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Abstract

Nichols and Sweedler showed in [5] that generic formulas
for sums may be used for producing examples of coalgebras.
We adopt a slightly different point of view, and show that the
reason why all these constructions work is the presence of certain
representative functions on some (semi)group. In particular,
the indeterminate in a polynomial ring is a primitive element
because the identity function is representative.

Introduction

The title of this note is borrowed from the title of the second section of
[5]. There it is explained how each generic addition formula naturally
gives a formula for the action of the comultiplication in a coalgebra.
Among the examples chosen in [5], this situation is probably best illus-
trated by the following two:

Let C be a k-space with basis {s,c}. We define A : C — C ® C and
e:C — k by

Als) = s®c+c®s
Alc) = c®c—5®s
e(s) 0
e(c) 1.



Then (C, A, ¢) is a coalgebra called the trigonometric coalgebra.
Now let H be a k-vector space with basis {¢,, | m € N}. Then H is a
coalgebra with comultiplication A and counit € defined by

Alem) = Z ¢ ® Cm—iy  €(Cm) = 00.m-

i=0,m

This coalgebra is called the divided power coalgebra.

Identifying the “formulas” in the above examples is not hard: the for-
mulas for sin and cos applied to a sum in the first example, and the
binomial formula in the second one. Nevertheless, some more questions
still need to be answered: Can one associate a coalgebra to any for-
mula? If not, how can one characterize formulas leading to coalgebra
structures? Do all formulas of that kind need to be formulas for sums?
If not, are the formulas for sums special in any way?

The aim of this note is to answer all these questions. First, we remark
that a formula will define a coalgebra structure precisely when it rep-
resents an equality showing that a certain function is a “representative
function”. The easiest, and perhaps the most striking example, is the
coalgebra (or bialgebra) structure defined on the polynomial ring over
an infinite field &k, and it may be summarized as follows: the identity
function from k to itself is a primitive representative function on the
additive group of k. This in turn explains why “addition” plays a priv-
ileged role among the other operations: any polynomial function (or a
function represented as the sum of a power series) is a representative
function on the additive group of k£, and the comultiplication applied
to that function is in fact the function applied to a sum of variables.
Other examples include numerous coalgebra or bialgebra structures
used in combinatorics.

All the above will be explained in the second section. Before doing
this, we briefly recall in the first section the construction of the rep-
resentative bialgebra of a semigroup (we include enough detail so that
the exposition becomes self contained, but the reader is referred to [1]
or [2] for unexplained notions or notation).

1 The representative bialgebra of a semi-
group

Let k be a field, and G a monoid. Denote by kG the semigroup alge-
bra (kG has basis G as a k-vector space and multiplication given by
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(az)(by) = (ab)(zy) for a,b € k, x,y € G), and by (kG)* its linear dual,
(kG)* = Homy(kG, k). Put

(kG)* =

={f € (kG)" | 3fi, 9 € (kKG)" : = filz)gi(y), Yo,y € kG}

It is clear that (kG)° is a kG-subbimodule of (kG)* with respect to —
and <, given by

(x—=)y) = f(yx), (f~=x)(y) = f(zy), Yo,y € kG, [ e (kG)".

If we take f € (kG)°, we can assume the f;’s and g;’s are linearly inde-
pendent.
(This can be seen as follows: let n be the least positive integer for

which there exist f;, g; with f(zy) = i fi(x)gi(y), for all z,y € kG,
i=1

with (fi)i=1, linearly independent. Then (g;);=1, are also linearly in-
dependent because if gn is a linear combination of the others, say g, =

Z algzythen f(xy) (fz+azfn>( ) ( ) and {f1+a1fn7" fn 1+

an 1fn} are linearly 1ndependent contradicting the minimality of n).
Then there exist linearly independent vy, ..., v, € kG with g;(v;) =0
for any i,5 = 1,...,n, i # j, while g;(v;) 7é 0. (This follows by in-
duction on n. For n = 1 the result is clear. Let now ¢1,...,gn11
be linearly independent, and applying the induction hypothesis we
find vy,...,v, € kG satisfying the conditions for gy, ..., g,, and pick
v € kG with g,41(v) # Yiz15 gnr1(vi)gi(v). Then put wpp = v —
Zi:l,n(gi(vi))_lvigi<v)a and w; = v; — gn+1(Uj)(9n+1(wn+1))_lwn+1 for
j=1,...,n. These wy, ..., w,y; satisfy the required conditions).
Thus we obtain that f; € kG—f C (kG)° and g; € f—kG C (kG)°.
Hence we can define

A (kG)° — (kG)° ® (kG)°,

=> [i®g < flay) =) filz)g(z), Va,yec kG,
and
e: (kG)° —k, e(f) = f(1le)

The above maps define a coalgebra structure on (kG)°, which turns it
into a bialgebra.

Also note that for all f € (kG)°, kG— f~—kG is a subcoalgebra of (kG)°



(the smallest one containing f), and it is finite dimensional.
Now there exists an isomorphism of vector spaces

¢ kY — (kG)* = Hom(kG, k), gb(f)(z a; ;) = Zaif(xi).

Consequently, k% becomes a kG-bimodule by transport of structures
via ¢:

(@f)(y) = flyz), (f2)(y) = flzy), Yo,y € G, f €.
Definition 1.1 If G is a monoid, we call
Ri(G) = ¢~ ((kG)")
the representative bialgebra of the monoid G. |

Note that the bialgebra structure on Ri(G) is also transported via
¢. Ri(G) is a kG-subbimodule of k%, and consists of the functions
(which are called representative) generating a finite dimensional kG-
subbimodule (or, equivalently, a left or right kG-submodule). We have

Ry(G) ={f € k¢ | 3fi 9 € k’G, flzy) = Zfi(ﬂf)gi(?/) Va,y € G},

and the comultiplication map on Ry(G) is given as follows: for f €
Ry (G),

A(f) = Zfz ® gi < fi,9; € kY are such that flzy) = Zfl(a:)gl(y()>

1

If G is a group, the Ri(G) is a Hopf algebra with antipode S(f)(z) =
f@@™h).

Remarks 1.2 1) The following is a partial explanation for the name

of representative functions. Let G be a group, and p : G — GL, (k)

a representation of G. Put p(x) = (fij(x))i;, and let V(p) be the

k-subspace of k¢ spanned by the {fi;}i;. Then Re(G) = S V(p),
P

where p ranges over all finite dimensional representations of G. In-
deed, let f € V(p), and y € G. If f = Y a;ifi;, then (yf)(x) =
Yaifij(zy) = Y aijfu(x)gri(y), and thus yf = Y aijgrfic € V(p)-
Similarly, fy € V(p), and so we have (2). For the reverse inclusion,
let f € Ri(G). Then the left kG-submodule generated by f is finite di-
mensional, say with basis {f1,..., fu}, and thus x f; =3 g;j(x) f;. Then
p:G— GL,(k), p(z) = (gi;(x))i , is a representation of G, V(p) is
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spanned by the g;;’s, and we obtain that f; =3 fi(1a)gi; € V(p), thus
feVip).

2) Let 0 : (kG)* @ (kG)* — (kG @ kG)*, 0(f @ g)(z @ y) = f(z)g(y).
Then 6 is an injective linear map, which is an isomorphism when G
s finite. If we denote by M : kG ® kG — kG the multiplication
map, then (kG)° consists of those f € (kG)* with the property that
M*(f) € Im(9). Consequently, (kG)° = (kG)* when G is finite.

3) We give now a second explanation for the name of representative
functions. Assume that G is a finite group. Then consider the rep-
resentable functor from commutative k-algebras to groups, given by
F(R) = Algr((kG)*, R) (Algr((kG)*, R) is a group under convolution,
and the inverse of a map is the composition of that map with the an-
tipode). For commutative k-algebras R without other idempotents than
zero and one, we have that F(R) ~ G, so in this case (kG)° = (kG)*
“almost represents” the functor associating the group G to any commu-
tative k-algebra R. 1

2 Representative Functions and Coalge-
bra Structures

We start this section by looking at some examples of representative
functions:

1) Let G be a monoid. Then f € Ry (G) is a grouplike element if and
only if A(f) = f® f and (f) = 1, which will happen if and only if,
by (1), f(zy) = f(x)f(y) and f(1lg) = 1, meaning that f is a monoid
morphism from G to (k,-).

An example is the exponential function exp : R — R, because
e* = e%e¥ hence A(exp) = exp®exp, and the subspace spanned
by exp in Rr((R,+)) is a one-dimensional subcoalgebra.

Another example is 1, the constant function taking the value 1: we
have 1(z +y) = 1 = 1(2)1(y).

2) If G is a monoid, then f € Ry(G) is primitive if and only if A(f) =
f®1+1® f, where 1 is the constant function taking the value 1.
By (1), this will happen if and only if f(zy) = f(x)1(y) + 1(x)f(y) =
f(z) + f(y), ie. if and only if f is a semigroup morphism from G to
(k,+).

An example is the logarithmic function lg : (0,00) — R, because
lg(xy) = lg(x) +1g(y), hence A(lg) = lg®1 + 1 ®lg, and thus 1 and Ig
span a two-dimensional subcoalgebra of Rg((0,0),)).
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3) Let d, : R — R be defined by d,(z) = £ Since d,(z + y) =
> di(x)d,—i(y) (by the binomial formula), it follows that the d,’s are

representative functions on the group (R,+), and the subspace they
span is a subcoalgebra of Rg((R,+)), isomorphic to the divided power
coalgebra from the introduction. This explains the name of this coal-
gebra.

The binomial formula for n = 0 just says that 1, the constant function
1, is a grouplike, because (z +y)" = L(x +y) =1 = 1(z)1(y).

For n = 1, it shows that the identity function is primitive: z+y = x+vy
may be seen as Id(x + y) = Id(x) + Id(y) = Id(x)1(y) + L(x)Id(y).
In general, if we replace R by any infinite field k£ (so that polynomial
functions on k correspond one-to-one with polynomials in k[X]), this
explains the definition of the comultiplication defined on the polynomial
ring k[X]: the indeterminate X corresponds to the identity function,
which is primitive. Consequently, in this case all polynomial functions
are representative.

Divided power coalgebras are behind other examples of coalgebras
appearing in combinatorics. We briefly list three of their possible gener-
alizations (see [3] for more details), along with some other appearances
of representative functions.

4) Incidence coalgebras for partially ordered sets may be viewed as gen-
eralizations of the divided powers coalgebra, since the latter is just the
standard reduced incidence coalgebra spanned by segments of nonneg-
ative integers under natural ordering.

5) Divided powers coalgebras can also be extended in a different direc-
tion, by generalizing the binomial coefficients as follows: Let G be a
commutative semigroup (written additively). Then section coefficients
on G are a mapping (i,j,k) — (i | j,k) € Z such that for any i the
number of ordered pairs j, k such that (i | 7, k) # 0 is finite, and

Mg k)| pg)=>(i]sq)(s|jp) (2)

k s

The section coefficients are called bisection coefficients if

(i+7jlpq) = > (i | p1,q1)(J | P2, q2) (3)

p1+p2=p;q1+q2=q

Therefore, the bisection coefficients may be viewed as representative
functions on G (over a field k of characteristic zero). To associate a
coalgebra C' to G, associate an x; to each ¢ € GG, take the span C' of all



the z;’s, and define

Ax;) = Z(z | . k)xj @ x.

Jk

Also put e(x;) = 6;0, where 0 € G is unique such that (i | 0,7) =
(i] ,0) = 0;;. Then the coassociativity of A follows from (2), while
putting x;x; = x;1; turns C into a bialgebra because of (3). This is an
illustration of how useful is the fact that being “representative” ensures
both coassociativity of the comultiplication and compatibility with the
multiplication.

6) Another possible extension of divided powers coalgebras uses poly-
nomial sequences of binomial type as a replacement for the sequence
d, from 3). By definition, these are representative functions on the
additive group of k (see [3, (5.4)]): the ploynomial sequence p,(z) is
said to be of binomial type if deg p,, = n for all n, and

n

le+) =3 (1)t

k=0

Similar examples of representative functions are provided by polyno-
mial sequences of Boolean type (see [3, (5.8)]): a polynomial sequence
indexed by the finite subsets of a set {pa(z)} is said to be of Boolean
type if
pa@+y)= >, pal)pa,(y).
Ar+Ay=A

The motivating examples behind them are chromatic polynomials of
graphs (see [3, (5.9)]), which are also examples of representative func-
tions.

We now go back to the first example in the introduction, and give
an explanation for the name ”trigonometric coalgebra”. The functions
sin and cos : R — R satisfy the equalities

sin(z + y) = sin(x) cos(y) + cos(z) sin(y),
and
cos(x 4 y) = cos(z) cos(y) — sin(z) sin(y).

These equalities are both of the type (1), and show that sin and cos are
representative functions on the group (R, +). The subspace generated
by them in the space of the real functions is then a subcoalgebra of
Rr((R,+)), isomorphic to the trigonometric coalgebra.
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As in Remark 1.2 3), the fact that sin and cos are representative func-
tions is also suitable for a different interpretation. Instead of taking
the subspace of Rr((R,+)) spanned by sin and cos, take the subal-
gebra generated by them, R/[sin, cos], factor it by the ideal generated
by sin® + cos? —1, and denote the quotient algebra by H. Then H is
a commutative Hopf algebra, with comultiplication defined on sin and
cos as above. Moreover, as shown in [6, Section 2.2], the Hopf algebra
H represents (as in “representable functor represented by the commu-
tative R-algebra H”) the affine group scheme C : R — Alg, — Gr,
defined by
C(R) ={(a,b) € Rx R | a®+b* =1},

on which the group structure is defined by
(a,b) - (¢,d) = (ac — bd, ad + bc).

Finally, we have a brief look at what makes addition special among
other operations (the fact that addition is not the only operation pro-
viding formulas leading to coalgebras is illustrated in 2) above).

Let k be an infinite field. Then we have the k-algebra isomorphism

EX,)Y] — kX]®KkX], X—X®1, VY —-1®X.

Let P be a polynomial function. Since P is representative, there exist
(polynomial) functions F; and G;, ¢ = 1,...,n such that

Pz +y) = Fi(@)Gi(y). (4)

(Note that (4) may also be derived simply by applying the binomial
theorem several times and collecting like terms.) Consequently, by (1)
we get that A(P) = Y F; ® ;. The same thing may be obtained
directly from (4) by applying A to P and using the fact that A is
multiplicative:

A(P(z)) =

3

A(z))
r@1+1®7)
T +y)

FZ(JJ)Gl( )

Il
g

Il
M:

1

<.
I

|
NE

Fi(r ®1)G;(1 ® 1)

<.
Il



= Y Fi(e) ©Gio).
i=1
This way of obtaining a formula for A from the formula (4) without
mentioning representative functions or (1) was used in [5].

We end by remarking that the point of view exhibiting various rep-
resentative functions behind coalgebra structures may be expanded by
looking at Hopf algebras acting on algebras (or fields), because the
measuring condition is also a way of saying that acting by an element
of the Hopf algebra is a representative function (i.e. it is a formula of
type (1). In this way, “acting as homomorphisms” produces grouplikes,
while “acting as derivations” produces primitives.

All of the above come as no surprise: since it is well known that any
coalgebra may be viewed as a subcoalgebra of the representative coalge-
bra of the multiplicative monoid of its linear dual [2, Exercise 1.5.15],
wherever there is a coalgebra there are also representative functions
around.
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