Im\ }}$ $\newcommand{\ev}{\mathrm{ev}}$ $\newcommand{\Hom}{\mathrm{Hom}}$ $\newcommand{\com}[1]{[\phantom{a}]^{#1}}$ $\newcommand{\rBD}[1]{ [#1]_{\cB}^{\cD}}$ $\newcommand{\GL}{\mathrm{GL}}$

Linear Combinations (Selected HW Problems)

Problem 8

Find the value of $a$ for which $\vv = \bm{ 4 \\ a \\ -16 \\ -6}$ is in the span of $A = \left\{ \bm{2 \\4 \\-1 \\-1}, \bm{0 \\ -2 \\ 3\\5}, \bm{0 \\ 0 \\ -4 \\ 3} \right\}.$

By Proposition 2 in Notes 14, $\vv \in \spp{A}$ if and only if $A\vx = \vv$ is consistent.

The latter condition can be decided by row reduction on, $B=[A|\vv]$,the augmented matrix of the system

Applying row reduction, we get

Thus the system is consistent if and only if $a = 12$. In other words, $\vv \in \spp{A}$ if and only if $a = 12$.

Problem 4

Let $A = \left[\begin{array}{ccc} 5 & -10 & -15 \\ 4 & -11 & -15 \\ -1 & 5 & 5 \end{array}\right]$ and $\vb = \left[\begin{array}{c} 5 \\ 4 \\ 2 \end{array}\right]$

Is $\vb$ a linear combination of $\va_1, \va_2$ and $a_3$, the columns of $A$?

If $\vb$ is a linear combination of the columns of $A$, determine a non-trivial linear relation between $\va_1,\va_2,\va_3$ and $\vb$.

By Proposition 2 of Notes 14, the solutions of $A\vx = \vb$ are in 1-to-1 correspondence with the linear combinations $x_1\va_1 + x_2\va_2 + x_3\va_3 = \vb$ of the columns of $A$ that sum to $\vb$.

So to answer the question, we solve the system. As usual, form the augmented matrix $B = [A|\vb]$ of the system then find its rref.

From the rref of $B$, we know that the system $A\vx = \vb$ has a unqiue solution, namely $\bm{-2 \\3 \\-3}$. Therefore, $\vb$ is a linear combination of $\va_1, \va_2, \va_3$ and

$$\vb = (-2)\va_1 + 3\va_2 + (-3)\va_3.$$

Check: $$ \bm{5 \\4 \\2} = (-2)\bm{5 \\4 \\-1} + 3\bm{ -10 \\-11 \\5} + (-3)\bm{-15 \\ -15 \\5}$$