MAT 191 Calculus I, Section 80, CN 45106 Fall 2021

Class meets MWF 10:00 AM - 11:25 AM, in SAC 3136

Instructor: Serban Raianu, office: NSM E-108, office phone: (310) 243-3139, cell phone (657) 204-5612

office hours: (via zoom, the zoom meeting information will be announced on Blackboard)

Monday, Wednesday: 8:20 AM – 9:50 AM, Friday: 11:30 AM – 12:30 PM, or by appointment.

Course Description: MAT 191, Calculus I, covers from the textbooks: differential and integral calculus of one variable: limits, continuity, derivatives and application of derivatives, integrals, fundamental theorem of calculus, inverse functions.

Text: CLP-1 Differential Calculus and CLP-2 Integral Calculus, by Joel Feldman, Andrew Rechnitzer, Elyse Yeager, available online at http://www.math.ubc.ca/~CLP/

Objectives: After completing MAT 191 the student should be able to:

• Understand the four basic concepts of one-variable calculus; the limit, the concept of continuity, the derivative and the integral of a function of one variable
• Use the rules of differentiation to compute derivatives of algebraic and trigonometric functions
• Use derivatives to solve problems involving rates of change, tangent lines, velocity (speed), acceleration, optimization, and related rates.
• Investigate the graph of a function with the aid of its first and second derivatives: asymptotes, continuity, tangency, monotonicity, concavity, extrema, inflection points, etc.
• Understand the meanings of indefinite integral and the definite integral of a function of one variable, and their relationship to the derivative of a function via the fundamental theorem of calculus
• Use rules of integration including the substitution rule to evaluate indefinite and definite integrals
• Differentiate exponential, logarithmic, and inverse trigonometric functions

Prerequisites: MAT 153 or equivalent with a grade of "C" or better.

Grades: Grades will be based on two zoom video meetings 15-minutes examinations (50% total), a comprehensive final examination (20%), and quizzes, homework, video and other assignments (30%) for the remainder.

An oral examination will consist in giving a definition or a statement for a notion or result studied in class, and explaining two homework problems from the homework assignments. A list of the possible definitions and statements is posted on Blackboard. A definition or a statement will be chosen by selecting a random number from 1 to the number of definitions and statements on the list. The homework problems will be selected by choosing randomly the lecture number, then a problem number from 1 to the total number of problems in the assignment corresponding to that lecture. For example, the definition/statement number 5 will refer to the fifth item on the list of possible definitions or statements on the list. The homework problem (1,13) will refer to problem 9 in Section 1.3 in CLP-1: this is the 13th problem in the homework assignment for Lecture 1.1. Each of the two oral exams will be graded on a 100 scale, then the sum of the scores is divided by 4 and denoted by E.

Homework will be due every week, the day before quiz days, and each homework is worth 10 points. Each week one of the problems from the homework due for that week will be selected and graded on a scale from 0 to 4. The remaining 6 points will be awarded for completeness of the homework assignment. Submitting solutions copied from the back of the book is not forbidden but strongly discouraged, since copying solutions will not prepare you for answering questions during the oral examinations. The average of all homework scores is denoted by H. Homework will be submitted as a pdf with your paper work on Gradescope. There is no need to match the pages with the problems when submitting the homework, see

Gradescope can be accessed from the link in Content in your Blackboard course, and you can practice submitting your work on Gradescope using the assignment called Submission practice, which will remain open throughout the semester. You might be asked to explain your work on a submitted problem. Failure to provide an explanation might result in a score of zero for the entire homework assignment.

15 minutes quizzes will be given in principle every week, and will be graded on a scale from 1 to 10. The average of the quizzes scores is denoted by Q. Each quiz will consist of one problem, similar but not necessarily identical to one of the homework problems assigned for that week.

There are also 10 points awarded for explaining one homework problem on video. This portion of the grade is denoted by V. Videos will be due the day before quiz days and will have to be uploaded on Flipgrid

The homework problems from which to choose one problem to explain on video will be announced in class.

The final exam, which will consist of fifteen problems similar to problems assigned as homework throughout the semester, will be graded out of a maximum possible 200, then the score is divided by 10 and denoted by F.

To determine your final grade, compute E+H+Q+V+F. The maximum is 100, and the grade will be given by the rule:

A: 93‑100; A‑: 90‑92; B+: 87‑89; B: 83‑86; B‑: 80‑82

C+: 77‑79; C: 73‑76; C‑: 70‑72; D+: 67‑69; D: 60‑66; F: Less than 60. You will be able to follow your progress in the class in Blackboard under Grade Center throughout the semester.

Accommodations for Students with Disabilities: California State University, Dominguez Hills adheres to all applicable federal, state, and local laws, regulations, and guidelines with respect to providing reasonable accommodations for students with temporary and permanent disabilities. If you have a disability that may adversely affect your work in this class, I encourage you to register with Student disAbility Resource Center (SdRC) and to talk with me about how I can best help you. All disclosures of disabilities will be kept strictly confidential. Please note: no accommodation may be made until you register with the SdRC in WH D-180. For information call (310) 243-3660 or to use telecommunications Device for the Deaf, call (310) 243-2028.

Academic Integrity: The mathematics department does not tolerate cheating. Students who have questions or concerns about academic integrity should ask their professors or the counselors in the Student Development Office, or refer to the University Catalog for more information. (Look in the index under "academic integrity".)

Technology: Symbolic calculators, such as TI-89, TI-92 or TI-nspire CAS are not acceptable for this course.

Tentative schedule and homework assignments

M 8/23:           Lecture 1.1: From CLP-1: 1.1 Drawing Tangents and a First Limit: 1,2,3; 1.2 Another Limit and Computing Velocity: 5,6,7; 1.3 The Limit of a Function: 1,3,5,7,9,11,13,15,17 (15 problems)

W 8/25:           Lecture 1.2: 1.4 Calculating Limits with Limit Laws, 1: 1,3,5,7,9,11,13,15,17,19,21,23 (12 problems)

F 8/27:            Lecture 1.3: 1.4 Calculating Limits with Limit Laws, 2: 2,4,6,8,10,12,14,16,18,20,22,24 (12 problems)

M 8/30:           Lecture 1.4: 1.5 Limits at Infinity: 1,3,5,7,9,11,13,15,17,19,21,23,25 (13 problems)

W 9/1:             Lecture 1.5: 1.6 Continuity: 1,3,5,7,9,11,13,15,17,19 (10 problems)

F 9/3:              Lecture 1.6: 2.1 Revisiting tangent lines: 1,2,3; 2.2 Definition of the derivative: 1,3,5,7,9,11,13,15,17 (12 problems)

M 9/6:             Labor Day

W 9/8:             Lecture 1.7: 2.3 Interpretations of the derivative: 1,2,3,4,5,6,7; 2.4 Arithmetic of derivatives: 1,2,3,4,5,6,7,8,9,10,11,12 (19 problems)

F 9/10:            Lecture 1.8: 2.6 Using the arithmetic of derivatives: 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16 (15 problems)

M 9/13:           Lecture 1.9: 2.7 Derivatives of exponential functions: 1,2,3,4,5,6,7,8,9,10,11 (11 problems)

W 9/15:           Lecture 1.10: 2.8 Derivatives of trigonometric functions: 1,3,5,7,9,11,13,15,17,19,21,23,25 (13 problems)

F 9/17:            Lecture 1.11: 2.8 Derivatives of trigonometric functions: 2,4,6,8,10,12,14,16,18,20,22,24 (12 problems)

M 9/20:           Lecture 1.12: 2.9 One more tool - the chain rule: 2,4,6,8,10,12,14,16,18,20,22,24,26 (13 problems)

W 9/22:           Lecture 1.13: 2.9 One more tool - the chain rule: 3,5,7,9,11,13,15,17,19,21,23,25 (12 problems)

F 9/24:            Lecture 1.14: 2.10 The natural logarithm: 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29 (15 problems)

M 9/27:           Lecture 1.15: 2.10 The natural logarithm: 2,4,6,8,10,12,14,16,18,20,22,24,26,28 (14 problems)

W 9/29:           Lecture 1.16: 2.11 Implicit differentiation: 1,2,3,4,5,6,7,8,9,10,11,12,13 (13 problems)

F 10/1:            Lecture 1.17: 2.12 Inverse trigonometric functions: 1,3,5,7,9,11,13,15,17,19 (10 problems)

M 10/4:           Lecture 1.18: 2.13 The Mean Value Theorem: 7,8,9,10,11,16,18,22 (8 problems)

W 10/6:           Lecture 1.19: 2.14 Higher order derivatives: 5,6,7,8,9,10,11,12,13 (9 problems)

F 10/8:            Review

M 10/11:         Oral Exam Week 1

W 10/13:         Oral Exam Week 1

F 10/15:          Oral Exam Week 1

M 10/18:         Lecture 2.1: 3.2 Related rates: 1,2,3,4,5,6,7,8,9 (9 problems)

W 10/20:         Lecture 2.2: 3.3 Exponential growth and decay: 3.3.1: 6,8,10; 3.3.2: 2,4,6; 3.3.3: 2,3,4,5 (10 problems)

F 10/22:          Lecture 2.3: 3.5.1 Local and global maxima and minima: 1,2,3,4,5,6,7; 3.5.2: 1,2,3,4,5; 3.5.3: 1,2,3,4,5 (17 problems)

M 10/25:         Lecture 2.4: 3.6 Sketching graphs: 3.6.1: 4,5; 3.6.2: 2,3,4; 3.6.3: 4; 3.6.4: 1,2,5,7,8 (11 problems)

W 10/27:         Lecture 2.5: 3.6.6 Sketching examples, 1,3,5,7,9 (5 problems)

F 10/29:          Lecture 2.6: 3.6.6 Sketching examples, 2,4,6,8,10 (5 problems)

M 11/1:           Lecture 2.7: 4.1 Introduction to antiderivatives: 1,3,5,7,9,11,13,15 (8 problems)

W 11/3:           Lecture 2.8: From CLP-2: 1.1 Definition of the integral: 1,3,5,7,9,11,13,15 (8 problems)

F 11/5:            Lecture 2.9: 1.1 Definition of the integral: 2,4,6,8,10,12,14 (7 problems)

M 11/8:           Lecture 2.10: 1.2 Basic properties of integrals: 1,3,5,7,9,11,13,15,17,19 (10 problems)

W 11/10:         Lecture 2.11: 1.2 Basic properties of integrals: 2,4,6,8,10,12,14,16,18,20 (10 problems)

F 11/12:          Lecture 2.12: 1.3 The Fundamental Theorem of Calculus: 1,3,5,7,9,11,13,15,17,19,21,23 (12 problems)

M 11/15:         Lecture 2.13: 1.3 The Fundamental Theorem of Calculus: 2,4,6,8,10,12,14,16,18,20,22,24 (12 problems)

W 11/17:         Lecture 2.14: 1.4 Substitution: 1,2,3,4,5,6,7,8 (8 problems)

F 11/19:          Lecture 2.15: 1.4 Substitution: 9,10,11,12,13,14,15,16,17 (9 problems)

M 11/22:         Lecture 2.16: 1.4 Substitution: 18,19,20,21,22,23,24,25 (8 problems)

W 11/24:         Review

F 11/26:          Thanksgiving Day Break

M 11/29:         Oral Exam Week 2

W 12/1:           Oral Exam Week 2

F 12/3:            Oral Exam Week 2

Final examination: Monday, December 6, 10:00 AM - 12:00 PM.

Important Dates: