%display latex
latex.matrix_delimiters(left='[', right=']')
latex.matrix_column_alignment('c')
$\newcommand{\la}{\langle}$ $\newcommand{\ra}{\rangle}$ $\newcommand{\vu}{\mathbf{u}}$ $\newcommand{\vv}{\mathbf{v}}$ $\newcommand{\vw}{\mathbf{w}}$ $\newcommand{\nc}{\newcommand}$ $\nc{\vx}{\mathbf{x}}$ $\nc{\vy}{\mathbf{y}}$ $\nc{\Cc}{\mathbb{C}}$ $\nc{\Rr}{\mathbb{R}}$ $\nc{\Zz}{\mathbb{Z}}$ $\nc{\Qq}{\mathbb{Q}}$ $\nc{\sp}[1]{\la #1 \ra}$ $\nc{\ol}[1]{\overline{#1} }$ $\nc{\norm}[1]{\left\| #1 \right\|}$ $\nc{\abs}[1]{\left| #1 \right|}$ $\nc{\vz}{\mathbf{0}}$ $\nc{\DMO}{\DeclareMathOperator}$ $\nc{\bm}[1]{\begin{bmatrix} #1 \end{bmatrix}}$ $\DMO{\tr}{Tr}$ $\DMO{\nullsp}{nullsp}$
Let $W,W' \le V$.
Is $W \cup W'$ necessaily a subspace of $V$?
Is $W \cap W'$ necessarily a subspace of $V$?
Proposition 1. The intersection of two subspaces is a subspace.
Proof. Suppose $W_1 W_2 \le V$. Then $\vz$ is in both $W_1$ and $W_2$ and hence in $W_1 \cap W_2$. Take any $c \in K$ and $\vw, \vw' \in W_1 \cap W_2$. Then by the Proposition 1 in Note 12, $c\vw + \vw'$ is in both $W_1$ and $W_2$ and hence their intersection.
Let $X, Y \le V$, the sum of $X$ and $Y$, denoted by $X +Y$, is defined to be the set $$ \{ \vx + \vy \colon \vx \in X, \vy \in Y\} $$ equipped with the operations of $V$. Show that $X +Y \le V$.
The sum $X+Y$ is a direct sum if $X \cap Y = \{\vz_V\}$. In that case, we denote the sum by $X \oplus Y$.
What is $X + Y$ when $X$, $Y$ are the following subspaces of $\Rr^3$?
a. $X = xz$-plane, $Y = yz$-plane.
b. $X = xz$-plane, $Y =y$-axis.
c. $X = xz$-plane, $Y = z$-axis.
Which of these sums are direct?
a. $X+Y = \Rr^3$ but the sum is not direct since $X \cap Y = z$-axis.
b. $X+Y = \Rr^3$ and the sum is direct since $X \cap Y =\{\sp{0,0,0} \}$.
c. $X+Y = xz$-plane and the sum is not direct sincee $X \cap Y = z$-axis.
Let $X, Y$ be vector spaces. The set $X \times Y$ equipped with the operations:
$(\vx_1,\vy_1) + (\vx_2, \vy_2) = (\vx_1 +_{X} \vx_2, \vy_1 +_{Y} \vy_2)$
$\lambda(\vx , \vy) = (\lambda \cdot_{X} \vx, \lambda \cdot_{Y} \vy)$
is a vector space.
It is the direct product of $X$ and $Y$. The zero vector of $X \times Y$ is $\vz:=(\vz_X, \vz_Y)$.
Example. $K^n \times K^m = K^{n+m}$.
Suppose $W \le V$. Define a relation $\sim_W$ on $V$ by $\vv \sim_W \vv'$ if $\vv-\vv' \in W$.
Check that $\sim_W$ is an equivalence relation.
Let $V/W = \{[\vv]_W \colon \vv \in V\}$ be the set of equivalence classes $\sim_W$.
Check that the operations $[\vv]_W + [\vv']_W = [\vv+\vv']_W$ and $\lambda [\vv]_W = [\lambda \vv]_W$ are well-defined.
$V/W$ equipped with these operations is a vector space called the quotient (space) of $V$ by $W$.
Take $V = \Rr^3$ and $W = z$-axis.
Describe the equivalent class of $\sp{3,3,1}$ with respect to $\sim_W$.
Find $[\sp{3,3,1}] + [\sp{4,6,0}]$ and $2[\sp{2,8,1}]$ in $V/W$.
Essentially, $V/W$, in this case "is" the $xy$-plane.
Here "is" means isomorphic, a concept that we will make precise later.