$\newcommand{\la}{\langle}$ $\newcommand{\ra}{\rangle}$ $\newcommand{\vu}{\mathbf{u}}$ $\newcommand{\vv}{\mathbf{v}}$ $\newcommand{\vw}{\mathbf{w}}$ $\newcommand{\nc}{\newcommand}$ $\nc{\vx}{\mathbf{x}}$ $\nc{\vy}{\mathbf{y}}$ $\nc{\Cc}{\mathbb{C}}$ $\nc{\Rr}{\mathbb{R}}$ $\nc{\Zz}{\mathbb{Z}}$ $\nc{\Qq}{\mathbb{Q}}$ $\nc{\sp}[1]{\la #1 \ra}$ $\nc{\ol}[1]{\overline{#1} }$ $\nc{\norm}[1]{\left\| #1 \right\|}$ $\nc{\abs}[1]{\left| #1 \right|}$ $\nc{\vz}{\mathbf{0}}$ $\nc{\DMO}{\DeclareMathOperator}$ $\nc{\bm}[1]{\begin{bmatrix} #1 \end{bmatrix}}$ $\DMO{\tr}{Tr}$ $\DMO{\nullsp}{nullsp}$

Operations on Vector Spaces

Union, Intersection

Let $W,W' \le V$.

Proposition 1. The intersection of two subspaces is a subspace.

Proof. Suppose $W_1 W_2 \le V$. Then $\vz$ is in both $W_1$ and $W_2$ and hence in $W_1 \cap W_2$. Take any $c \in K$ and $\vw, \vw' \in W_1 \cap W_2$. Then by the Proposition 1 in Note 12, $c\vw + \vw'$ is in both $W_1$ and $W_2$ and hence their intersection.

Sum of vector spaces

Let $X, Y \le V$, the sum of $X$ and $Y$, denoted by $X +Y$, is defined to be the set $$ \{ \vx + \vy \colon \vx \in X, \vy \in Y\} $$ equipped with the operations of $V$. Show that $X +Y \le V$.

The sum $X+Y$ is a direct sum if $X \cap Y = \{\vz_V\}$. In that case, we denote the sum by $X \oplus Y$.

What is $X + Y$ when $X$, $Y$ are the following subspaces of $\Rr^3$?

a. $X = xz$-plane, $Y = yz$-plane.

b. $X = xz$-plane, $Y =y$-axis.

c. $X = xz$-plane, $Y = z$-axis.

Which of these sums are direct?

a. $X+Y = \Rr^3$ but the sum is not direct since $X \cap Y = z$-axis.

b. $X+Y = \Rr^3$ and the sum is direct since $X \cap Y =\{\sp{0,0,0} \}$.

c. $X+Y = xz$-plane and the sum is not direct sincee $X \cap Y = z$-axis.

Direct Product

Let $X, Y$ be vector spaces. The set $X \times Y$ equipped with the operations:

  1. $(\vx_1,\vy_1) + (\vx_2, \vy_2) = (\vx_1 +_{X} \vx_2, \vy_1 +_{Y} \vy_2)$

  2. $\lambda(\vx , \vy) = (\lambda \cdot_{X} \vx, \lambda \cdot_{Y} \vy)$

is a vector space.

It is the direct product of $X$ and $Y$. The zero vector of $X \times Y$ is $\vz:=(\vz_X, \vz_Y)$.

Example. $K^n \times K^m = K^{n+m}$.

Quotients

Suppose $W \le V$. Define a relation $\sim_W$ on $V$ by $\vv \sim_W \vv'$ if $\vv-\vv' \in W$.

Check that $\sim_W$ is an equivalence relation.

Let $V/W = \{[\vv]_W \colon \vv \in V\}$ be the set of equivalence classes $\sim_W$.

Check that the operations $[\vv]_W + [\vv']_W = [\vv+\vv']_W$ and $\lambda [\vv]_W = [\lambda \vv]_W$ are well-defined.

$V/W$ equipped with these operations is a vector space called the quotient (space) of $V$ by $W$.

Take $V = \Rr^3$ and $W = z$-axis.

Essentially, $V/W$, in this case "is" the $xy$-plane.

Here "is" means isomorphic, a concept that we will make precise later.