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Abstract. We review the role that balanced bilinear forms play in the def-

initions of properties of corings and suggest a definition for a coring to be

symmetric.

1. Introduction

Let k be a commutative ring and A a finite dimensional k-algebra. An element
e in A ⊗k A is called A-central, or a Casimir element [3, Section 1.3], if ae = ea
for all a ∈ A. Various properties of A are defined in terms of A-central elements.
For example, A is k-separable if and only if A has an A-central element e such that
π(e) = 1 where π : A⊗k A → A is the usual map π(a⊗k b) = ab. A is a Frobenius
k-algebra if and only if there exists an A-central element e and a map ε ∈ A∗ such
that (ε⊗k A)(e) = (A⊗k ε)(e) = 1. Equivalently, A is Frobenius if and only if there
is a nondegenerate bilinear map B : A×A → k such that B(xy, z) = B(x, yz). The
algebra A is symmetric if A is Frobenius and B(x, y) = B(y, x).

For C a coalgebra over k, various analogous properties of C may be defined in
terms of balanced bilinear forms from C⊗kC to k, generalizing the idea of A-central
element. A C∗-balanced form is a k-bilinear form B from C ⊗k C to k such that
B(c ↼ c∗, d) = B(c, c∗ ⇀ d) for all c, d ∈ C, c∗ ∈ C∗ with the usual actions of C∗

on C. For k a field, the idea of a symmetric coalgebra was recently defined in [4],
namely that a k-coalgebra C is symmetric if and only if there is a nondegenerate
symmetric balanced bilinear form B from C ⊗k C to k.

For C an A-coring, where A is not necessarily commutative, the situation is
complicated by the presence of left and right duals. However, the idea of balanced
bilinear forms from C ⊗A C to A still makes sense and is used to define various
properties of corings analogous to those for coalgebras. We recall some of these
properties, and, in the last section, suggest a working definition for the notion of a
symmetric coring along with some examples.

We will work over a commutative ring k and all maps are assumed to be k-linear.
Throughout this paper, A will denote a not necessarily commutative k-algebra. We
will use the Sweedler summation notation for comultiplication, but omitting the
summation sign. For background on coalgebras over a field we refer the reader to
[5]. The first chapter of [2] contains basics on coalgebras over a commutative ring.
The identity map on a k-module X is denoted simply as X.
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2. Corings

Recall that for A a not necessarily commutative ring, an A-coring C is defined
to be a coalgebra in the monoidal category of (A,A)-bimodules, (AMA,⊗A, A).
More precisely, C is an (A,A)-bimodule, together with (A,A)-bimodule maps ∆C :
C → C ⊗A C and εC : C → A such that ∆C is co-associative and the compatibility
conditions (εC ⊗A C) ◦∆C(c) = c and (C ⊗A εC) ◦∆C(c) = c, for all c ∈ C, hold.

For definitions and details about corings, we refer the reader either to [2] or, for
the original definition, to [9]. We will normally write (A,A)-bimodule actions on a
module M ∈ AMA by juxtaposition, i.e. we write amb for the left action of a and
the right action of b on m.

If A = k, then we recover the definition of a coalgebra over the commutative
ring k. Simple examples of corings include the following.

Examples 2.1. (i) Trivial coring. For A a ring, let C = A itself and define
∆C(a) = a⊗A 1 = 1⊗A a and εC(a) = a.

(ii) Matrix coring. (See [2, 17.7].) For A a ring, let C = M c
n(A), n by n

matrices over A with A-basis eij, 1 ≤ i, j ≤ n and aeij = eija. Then (C,∆C , εC) is
an A-coring where ∆C(eij) =

∑n
k=1 eik ⊗A ekj and εC(eij) = δi,j, and the maps are

extended by A-linearity.
(iii) An entwining structure example. Let k be a field, let H be a k-Hopf

algebra, and A a right H-comodule algebra via a 7→ a[0]⊗ka[1]. Then A⊗kH becomes
an A-coring as follows: the left A-module structure is given by multiplication on the
first component, and the right A-module structure is given by (a⊗k h)b = ab[0] ⊗k

hb[1]. The comultiplication is ∆ : A⊗kH −→ (A⊗kH)⊗A (A⊗kH) ' A⊗kH⊗kH,
∆(a ⊗k h) = (a ⊗k h(1)) ⊗A (1A ⊗k h(2)), and the counit is ε : A ⊗k H −→ A,
ε(a⊗k h) = ε(h)a.

(iv) Opposite coring. Let Ao be the opposite algebra of A. If M is an (A,A)-
bimodule, then M is also an (Ao, Ao)-bimodule, denoted Mo, as usual, via aomobo =
(bma)o. The twist map τ : M ⊗A M → Mo ⊗Ao Mo defined by τ(m ⊗A n) =
no ⊗Ao mo is a k-module isomorphism. The opposite coring, denoted Co, is defined
[6, 1.7] to be the Ao-coring (C,4o

C , εC), where comultiplication ∆o
C(c

o) = τ ◦4C(c) =
(c2)o ⊗Ao (c1)o.

If A = k, and C is a k-coalgebra, then the dual C∗ is an algebra via the convo-
lution map. However, for C a coring, there are right and left dual rings associated
with C, denoted C∗ and ∗C.

Following [2, 17.8], we write C∗ := HomA(C, A), the right A-module homomor-
phisms from C to A. C∗ has a ring structure with associative multiplication ∗r given
by f ∗r g(c) = g(f(c1)c2) and unit εC . There is a ring morphism from Ao to C∗
by ao 7→ εC(a−). Thus C∗ has left Ao-action via (εC(b−) ∗r c∗)(c) = c∗(bc) and,
similarly, a right Ao-action. Then C∗ is an (A,A)-bimodule via (ac∗b)(c) = ac∗(bc).

Similarly, ∗C := AHom(C, A), the left A-module homomorphisms from C to A. ∗C
has a ring structure with associative multiplication ∗l given by f ∗lg(c) = f(c1g(c2))
and unit εC . There is a ring morphism from Ao to ∗C given by a 7→ εC(−a). Then
∗C is an (A,A)-bimodule via (ac∗b)(c) = c∗(ca)b.

Note that convolution is not well defined on either C∗ or ∗C. The problem is that
∆C maps to C ⊗A C and A-linearity may fail.

Again, using notation from [2], we denote ∗C∗ := AHomA(C, A) = ∗C ∩ C∗ to be
the set of (A,A)-bimodule maps from C to A. On ∗C∗ the associative multiplications
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∗l and ∗r both equal the convolution multiplication, so that ∗C∗ with the convolution
multiplication f ∗ g(c) = f(c1)g(c2) is an associative ring with unit εC .

Remark 2.2. ∗C∗ is not a left or a right A-module under either the A-module
structures of ∗C or of C∗. For suppose f lies in ∗C∗ and we attempt to define
af by (af)(c) = f(ca) (the left A-module structure on ∗C). Now af may not lie
in ∗C∗ ⊂ C∗ since (af)(cb) = f(cba) = f(c)ba which is not, in general, equal
to (af)(c)b = f(c)ab. Similarly, if we let (af)(c) = af(c), then af may not lie in
∗C∗. However, if a ∈ Z(A), the centre of A, then the definitions above of left module
structure agree and af ∈ ∗C∗, so that ∗C∗ is a left Z(A)-module. Similarly, the right
module structures on ∗C and C∗ also may not induce right A-module structures on
∗C∗ but do induce a right Z(A)-module structure.

For C a coalgebra over a commutative ring k, it is well known that C is a
(C∗, C∗)-bimodule. For corings the situation is somewhat different.

The coring C is a right C∗-module via c ↼ c∗ = c∗(c1)c2 and the right A-action
on C commutes with the right C∗-action. However, C is not an (A, C∗)-bimodule
in general since, for c∗ ∈ C∗, we need not have equality of c∗(ac1)c2 and ac∗(c1)c2.
Similarly, there is a left ∗C-action on C which commutes with the left A-action given
by c∗ ⇀ c = c1c

∗(c2). It follows from the coassociativity of ∆C and the fact that ∆C
is an (A,A)-bimodule map, that C is a (∗C, C∗)-bimodule with the above actions.

3. Balanced bilinear forms for corings

Recall that M ∈ AM is locally projective as a left A-module if and only if
for any finite set S of elements of M , there exist x1, . . . , xn ∈ M,f1, . . . , fn ∈
AHom(M,A) = ∗M such that m =

∑n
i=1 fi(m)xi, for any m ∈ S. Any object

of MC , the category of right C-comodules, can be viewed as an object of ∗CM,
the category of left ∗C-modules, and if C is locally projective, then MC is a full
subcategory of ∗CM. Moreover, the rational functor RatC : ∗CM→MC is defined.
Similar statements hold for right local projectivity.

Suppose that C is locally projective as a left A-module. Recall from [2, Section
20], that if M ∈ MA is a left ∗C-module, RatC(M), the rational submodule of M ,
may be defined as the set of rational elements of M , where m ∈ M is called rational
if there exists

∑n
i=1 mi⊗A ci ∈ M⊗AC such that φ ·m =

∑
i miφ(ci), for all φ in ∗C.

By the locally projective condition on C,
∑

i mi ⊗A ci is uniquely determined and
so these elements define a right C-comodule structure on RatC(M). For M = ∗C
we have that RatC(∗C) is an ideal of ∗C (and thus also an A-subbimodule of ∗C).

For C locally projective as a right A-module, similar statements hold. Here the
rational functor is denoted CRat : MC∗ → CM, and CRat(C∗) is an ideal of C∗.

With the (A,A)-bimodule structure on C ⊗A C given by a(c⊗A c′)b = ac⊗A c′b,
the set of balanced bilinear forms on C is defined as follows.

Definition 3.1. The set of balanced bilinear forms on C, denoted bbf(C), is defined
to be the set of σ ∈ AHomA(C ⊗A C, A) such that

(σ ⊗A C) ◦ (C ⊗A ∆C) = (C ⊗A σ) ◦ (∆C ⊗A C)

or, equivalently,

(3.1) σ(c⊗A d1)d2 = c1σ(c2 ⊗A d), for all c, d ∈ C.
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By [2, 6.4], if C = C is a locally projective k-coalgebra, then (3.1) is equivalent
to the defining relation for C∗-balanced forms B given in the introduction.

As usual, σ ∈ bbf(C) is called right nondegenerate if σ(c⊗A C) = 0 implies c = 0,
and left nondegenerate if σ(C ⊗A c) = 0 implies c = 0.

Examples 3.2. (i) For C = A, the trivial coring of Examples 2.1, let σ = εC⊗A εC.
It is easy to see that σ ∈ bbf(C) and is nondegenerate.

(ii) For C the n by n matrix coring of Examples 2.1, define σ to be the A-linear
map from C ⊗A C to k defined on generators by σ(eij ⊗A ekl) = δi,lδj,k. Again, it is
easily checked that σ ∈ bbf(C) and is nondegenerate.

(iii) Let C be the coring A⊗k H from Examples 2.1 and suppose that H has a left
integral t in H∗. It is well known that B(h, g) = t(hS(g)) where S is the antipode of
H, is a balanced form on H since h1t(h2S(g)) = h1S(g2)g3t(h2S(g1)) = t(hS(g1))g2

for all g, h ∈ H. Now define σ : C ⊗A C → A by

σ((a⊗k h)⊗A (b⊗k g)) = ab[0]t(hb[1]S(g)).

It is easy to check that σ is A-bilinear and the balanced property comes from that
of B.

(iv) Let bbf(Co) denote the set of balanced bilinear forms for the Ao-coring Co.
For σ ∈ bbf(C), define σo : Co⊗Ao Co → Ao by σo(co⊗Ao do) = (σ◦τ(co⊗Ao do))o =
(σ(d⊗A c))o. It is easily checked that σo ∈ bbf(Co).

Now, let σ ∈ bbf(C). Since σ is a left and right A-module map, σ induces a well
defined left A-module map σr : C → C∗, given by σr(c)(d) = σ(c⊗A d). It is easily
checked that σr is also a right A-module map and a right C∗-module map. Similarly,
σl : C → ∗C defined by σl(d)(c) = σ(c ⊗A d) is well defined, a left ∗C-module and
an (A,A)-bimodule map.

The next lemma is a straightforward generalization to corings of well-known
facts for coalgebras. Statements (i) and (ii) can be found in [8, Proposition 1] for
coalgebras over a field, and in [2, Section 6.6] for locally projective coalgebras over
a commutative ring.

Lemma 3.3. We have the following bijective correspondences.
(i) Let C be an A-coring which is locally projective as a right and as a left A-

module. There is a bijective correspondence between bbf(C) and the set of (A,A)-
bimodule, right C∗-module maps from C to CRat(C∗). Under this correspondence,
right nondegenerate forms correspond to monomorphisms from C to CRat(C∗).

(ii) For C an A-coring which is locally projective as a right and as a left A-
module, there is a bijective correspondence between bbf(C) and the set of (A,A)-
bimodule, left ∗C-module maps from C to RatC(∗C). Under this correspondence, left
nondegenerate forms correspond to monomorphisms from C to RatC(∗C).

(iii) For any A-coring C, (not necessarily locally projective), there is a bijective
correspondence between bbf(C) and the set of (C, C)-bicomodule maps from C ⊗A C
to C, where C⊗A C is a left (right) C-comodule via 4C⊗A C (C⊗A4C, respectively).

Proof. (i) First we show that there is a bijective correspondence between bbf(C)
and AHomA(C, C∗)∩HomC∗(C, C∗). Suppose that ϕ : C → C∗ is an (A,A)-bimodule,
right C∗-module map. Define σ := σϕ : C ⊗A C → A by σϕ(c⊗A d) = ϕ(c)(d), for
all c, d ∈ C. We must show that σϕ is a well-defined (A,A)-bimodule map and is
balanced.
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Since ϕ is a right A-module map, we have

σ(ca⊗A d) = ϕ(ca)(d) = (ϕ(c)a)(d) = ϕ(c)(ad) = σ(c⊗A ad),

and so σ is well defined. Next, note that for a, a′ ∈ A, since ϕ(ac) = aϕ(c) and
ϕ(ac) ∈ C∗, then

σ(ac⊗A da′) = ϕ(ac)(da′) = a(ϕ(c)(d))a′,

so that σ is an (A,A)-bimodule map. Finally, to see that σ ∈ bbf(C), note that for
c ∈ C, c∗ ∈ C∗, since ϕ(c ↼ c∗) = ϕ(c) ∗r c∗, then

c∗(c1σ(c2 ⊗A d)) = c∗(σ(c⊗A d1)d2),

for all d ∈ C. Hence c1σ(c2 ⊗A d) and σ(c ⊗A d1)d2 have the same image under
every c∗ ∈ C∗ and thus, since C is locally projective as an A-module, they are equal.

Conversely, given σ ∈ bbf(C), define the right C∗-module map σr as above. It
is easy to check that σ 7→ σr and ϕ 7→ σϕ define inverse bijections between bbf(C)
and AHomA(C, C∗)∩HomC∗(C, C∗). Clearly, right nondegenerate forms correspond
to monomorphisms.

Now we show that any map in AHomA(C, C∗) ∩ HomC∗(C, C∗) has its image in
CRat(C∗) so that AHomA(C, C∗)∩HomC∗(C, C∗) is the set of (A,A) bimodule, right
C∗-module maps from C to CRat(C∗). Let σ ∈ bbf(C) and ϕ = σr; we show that
every element ϕ(c) is rational, i.e., for each c ∈ C, there exists

∑
i ci⊗k xi ∈ C⊗k C∗

such that ϕ(c) ∗r c∗ =
∑

i c∗(ci)xi, for all c∗ ∈ C∗. Let
∑

i ci ⊗k xi = c1 ⊗k ϕ(c2).
We have that for any c∗ ∈ C∗ and c, d ∈ C,

(ϕ(c) ∗r c∗)(d) = c∗(ϕ(c)(d1)d2) = c∗(σ(c⊗A d1)d2)
= c∗(c1σ(c2 ⊗A d)) = c∗(c1)ϕ(c2)(d) (since c∗ ∈ C∗),

so that ϕ(c) ∗r c∗ = c∗(c1)ϕ(c2), showing that ϕ(c) is rational.
(ii) For γ : C → ∗C an (A,A)-bimodule, left ∗C-module map, define σγ : C⊗AC →

A by σγ(c⊗Ad) = γ(d)(c). Conversely, for σ ∈ bbf(C), define σl as above. The proof
that these provide inverse bijections and that for γ ∈ AHomA(C, ∗C)∩∗CHom(C, ∗C)
then the image of γ lies in RatC(∗C) is analogous to the proof of (i).

(iii) Take σ ∈ bbf(C) and define mσ : C⊗AC → C by mσ(c⊗Ad) = c1σ(c2⊗Ad) =
σ(c ⊗A d1)d2. Conversely, given a (C, C)-bicomodule map m : C ⊗A C → C, let
σ = εC ◦ m. The verification that mσ is a well-defined (C, C)-bicomodule map
(note that by convention a (C, C)-bicomodule map must be (A,A)-linear), that
σ = εC ◦m ∈ bbf(C) and that the correspondence is bijective is straightforward. �

Remarks 3.4. Let C be an A-coring.
(i) For σ ∈ bbf(C), the map m = mσ in Lemma 3.3 (iii) is associative since for

c, d, e ∈ C,

m(c⊗A m(d⊗A e)) = m(c⊗A d1σ(d2 ⊗A e)) = m(c⊗A d1)σ(d2 ⊗A e)
= σ(c⊗A d1)d2σ(d3 ⊗A e) = σ(c⊗A d1)m(d2 ⊗A e)
= m(σ(c⊗A d1)d2 ⊗A e) = m(m(c⊗A d)⊗A e).

Then (C,mσ) is an associative ring, in general without a unit.
(ii) Furthermore, for σ ∈ bbf(C) and σr as above, we have that σr is a ring

homomorphism from (C,mσ) to C∗op = ∗(Co). To see this, we compute for all
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c, d, e ∈ C,

σr(mσ(c⊗A d))(e) = σr(σ(c⊗A d1)d2)(e) = σ(c⊗A d1)σ(d2 ⊗A e)
= σ(c⊗A d1σ(d2 ⊗A e)) = σ(c⊗A σ(d⊗A e1)e2)
= σr(c)(σ(d⊗A e1)e2) = σr(c)(σr(d)(e1)e2)
= σr(d) ∗r σr(c)(e).

Similarly, σl is a ring homomorphism from (C,mσ) to (∗C)o.
(iii) If M is a right C-comodule (i.e., M ∈ MA with a coaction ρM : M →

M ⊗A C which is a coassociative right A-module map), then M is a right (C,mσ)
module via m · c = m0σ(m1 ⊗A c). The computation to show associativity is in [2,
26.7] or is a straightforward exercise. Unless σ ◦ ∆C = εC, we need not have that
M ⊗(C,mσ) C ∼= M .

Finally, we note that the notion of balanced bilinear forms for corings is integral
to the definition of coseparable corings and co-Frobenius corings.

Coseparable corings form an important class of corings for which forgetful func-
tors are separable functors. Recall [2, Section 26] that an A-coring C is called
coseparable if there exists a (C, C)-bicomodule map π : C ⊗A C → C such that
π ◦∆C = C. By Lemma 3.3 (iii) or as noted in [2, 26.1(b)], such a map π exists if
and only if there exists σ ∈ bbf(C) (called a cointegral in [2]) such that σ ◦∆C = εC ,
i.e., (C,mσ) is a nonunital ring whose product has a section. In other words, (C,mσ)
is a separable A-ring in the sense of [1] or [2, Section 26].

In [2, 27.15], a left (right) co-Frobenius coring is an A-coring C such that there is
an injective morphism from C to ∗C (C∗ respectively). Thus, by Lemma 3.3 (iii), C
is left (right) co-Frobenius via an injective morphism which is an (A,A)-bimodule
map if and only if there is a left (right) nondegenerate σ ∈ bbf(C). Note that
this latter is precisely the definition of co-Frobenius in [7, Definition 2.4] (i.e. the
A-bilinearity is specified) and that there the opposite multiplication to that of [2]
is used on the left and right duals so that A (not Ao) embeds in ∗C and C∗.

Now, a consistent definition of symmetric coring would require that the coring
is co-Frobenius on the left and on the right with some compatibility conditions
between the two structures.

4. The notion of a symmetric coring

In this section, we explore whether the notion of a symmetric coring is a sensible
one, and suggest one possible definition which takes into account the fact that A is
not necessarily commutative.

The idea of a symmetric coalgebra C over a field k was given in [4] where the
authors proved the following.

Theorem 4.1. Let C be a k-coalgebra, k a field. Then the following are equivalent:
(i) There exists an injective morphism α : C → C∗ of (C∗, C∗)-bimodules.
(ii) There exists a bilinear form B : C × C → k which is symmetric, non-

degenerate and C∗-balanced.

A symmetric coalgebra over a field is then defined to be one satisfying the equiv-
alent conditions of Theorem 4.1.

One might expect that a suitable definition for a symmetric coring would be that
an A-coring C is symmetric if there exists a right and left nondegnerate symmetric
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σ ∈ bbf(C). We next show the equivalence of four conditions which mimic those of
Theorem 4.1 in case C is right and left locally projective over A.

Lemma 4.2. Let C be an A-coring. Let σ ∈ bbf(C) and consider the k-module map
σop from C⊗kC to A defined to be the composite of the twist map τ : C⊗kC → C⊗kC
and the surjection from C ⊗k C to C ⊗A C followed by σ. Then σop ∈ bbf(C) if and
only if the following three conditions hold.

(i) Im(σ) ⊆ Z(A).
(ii) σ(ca⊗A d) = aσ(c⊗A d), for all a ∈ A, c, d ∈ C.
(iii) σ(c1 ⊗A d)c2 = d1σ(c⊗A d2), for all c, d ∈ C.

Proof. If σop ∈ bbf(C), then σop must be well defined on C ⊗A C. Thus we must
have σop(ca ⊗A d) = σop(c ⊗A ad), i.e., σ(d ⊗A ca) = σ(ad ⊗A c). This holds if
and only if σ(d ⊗A c)a = aσ(d ⊗A c), so that Im(σ) ⊆ Z(A). Also, σop must be
an (A,A)-bimodule map, so that σ(c ⊗A ad) = σ(c ⊗A d)a or, equivalently, using
the facts that σ ∈ bbf(C) and Im(σ) ⊆ Z(A), σ(ca ⊗A d) = aσ(c ⊗A d). The last
condition is equivalent to the fact that σop must satisfy the balanced property (3.1)
of Definition 3.1. �

If A = k, then (i) and (ii) in the lemma above are automatic and (iii) holds if
and only if σ ∈ bbf(Co).

Next we fix some notation.
Let Γ denote the subring of ∗C∗ of maps from C to A with image in Z(A), the

centre of A. On Γ the left (right) A-actions induced from those on ∗C and C∗
coincide. Thus we may define an (A,A)-bimodule structure on Γ by (ac∗b)(c) =
c∗(bca) = bc∗(c)a. Note that if f ∈ Γ, then f(c)(ab − ba) = 0, i.e., the image of f
annihilates [A,A], the additive commutator of A.

Proposition 4.3. Let C be an A-coring. If C is left and right locally projective
over A, then the following conditions are equivalent:

(i) There exists an injective morphism α of (A,A)-bimodules from C to the sub-
ring Γ of ∗C∗ defined above such that Im(α) is a (∗C, C∗)-bimodule with left and
right actions given by ∗l and ∗r, and α is a (∗C, C∗)-bimodule map.

(ii) There exists an injective map α : C → ∗C∗ such that α1 := i1 ◦ α is an
(A,A)-bimodule, right C∗-module morphism from C to C∗, and α2 := i2 ◦ α is an
(A,A)-bimodule, left ∗C-module morphism from C to ∗C where i1 : ∗C∗ ↪→ C∗ and
i2 : ∗C∗ ↪→ ∗C are the inclusion maps.

(iii) There exists a right nondegenerate σ ∈ bbf(C) such that σop ∈ bbf(C) also.
(iv) There exists a right and left nondegenerate σ ∈ bbf(C) such that σ = σop.

Proof. (i) implies (ii). It is straightforward to check that if a map α satisfies (i),
then it also satisfies (ii).

(ii) implies (iii). Suppose that (ii) holds. Then by Lemma 3.3, α1 = σr for
some right nondegenerate σ ∈ bbf(C) and α2 = ωl for some left nondegenerate
ω ∈ bbf(C), i.e., α(c)(d) = σ(c⊗A d) = ω(d⊗A c). Then ω = σop and σop ∈ bbf(C).

(iii) implies (i). Suppose σ ∈ bbf(C) is right nondegenerate and σop ∈ bbf(C).
Then σr is an (A,A)-bimodule map from C to C∗, and (σop)l is an (A,A)-bimodule
map from C to ∗C. Since σr(c)(d) = σ(c ⊗A d) = σop(d ⊗A c) = (σop)l(c)(d),
then σr = (σop)l. Define α = σr = (σop)l. Then α maps C to ∗C∗ and since
σ is right nondegenerate, α is injective. Also Im(α) is a right C∗-module and α
is a right C∗-module map by Lemma 3.3 since σr(c) ∗r c∗ = σr(c ↼ c∗) ∈ Im(α).
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Similarly, Im(α) is a left ∗C-module and α is a left ∗C-module map. By Lemma 4.2,
Im(σ) ⊆ Z(A) so that Im(α) ⊆ Γ. Finally, since for f ∈ ∗C, g ∈ C∗, c ∈ C, we have
(f∗lα(c))∗rg = α(f ⇀ c)∗rg = α((f ⇀ c) ↼ g) = α((f ⇀ (c ↼ g)) = f∗l(α(c)∗rg)
so that α is a (∗C, C∗)-bimodule map.

Thus we have shown the equivalence of (i),(ii) and (iii). Clearly (iv) implies (iii)
and it remains to show that the equivalent conditions (i), (ii) and (iii) imply (iv).

Let α satisfy (i), (ii). By Remark 3.4, we have that α = σr is a multiplication
preserving isomorphism from (C,mσ) to Im(α) and α = (σop)l is also a multipli-
cation preserving isomorphism from (C,mσop) to Im(α). Thus (σr)−1 ◦ (σop)l =
α−1 ◦ α = IdC is a multiplication preserving bijection from (C,mσop) to (C,mσ).
Then mσ(c⊗Ad) = mσop(c⊗Ad), i.e., c1σ(c2⊗Ad) = c1σ(d⊗A c2) so that, applying
εC , we see that σ = σop. �

Note that Proposition 4.3 provides a new proof of the equivalence of the state-
ments in Theorem 4.1 which does not depend on the fact that the rational dual of
a co-Frobenius coalgebra over a field has local units.

A definition of symmetric coring parallel to the definition of symmetric coalgebra
over a field would be to require that the coring satisfy condition (iv) in Proposition
4.3. However, this seems very restrictive, depending on commutativity of elements
in A. Instead, we suggest the following.

Definition 4.4. Let A be a ring, not necessarily commutative, and let A′ be the
ideal of A generated by the additive commutator [A,A] = {ab − ba | a, b ∈ A}.
Let C be an A-coring. We say that C is symmetric if there exists σ ∈ bbf(C)
such that σ is left and right nondegenerate and for all c, d in C, we have that
σ(c⊗A d)− σ(d⊗A c) ∈ A′.

Examples 4.5. (i)The trivial coring and the matrix coring from Examples 2.1, with
the nondegenerate balanced forms defined in Examples 3.2 are both symmetric in the
sense of Definition 4.4 but do not satisfy the equivalent conditions of Proposition
4.3, unless A is commutative.

(ii) The coring C = A⊗k H from Examples 2.1 with nontrivial H-coaction on A
and with σ as in Examples 3.2 is not symmetric in either sense even if t(hS(g)) =
t(gS(h)) for all g, h ∈ H. (Of course, if the coaction is trivial, then the coring is
clearly symmetric in the sense of Definition 4.4 if B(h, g) = t(hS(g)) is a symmetric
form for H.)

Corings satisfying the equivalent conditions of Proposition 4.3 clearly are sym-
metric in the sense of Definition 4.4.

The next example builds a symmetric coring from a symmetric coseparable k-
coalgebra, k a field.

Example 4.6. Let k be a field and let C be a k-coalgebra with a C∗-balanced
nondegenerate symmetric bilinear form B : C ⊗k C → k such that B ◦∆C = εC ;
in other words, C is a symmetric coalgebra via B and also a coseparable coalgebra
via B. For example, let C be a cosemisimple involutory k-Hopf algebra H with
antipode S. Then if λ is a left and right integral for H in H∗ such that λ(1) = 1,
then B : H⊗k H → k defined by B(h, g) = λ(hS(g)) satisfies the conditions above.

Let A = C∗, the dual algebra of C with convolution multiplication ∗ and let
C = C; we show first that C has the structure of an A-coring.
C is an (A,A)-bimodule with the standard C∗-bimodule structure on C, namely

c∗ ⇀ c ↼ d∗ = d∗(c1)c2c
∗(c3), for all c ∈ C, c∗, d∗ ∈ C∗. Define the coproduct
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on C to be the composite of the co-opposite comultiplication of C and the surjection
from C ⊗k C to C ⊗A C, namely ∆C(c) = c2 ⊗A c1. Since ∆C(d∗(c1)c2c

∗(c3)) =
c∗(c4)c3 ⊗A c2d

∗(c1) = c∗ ⇀ c2 ⊗A c1 ↼ d∗, then ∆C is an (A,A)-bimodule map
and the coassociativity follows from that of ∆C .

Now, we define the counit map for C. For B the balanced bilinear form for the
k-coalgebra C as above, define εC : C → C∗ by εC(c) = B(c,−) = B(−, c). Note
that εC is injective since B is left and right nondegenerate. Then

εC(d∗ ⇀ c)(x) = B(x, c1)d∗(c2) = d∗(x1)B(x2, c) = (d∗ ∗ εC)(x),

so εC is a left A-module map and, similarly, εC is a right A-module map.
The compatibility of ∆C and εC follows from the coseparability of C by

(εC ⊗A C)(c2 ⊗A c1) = εC(c2) ⇀ c1 = c1B(c2, c3) = c

and, similarly, (C ⊗A εC) ◦∆C = C. Thus we have shown that C is an A-coring.
Now, define B : C ⊗A C → A by B(c⊗A d) = εC(c) ∗ εC(d). Since εC is an (A,A)-

bimodule map, then B is also. We show that B is a well-defined balanced form. To
see that B is well defined, we compute for c, d, x ∈ C, c∗ ∈ A,

B(c ↼ c∗ ⊗A d)(x) = c∗(c1)B(c2 ⊗A d)(x)
= c∗(c1)B(c2, x1)B(x2, d)
= B(c, x1)c∗(x2)B(x3, d)
= B(c, x1)B(x2, d1)c∗(d2)
= B(c⊗A c∗ ⇀ d)(x).

To see that B is balanced, we must show that c2 ↼ B(c1 ⊗A d) = B(c⊗A d2) ⇀ d1,
for all c, d ∈ C. We already showed that c2 ↼ εC(c1) = c and thus we have that

c2 ↼ B(c1 ⊗A d) = c2 ↼ εC(c1) ∗ εC(d) = c ↼ εC(d) = B(d, c1)c2.

Similarly, B(c ⊗A d2) ⇀ d1 = d1B(c, d2) and these are equal since B is balanced
and symmetric.

We now show that B is right nondegenerate, i.e., that B(d⊗A−) = 0 implies d =
0. Since B(d⊗A c) = B(d,−) ∗B(−, c), if B(d⊗A −) = 0, then B(d, x1)B(c, x2) =
0 for all c, x ∈ C, and, in particular, 0 = B(d, c1)B(c3, c2) = B(d, c), for all
c ∈ C, contradicting the fact that B is right nondegenerate. Similarly, B is left
nondegenerate.

Clearly, B is symmetric in the sense of Definition 4.4 but unless B(c,−) ∗
B(d,−) = B(d,−) ∗ B(c,−) in A = C∗, for all c, d ∈ C, the equivalent condi-
tions of Proposition 4.3 do not hold.

Finally, we show that if C is an A-coring which is symmetric in the sense of
Definition 4.4 via a map σ ∈ bbf(C) satisfying a further nondegeneracy condition,
then the coring induced by the surjection from A to A/A′ satisfies Proposition 4.3
(iv).

Theorem 4.7. Let C be an A-coring and let σ ∈ bbf(C) such that
(i) σ is left and right nondegenerate.
(ii) For all c, d ∈ C, we have that σ(c⊗A d)− σ(d⊗A c) ∈ A′.
(iii) σ(c⊗A d) ∈ A′, for all d ∈ C, implies that c ∈ A′C + CA′.
Then the surjection from A to B = A/A′ induces a B-coring structure on D :=

B ⊗A C ⊗A B such that D satisfies condition (iv) of Proposition 4.3.
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Proof. Let a denote the image of a ∈ A in B = A/A′; for 1, we may write 1B . We
note first thatD = B⊗AC⊗AB = 1B⊗AC⊗A1B since for a ∈ A, a = (1B)a = a(1B).
In particular, if c ∈ A′C + CA′, then 1B ⊗A c⊗A 1B = 0 in D. Recall [2, 17.2] that
D is a B-coring with counit εD and comultiplication ∆D defined by

εD(1B ⊗A c⊗A 1B) = εC(c), and

∆D(1B ⊗A c⊗A 1B) = (1B ⊗A c1 ⊗A 1B)⊗B (1B ⊗A c2 ⊗A 1B).
Note that if a′ ∈ A′ then for c, d ∈ C we have σ(c ⊗A a′d) = σ(a′d ⊗A c) + a′′,

for some a′′ ∈ A′, and so σ(c⊗A a′d) = a′σ(d⊗A c) + a′′ ∈ A′ and

σ(c⊗A a′d) = σ(ca′ ⊗A d) = 0.

Thus the (B,B)-bimodule map B : D ⊗B D → B given by

B((1B ⊗A c⊗A 1B)⊗B (1B ⊗A d⊗A 1B)) = σ(c⊗A d),

is well defined. For if x′ − x ∈ A′, then

σ(cx′ ⊗A d)− σ(cx⊗A d) = σ(c(x′ − x)⊗A d) ∈ A′.

Furthermore, B is balanced. To see this, we compute for c, d ∈ C,
B((1B ⊗A c⊗A 1B)⊗B (1B ⊗A d1 ⊗A 1B))(1B ⊗A d2 ⊗A 1B)

= σ(c⊗A d1)⊗A d2 ⊗A 1B

= 1B ⊗A σ(c⊗A d1)d2 ⊗A 1B

= 1B ⊗A c1σ(c2 ⊗A d)⊗A 1B

= 1B ⊗A c1 ⊗A σ(c2 ⊗A d)
= (1B ⊗A c1 ⊗A 1B)B((1⊗A c2 ⊗A 1)⊗B (1B ⊗A d⊗A 1B)).

Thus, we have that B ∈ bbf(D). We show that B is left and right nondegenerate
and that B = Bop.

Suppose that B((1B ⊗A c⊗A 1B)⊗B −) maps all elements of D to 0 ∈ B. Then
σ(c ⊗A d) ∈ A′, for all d ∈ C. By (iii) in the statement of the theorem, we must
have that c ∈ A′C + CA′. But then 1B ⊗A c ⊗A 1B = 0 ∈ D, and so B is right
nondegenerate. Similarly, B is left nondegenerate.

Finally, we note that B = Bop is straightforward, so the proof is complete. �

Example 4.8. We noted in Example 4.5 that the trivial coring and matrix coring
do not necessarily satisfy the conditions in Proposition 4.3. However, in both cases,
Theorem 4.7 applies.

Further questions: (i) Another equivalent condition for a coalgebra C over
a field k to be symmetric involves the multiplication on C induced by the multi-
plication on the ring with local units C∗rat [4, Theorem 3.3 (3)]. This parallels an
equivalent condition for a finite dimensional algebra over a field to be symmetric [4,
Theorem 3.1 (3)], namely that a k-algebra A is symmetric if there exists a k-linear
map f : A → k such that f(xy) = f(yx) for x, y ∈ A, and Ker(f) does not contain
a non-zero left ideal. An analogous condition should hold in the coring case.

(ii) In [4, Section 5], a functorial characterization of symmetric coalgebras over
a field is given. It is unclear what the corresponding results (if any) for symmetric
corings should be.
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[4] F. Castaño Iglesias, S. Dăscălescu and C. Năstăsescu, Symmetric coalgebras, J. Algebra 279

(2004), 326-344.
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