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Introduction

“Young man, in mathematics you
don’t understand things. You just
get used to them.”

John von Neumann

Algebra is the language of modern mathematics, so learning it can be frus-
trating and rewarding, just like learning a foreign language. If you have
never tried to learn a foreign language as an adult imagine this: you are
in a foreign country and you decided to learn the language. You bought a
book with a CD and a TV. You already read the book and listened to the
CD several times. You are watching the weatherman on TV, and you are
sure he is saying some numbers, because the screen is full of them. Even
though you can say and spell all numbers, you are not able to identify even
a single one in what he is saying. Then you are watching the news and you
see the prime minister on the screen. You know his name and you are sure
the anchor must be saying his name but you could not identify the moment
when she says it even if your life depended on it. Shortly put, you think
you gave it your best effort but you don’t understand anything. You feel
like crying, and breaking the screen of your TV with your CD player. But
you don’t give up, and continue to work hard, read the book, listen to the
CD, do the exercises, and watch TV. And one day, as if someone flipped
a switch, your hard work pays off, and you are not only able to identify a
temperature or a name, but you understand whole phrases. It feels like you
are on top of the world.

In exactly the same way, when learning algebra, you will not be able to
recognize for a while known terms in new contexts. Be prepared for this
and keep trying, one day everything will click into place and its beauty will
be revealed.
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The other thing that makes studying algebra hard is developing an
intuition when dealing with abstract notions, which can be hard. Acquiring
it involves a lot of trial and error on concrete examples, which will need to be
kept in our minds as a substitute to the abstract notion until the intuition
becomes reliable, and we can reason on the abstract notion itself. Think of
trying to study herons in general (or an abstract heron — herons are a group
of long-legged birds) when you only know one heron. You will probably
make an assertion on the abstract heron based on the heron you know that
will be false (say the heron you know is is a snowy egret like the one on the
cover of this book, of which you took a picture back in 2013, on the Little
Rec golf course in Long Beach, California, and your claim is that all herons
have black bills and yellow feet). Understanding that the assertion is false
means finding an example of another heron for which the assertion is false
(this is called a counterexample, say you see one day a great egret, which
has a yellow bill and black feet). From now on, the role of the abstract
heron in your mind is played by a list of two egrets: the snowy egret,
which is an example for which the assertion is true, and the great egret, the
counterexample (note that for the assertion “all herons have yellow bills
and black feet”, the snowy egret is the counterexample and the great egret
is the example; this assertion is also false). You continue working, making
assertions, trying to find examples, trying to prove the assertions, trying
to find counterexamples when you can’t prove the assertions, and so on.
The abstract “birds” that we study in algebra are the sets, groups, rings,
fields, and so on. Imagine now that the only ring you know is the ring of
integers, Z. When you think of an abstract ring, you think of Z. Based on
your knowledge of Z, you claim that in an abstract ring the product of two
nonzero elements is nonzero. Then you discover that in the ring Z4 you
have 2 · 2 = 0. From now on, when you think of an abstract ring you think
of Z or Z4. Now based on your knowledge of Z and Z4 you claim that in a
ring multiplication is commutative. Then you discover that in the ring of
two by two matrices, M2(Z), multiplication is not commutative. From now
on, when you think of an abstract ring you think of Z, Z4, or M2(Z). To
see if a new assertion on an abstract ring is true or not, you will first test
it on these three rings. The list we are developing is a list of examples and
counterexamples. Imagine a successful algebra student as a construction
worker with tools conveniently arranged all over the body: the tools are
the examples and counterexamples that help build our understanding of
the abstract notions.

Our initial examples, the “birds” that we “know” (i.e. the concrete ex-
amples we are supposed to know) are the number sets together with their
operations. We assume we know that all the properties of the addition and
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multiplication of numbers are true, we will not prove them, and we will
use them when needed. Understanding how we can construct a number set
starting from another is an important part of the study of algebra:
We consider first the natural numbers

N = {0, 1, 2, 3, . . .}

An equation of the type m+ x = n where m,n ∈ N might have a solution
in N, like 1 + x = 2, or not, like 2 + x = 1. By adding the solutions of all
these equations to N we obtain the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Trying to make sense of the negative numbers that were added to N is not
hard: we can think of positive and negative temperatures, going left or
right on a line, receiving and giving (money), and so on.
Now an equation of the type mx = n where m,n ∈ Z might have a solution
in Z, like 1 · x = 2, or not, like 2x = 1. By adding the solutions of all these
equations to Z we obtain the rationals

Q =
{m
n
| m,n ∈ Z, n 6= 0

}
Again, trying to understand what 1

2 means is not hard, think of a half of a
pie. In this course we will learn how to perform a general construction of
this type (see the section on Rings of Fractions).
Now an equation of the type x2 = m where m ∈ Q might have solutions
in Q, like x2 = 1, or not, like x2 = 2. Adding to Q all solutions of these
equations (and also other numbers) leads to the reals R. Making sense of√

2 again is not hard: the diagonal of a square with side 1 has length
√

2.
Consider now an equation of the type x2 = r where r ∈ R. This equation
might have solutions, like x2 = 1, or not, like x2 = −1. Adding to R the
solutions of this last equation, call them i and −i, leads to the complex
numbers

C = {a+ bi | a, b ∈ R}

Making sense of i took some time. Trying i =
√
−1 is a risky idea, be-

cause this radical does not have the same properties as the one we know.
Assuming it does can lead to

−1 = i2 =
√
−1
√
−1 =

√
(−1)2 =

√
1 = 1,

and warns us that if we do that we have to unlearn the property of radicals
saying that

√
a
√
b =

√
ab. Failure to understand i is illustrated by the

letter i (for “imaginary”) used (sometimes with a derogatory connotation)
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to denote it. Algebra helps describe i precisely: as we will see later in this
course, i is “the coset of the indeterminate in the factor ring of the poly-
nomial ring in one indeterminate X with real coefficients factored through
the principal ideal generated by the polynomial X2 +1.” Therefore, we will
learn in this course that we can construct C like this:

C ' R[X]/(X2 + 1).

It may be interesting to note that we can no longer expand C by adding
roots of polynomials with coefficients in C: any polynomial of degree at
least one with complex coefficients has a complex root in C (this is the fa-
mous Fundamental Theorem of Algebra and it says that C is algebraically
closed).
There is yet another (fairly easy and convincing) justification for the “ex-
istence” of i, or at least of a model of it. We start with the matrix of the
rotation of angle α about the origin in the plane:(

cos(α) − sin(α)
sin(α) cos(α)

)
If we replace now cos(α) and sin(α) by a, b ∈ R, we get{(

a −b
b a

)∣∣∣∣a, b ∈ R
}

=

{
a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)∣∣∣∣a, b ∈ R
}
. (1)

As we can easily check, we have(
0 −1
1 0

)(
0 −1
1 0

)
= −

(
1 0
0 1

)
, (2)

so if we define addition and multiplication in the set described in (1) by
extending multiplication of real numbers and/or matrices, we see that the
elements of this set behave exactly like the complex numbers (note that(

0 −1
1 0

)
= i from the solution to Exercise 1.4.5 xxvi)). According to

(2), i may be seen as the rotation of 90◦ about the origin in the plane, and
the equality i2 = −1 can be read as “the rotation of 180◦ about the origin
in the plane can be obtained by applying twice the rotation of 90◦”.
From a strictly algebraic point of view, the description of C as a factor ring
is more valuable, because it uses a standard procedure for finding roots of
polynomials. This course will expose mathematics majors to some other
standard constructions and ideas of algebra. One of them is the princi-
ple according to which we try to describe various notions and constructions
without referring to elements, but using only objects and maps (morphisms)



v

between them. One of the benefits of this approach is that strong similari-
ties between seemingly unrelated notions are revealed in this way, a typical
example being the duality between the notions of injective and surjective
functions. We will describe this similarity by saying that in the category of
sets, a function is in(sur)jective if and only if is a mono(epi)morphism. A
second benefit is that we can then easily move from sets (no operations) to
groups (one operation) and to rings (two operations). In the course of this
transition, we will see that the above characterization of injective functions
is easy to prove in all three cases, while the corresponding assertion for
surjective functions goes from easy (for sets) to too-hard-to-be-proved-here
(for groups), to not true (for rings). A third benefit (which will not be
explored in this course) is that these notions and constructions can be also
used for objects that are not built on sets.

Other standard constructions that students will learn in this course are the
notions of factor set (factor group, factor ring), ring of fractions, ring of
formal power series, and ring of polynomials. All these constructions satisfy
certain “universal properties”, which can be regarded as “apps” that are
used to produce maps (or morphisms). The initial occurrence of a universal
property is naturally explained by the attempt to describe a factor set using
only sets and functions (and no elements), as mentioned above. The future
math teachers will especially benefit from studying all these constructions,
for example they will learn, among other things, the distinction between
polynomials and polynomial functions, and a proof for the existence of the
partial fractions decomposition that is used in calculus.

The book has three chapters with seven sections in each chapter, and so
it contains enough material for a first one semester course in algebra. All
exercises have detailed solutions at the end of each section (something I first
saw in the books of D.G. Northcott, and really appreciated as a student).
Needless to say, the students should try really hard to solve the exercises
for as long as possible (at least a few days for each of them) before looking
at the solution.

Every teacher’s teaching style is the result of many interactions with the
teacher’s teachers, friends, colleagues, and students. Even though I am
aware I risk leaving out names of people who heavily influenced my teach-
ing, I will mention just a few of my teachers, T. Albu, P. Alger, I. Colo-
joară, G. Galbură, I.D. Ion, L. Panaitopol, N. Radu, M. Şabac, my advisor
C. Năstăsescu, a few of my friends, A. Buium, M. Beattie, M. Cohen, S.
Dăscălescu, D. Fischman, P. Ionescu, G. Jennings, C. Menini, D. Quinn,
F. Van Oystaeyen, and my students at the University of Bucharest and
California State University, Dominguez Hills.
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Chapter 1

Groups

1.1 Sets and functions

No communication is possible without a common ground consisting of terms
that everybody understands. In the absence of these terms it is not even
possible to ask questions. One such primary notion, which we assume we
all know, is the notion of a set. Sets consist of elements. We write that a
is an element of the set A like this: a ∈ A. A set A is a subset of the set B
if every element of A is also an element of B, and we write this as A ⊆ B.
We denote by ∅ the empty set, the set with no elements. The set whose
elements are a1, a2, . . . an will be denoted by {a1, a2, . . . an}. The union of
the sets A and B consists of the elements that belong to at least one of the
sets:

A ∪B = {a | a ∈ A or a ∈ B}.

The intersection of the sets A and B consists of the elements that belong
to both sets:

A ∩B = {a | a ∈ A and a ∈ B}.

Basic examples of sets include sets of numbers: the natural numbers N =
{0, 1, 2, . . .}, the integers Z = {0,±1,±2, . . .}, the rationals Q = {mn |
m,n ∈ Z, n 6= 0}, the real numbers R, and the complex numbers C.

Assuming we all know something that we do not completely understand is
risky. To see that this naive approach may lead to paradoxes consider the
set of all sets and denote it by S. Then let M = {X ∈ S | X /∈ X}, and
we see that M ∈ M if and only if M itself satisfies the condition in the
definition of M , which is M /∈ M . Paradoxes like this one have prompted
various attempts to introduce sets by a list of axioms.

1



2 CHAPTER 1. GROUPS

Once we know what a set is we can define ordered pairs of elements: (x, y)
will mean the set {{x, y}, {x}}, i.e. x and y are the elements, order matters
and x is the first element. Note that {1, 2} = {2, 1} because the two sets
have the same elements, but (1, 2) 6= (2, 1) because the sets {{1, 2}, {1}}
and {{1, 2}, {2}} do not have the same elements. The cartesian product of
the sets A and B is defined by

A×B = {(a, b) | a ∈ A, b ∈ B}

We can now give the definition of a function (or map):

Definition 1.1.1 A function f defined on A with values in B (we write
f : A −→ B and we say that f is defined on A with values in B) consists of
three sets: A, the domain; B, the codomain; and a subset Gf of A×B, the
graph, satisfying the property that for every a ∈ A there is a unique b ∈ B
such that (a, b) ∈ Gf . If (a, b) ∈ Gf we write b = f(a) and call it the image
of a through f .

Two functions are equal if all three pairs of sets in the definition are equal:
the functions have the same domain, the same codomain, and the images
of every element in the common domain through the two functions are also
equal. If f : A −→ B and g : B −→ C, then we can define the composition
of the functions f and g by g ◦ f : A −→ C, (g ◦ f)(a) = g(f(a)) for all
a ∈ A. Sometimes we write gf instead of g ◦ f .

Exercise 1.1.2 If f : A −→ B, g : B −→ C and h : C −→ D, prove
that (h ◦ g) ◦ f = h ◦ (g ◦ f). (We say that the composition of functions is
associative.)

If f : A −→ B is a function, C ⊆ A and D ⊆ B, we define the image of C
through f as

f(C) = {f(a) | a ∈ C},
and the inverse image (or preimage) of D through f as

f−1(D) = {a | a ∈ A, f(a) ∈ D}.

We call f(A) the image of the function f and we denote it by Im(f). Note
that some authors use the range of f as a synonym for the image of f [16],
while others use range instead of codomain [22].

Given any set A, the identity function of the set A, denoted IdA or 1A, is
the function defined on A with values in A that sends each element a ∈ A
to itself: IdA : A −→ A, IdA(a) = a for all a ∈ A. We now define some
special classes of functions.
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Definition 1.1.3 We say that the function f : A −→ B is injective (or
one-to-one) if f(a1) = f(a2) implies that a1 = a2, or, equivalently, if
a1 6= a2 implies that f(a1) 6= f(a2).

Definition 1.1.4 We say that the function f : A −→ B is surjective (or
onto) if for any element b ∈ B there exists a ∈ A such that b = f(a), or,
equivalently, if Im(f) = B.

Definition 1.1.5 A function that is both injective and surjective is called
bijective.

Exercise 1.1.6 Give examples of functions that are:
i) neither injective nor surjective
ii) injective but not surjective
iii) surjective but not injective
iv) bijective.

Exercise 1.1.7 Let f : A −→ B and assume that A = {a1, a2, . . . , an},
B = {b1, b2, . . . , bn}. If f is injective or surjective, then f is bijective.

Exercise 1.1.8 Find a function f : N −→ N which is:
i) injective but not surjective.
ii) surjective but not injective.

For the rest of this section we will assume that all sets are nonempty. Our
next goal is to show that the notions of injective and surjective functions
are really similar, which is something that we cannot see by comparing
Definitions 1.1.3 and 1.1.4. A first step in this direction is the following:

Proposition 1.1.9 Let f : A −→ B be a function. Then the following
assertions hold:
i) f is injective if and only if there exists a function g : B −→ A such that
g ◦ f = IdA, i.e. f has a left inverse.
ii) f is surjective if and only if there exists a function g : B −→ A such
that f ◦ g = IdB, i.e. f has a right inverse.

Proof: i) Assume f is injective, and fix an element a0 ∈ A. We define g
as follows: if b ∈ B is not in Im(f), set g(b) = a0. If b ∈ Im(f), since f
is injective there exists a unique a ∈ A such that b = f(a). In this case let
g(b) = a. Then for each a ∈ A we have that g(f(a)) = a, so g ◦ f = IdA.
Conversely, if a function g : B −→ A such that g ◦ f = IdA exists, let
f(a1) = f(a2). Then g(f(a1)) = g(f(a2)), and so a1 = a2.
ii) Assume f is surjective, and let b ∈ B. Then we choose an element
a ∈ A such that f(a) = b (which exists because f is surjective) and we
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let g(b) = a. Then f(g(b)) = f(a) = b, so f ◦ g = IdB . Conversely, if a
function g : B −→ A such that f ◦ g = IdB exists, then for any b ∈ B we
have that b = f(g(b)), so b ∈ Im(f) and thus f is surjective.

Proposition 1.1.9 shows that injectivity and surjectivity are closely related,
we can get one from the other by replacing ”left” with ”right” or the other
way around. It also provides the following useful characterization of bijec-
tive functions:

Corollary 1.1.10 A function f : A −→ B is bijective if and only if it is
invertible, i.e. there exists a function g : B −→ A such that f ◦ g = IdB
and g ◦ f = IdA.

Proof: If f is bijective, then by Proposition 1.1.9 it has a left inverse g1 and
a right inverse g2. Then for any b ∈ B we have that g1(b) = g1(IdB(b)) =
g1(f ◦ g2(b)) = (g1 ◦ f)(g2(b)) = IdA(g2(b)) = g2(b), so g1 = g2, and f is
invertible. The converse follows immediately from Proposition 1.1.9.

As seen in the proof above, a function cannot have more than one inverse:
if the inverse exists it must be unique, and our notation for it will be f−1.
Note that this notation makes sense even if f is not invertible (the preimage
of a subset above), but in case the function is invertible, the preimage of a
subset is the image of that set through the inverse function, which justifies
the notation.

Exercise 1.1.11 Prove that the inverse of a bijective function is also bi-
jective.

Exercise 1.1.12 Find a left inverse, a right inverse, or an inverse for each
of the examples you gave in Exercises 1.1.6 and 1.1.8, or explain why they
do not exist.

Exercise 1.1.13 For each of the following functions:
a) f : R −→ R, f(x) = x2,
b) g : [0,∞) −→ R, g(x) = x2,
c) h : R −→ [0,∞), h(x) = x2,
answer the following questions:
i) Does the function have a left inverse? Justify your answer, then find a
left inverse if it exists.
ii) Does the function have a right inverse? Justify your answer, then find
a right inverse if it exists.

We now investigate further how injectivity and surjectivity are related. It
turns out that the two definitions can be stated only in terms of sets and
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maps (without any reference to elements), and we can obtain one from the
other simply by reversing the arrows. We say that they are dual notions.
Doing things without reference to elements has the advantage that the same
techniques and/or results may be used for objects that are not sets.

Proposition 1.1.14 Let f : A −→ B be a function. Then the following
assertions hold:
i) f is injective if and only if given any set X, and functions g, h : X −→ A
such that f ◦ g = f ◦ h, it follows that g = h.
ii) f is surjective if and only if given any set X, and functions g, h : B −→
X such that g ◦ f = h ◦ f , it follows that g = h.

Proof: i) Assume that f is injective. Then by Proposition 1.1.9 f has
a left inverse, and by composing the equality f ◦ g = f ◦ h with that left
inverse from the left gives g = h. Conversely, assume the condition in the
statement holds, and let a1 and a2 elements of A such that f(a1) = f(a2).
Take X = {a1, a2}, and define g, h : X −→ A by g(a1) = g(a2) = a1, and
h(a1) = h(a2) = a2. Then f ◦ g = f ◦ h, and so g = h, thus a1 = a2.
ii) If f is surjective, composing the equality g ◦ f = h ◦ f from the right
with the right inverse that exists by Proposition 1.1.9 we get that g = h.
Conversely, if the condition holds we assume that f is not surjective and
look for a contradiction. Choose b ∈ Im(f) and x ∈ B but x /∈ Im(f).
Then let X = {x, b}, and define g to be the constant function b. Now let h
send all the elements of B to b, with the exception of x which is sent to x.
It is clear that g 6= h but g ◦ f = h ◦ f = the constant function b, which is
a contradiction.

Exercise 1.1.15 If f : A −→ B and g : B −→ C are injective functions,
then g◦f is also injective. The assertion is also true if we replace ”injective”
by ”surjective”.

Exercise 1.1.16 If f : A −→ B and g : B −→ C are functions such that
g ◦ f is injective, then f is injective.

Exercise 1.1.17 If f : A −→ B and g : B −→ C are functions such that
g ◦ f is surjective, then g is surjective.

Exercise 1.1.18 If f : A −→ B is a function, C1, C2 ⊆ A, D1, D2 ⊆ B,
then:
i) f(C1 ∪ C2) = f(C1) ∪ f(C2).
ii) f(C1 ∩ C2) ⊆ f(C1) ∩ f(C2). Give an example when the inclusion is
strict, and prove that if f is injective equality holds.
iii) f−1(D1 ∪D2) = f−1(D1) ∪ f−1(D2).
iv) f−1(D1 ∩D2) = f−1(D1) ∩ f−1(D2).
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Solutions to the Exercises on Section 1.1

Exercise 1.1.2 If f : A −→ B, g : B −→ C and h : C −→ D, prove
that (h ◦ g) ◦ f = h ◦ (g ◦ f). (We say that the composition of functions is
associative.)
Solution: Both (h ◦ g) ◦ f and h ◦ (g ◦ f) have domain A and codomain D,
so we only need to show that ((h ◦ g) ◦ f)(a) = (h ◦ (g ◦ f))(a) for all a ∈ A.
If a ∈ A, then ((h◦g)◦f)(a) = (h◦g)(f(a)) = h(g(f(a))) = h((g ◦f)(a)) =
(h ◦ (g ◦ f))(a).

Exercise 1.1.6 Give examples of functions that are:
i) neither injective nor surjective
ii) injective but not surjective
iii) surjective but not injective
iv) bijective.
Solution: i) A = {1, 2}, f : A −→ A, f(1) = f(2) = 1.
ii) A = {1}, B = {1, 2}, f : A −→ B, f(1) = 1.
iii) A = {1, 2}, B = {1}, f : A −→ B, f(1) = f(2) = 1.
iv) A = {1, 2}, IdA : A −→ A.

Exercise 1.1.7 Let f : A −→ B and assume that A = {a1, a2, . . . , an},
B = {b1, b2, . . . , bn}. If f is injective or surjective, then f is bijective.
Solution: If f is injective, Im(f) has n elements and is contained in B,
which also has n elements, therefore Im(f) = B and f is surjective. If
f is surjective but not injective, Im(f) has at most n − 1 elements, a
contradiction.

Exercise 1.1.8 Find a function f : N −→ N which is:
i) injective but not surjective.
ii) surjective but not injective.
Solution: i) If f(n) = 2n for all n ∈ N, then f is injective but 1 /∈ Im(f).
ii) Put f(0) = 0, and f(n) = n − 1 if n ≥ 1, then f is surjective but
f(0) = f(1).

Exercise 1.1.11 Prove that the inverse of a bijective function is also bi-
jective.
Solution: The inverse of a bijective function is invertible, and is therefore
bijective by Corollary 1.1.10.

Exercise 1.1.12 Find a left inverse, a right inverse, or an inverse for each
of the examples you gave in Exercises 1.1.6 and 1.1.8, or explain why they
do not exist.
Solution: For Exercise 1.1.6:
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i) A = {1, 2}, f : A −→ A, f(1) = f(2) = 1. Since f is neither injective
nor surjective, f does not have a left or a right inverse.
ii) A = {1}, B = {1, 2}, f : A −→ B, f(1) = 1. Since f is injective but not
surjective, f has a left inverse, but not a (right) inverse. A left inverse for
f is f ′ : B −→ A, f ′(1) = f ′(2) = 1.
iii) A = {1, 2}, B = {1}, f : A −→ B, f(1) = f(2) = 1. Since f is surjective
but not injective, f has a right inverse, but not a (left) inverse. A right
inverse for f is f ′ : B −→ A, f ′(1) = 1.
iv) A = {1, 2}, IdA : A −→ A. IdA is bijective and is its own inverse.
For Exercise 1.1.8:
i) If f(n) = 2n for all n ∈ N, then f is injective but 1 /∈ Im(f). A left
inverse for f is f ′ : N −→ N,

f ′(n) =

{
k if n = 2k
0 if n = 2k + 1

ii) Put f(0) = 0, and f(n) = n − 1 if n ≥ 1, then f is surjective but
f(0) = f(1). A right inverse for f is f ′ : N −→ N, f ′(n) = n+ 1.

Exercise 1.1.13 For each of the following functions:
a) f : R −→ R, f(x) = x2,
b) g : [0,∞) −→ R, g(x) = x2,
c) h : R −→ [0,∞), h(x) = x2,
answer the following questions:
i) Does the function have a left inverse? Justify your answer, then find a
left inverse if it exists.
ii) Does the function have a right inverse? Justify your answer, then find
a right inverse if it exists.
Solution: a) f is neither injective (f(1) = f(−1)) nor surjective (−1 /∈
Im(f)), so f has no left or right inverse.
b) g is injective, but not surjective, so g will have a left inverse but not a
right inverse. A left inverse for g is g′ : R −→ [0,∞), g′(x) =

√
|x |.

c) h is surjective, but not injective, so h will have a right inverse but not a
left inverse. A right inverse for h is h′ : [0,∞) −→ R, h′(x) =

√
x.

Exercise 1.1.15 If f : A −→ B and g : B −→ C are injective functions,
then g◦f is also injective. The assertion is also true if we replace ”injective”
by ”surjective”.
Solution: If f and g are injective, let f1 and g1 be left inverses of f
and g, respectively. Thus f1 : B −→ A, g1 : C −→ B, f1 ◦ f = IdA and
g1◦g = IdB . We have that (f1◦g1)◦(g◦f) = f1◦(g1◦g)◦f = f1◦IdB ◦f =
f1 ◦ f = IdA, so f1 ◦ g1 is a left inverse of g ◦ f , and thus g ◦ f is injective.
The proof for the case of surjective functions is similar.
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Exercise 1.1.16 If f : A −→ B and g : B −→ C are functions such that
g ◦ f is injective, then f is injective.
Solution: Let e : C −→ A be a left inverse for g ◦ f , i.e. e ◦ (g ◦ f) = IdA.
Then e ◦ g is a left inverse for f , so f is injective.

Exercise 1.1.17 If f : A −→ B and g : B −→ C are functions such that
g ◦ f is surjective, then g is surjective.
Solution: Let e : C −→ A be a right inverse for g ◦f , i.e. (g ◦f)◦e = IdC .
Then f ◦ e is a right inverse for g, so g is surjective.

Exercise 1.1.18 If f : A −→ B is a function, C1, C2 ⊆ A, D1, D2 ⊆ B,
then:
i) f(C1 ∪ C2) = f(C1) ∪ f(C2).
ii) f(C1 ∩ C2) ⊆ f(C1) ∩ f(C2). Give an example when the inclusion is
strict, and prove that if f is injective equality holds.
iii) f−1(D1 ∪D2) = f−1(D1) ∪ f−1(D2).
iv) f−1(D1 ∩D2) = f−1(D1) ∩ f−1(D2).
Solution: i) Let b ∈ f(C1 ∪ C2). Then b = f(a), where a ∈ C1 ∪ C2, i.e.
a ∈ C1 or a ∈ C2. Then b ∈ f(C1) or b ∈ f(C2), so b ∈ f(C1) ∪ f(C2).
Conversely, f(C1) ⊆ f(C1)∪ f(C2) and f(C2) ⊆ f(C1)∪ f(C2), so f(C1)∪
f(C2) ⊆ f(C1) ∪ f(C2).
ii) Let b ∈ f(C1 ∩ C2). Then b = f(a), where a ∈ C1 ∩ C2, i.e. a ∈ C1

and a ∈ C2. Then b ∈ f(C1) and b ∈ f(C2), so b ∈ f(C1) ∩ f(C2).
Conversely, if b ∈ f(C1) ∩ f(C2), then b = f(a1), where a1 ∈ C1, and
b = f(a2), where a2 ∈ C2. If f is injective, then we get that a1 = a2

so b ∈ f(C1) ∩ f(C2), and thus f(C1) ∩ f(C2) = f(C1) ∩ f(C2). An
example when the inclusion is strict is the following: A = {1, 2}, B = {1},
f : A −→ B, f(1) = f(2) = 1, C1 = {1}, C2 = {2}. Then C1 ∩ C2 = ∅, so
f(C1 ∩ C2) = ∅, and f(C1) ∩ f(C2) = {1}.
iii) We have that a ∈ f−1(D1 ∪ D2) if and only if f(a) ∈ D1 ∪ D2 if and
only if f(a) ∈ D1 or f(a) ∈ D2 if and only if a ∈ f−1(D1) ∪ f−1(D2).
iv) We have that a ∈ f−1(D1 ∩ D2) if and only if f(a) ∈ D1 ∩ D2 if and
only if f(a) ∈ D1 and f(a) ∈ D2 if and only if a ∈ f−1(D1) ∩ f−1(D2).
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1.2 The integers

In this section we review the arithmetic properties of the integers. All
letters in this section will represent integers. We will use the following

Well-Ordering Principle. Any nonempty set of nonnegative integers has
a least element.

The first application of this principle is

Theorem 1.2.1 (The Division Algorithm) If a and b are integers and
b 6= 0, then there exist integers q and r such that a = bq + r and |r| < |b|.

Proof: We will find q and r satisfying the conditions, with r ≥ 0. These q
and r are usually called the quotient and remainder of a divided by b.
Consider the set W = {a − tb ≥ 0 | t ∈ Z}. It is easy to see that W is
nonempty, just take t = − |a| b. By the well-ordering principle, W has a
least element r = a − qb. We claim that r < |b|. Indeed, if |b| ≤ r, then
r > r − |b| ≥ 0, and r − |b| = a − qb − |b| = a − (q ± 1)b ∈ W , which
contradicts the fact that r is the least element in W .
Finally, we remark that if r 6= 0, the pair q+ |b|

b and r− |b| also satisfy the
conditions.

Theorem 1.2.1 has important practical consequences. For example it says
that any integer has one of the forms 2k or 2k + 1.

Definition 1.2.2 Given integers a and b, we say that a divides b (or a is
a factor of b, or b is a multiple of a, or b is divisible by a), and we write
a | b, if there exists an integer c such that b = ac.

Exercise 1.2.3 Prove the following:
i) 1 | a for all a.
ii) a | 0 for all a.
iii) If a | b and b | c, then a | c.
iv) If a | b and c | d, then ac | bd.
v) If a | b and a | c, then a | ub+ vc for all u, v.
vi) If a | 1, then a = ±1.
vii) If a | b and b | a, then a = ±b.

Exercise 1.2.4 Prove that a product of three consecutive integers is divis-
ible by 3.

Definition 1.2.5 Given integers a and b, we say that d is a greatest
common divisor of a and b (we write d = (a, b)) if the following two
conditions are satisfied:
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i) d | a and d | b.
ii) if c | a and c | b, then c | d.

It follows immediately from the definition that a | b if and only if a = (a, b).

Exercise 1.2.6 If d1 = (a, b) and d2 = (a, b), then d1 = ±d2.

A second application of the well-ordering principle is the existence of a
greatest common divisor:

Theorem 1.2.7 Given integers a and b, a greatest common divisor of a
and b exists.

Proof: If a = b = 0, then 0 = (0, 0). If not both of a and b are 0, consider
the set W = {ma + nb > 0 | m,n ∈ Z}. W 6= ∅ because a2 + b2 ∈ W . By
the well-ordering principle W has a least element d = ua+vb, and we show
that d = (a, b). We prove first that d | a. Indeed, if d does not divide a
we use the division algorithm to find q and r such that a = dq + r, where
0 < r < d. Now since r = a− dq = a− (ua+ vb) = (1− u)a+ (−v)b ∈W ,
this contradicts the fact that d is the least element in W . The proof of the
fact that d | b is identical. Finally, if c | a and c | b, then a = ce and b = cf .
It follows that d = ua+ vb = uce+ vcf = c(ue+ vf), so c | d and the proof
is complete.

From the proof of Theorem 1.2.7 we immediately obtain the following

Corollary 1.2.8 Given integers a and b, if d = (a, b), then there exist u, v
such that d = ua+ vb. (We say that d is a linear combination of a and b.)

Exercise 1.2.9 i) Show by giving an example that u and v in Corollary
1.2.8 are not unique.
ii) Show by giving an example that d = ua+ vb does not imply d = (a, b).

Proposition 1.2.10 (The Euclidean Algorithm)
i) If a = bq + r, then (a, b) = (b, r).
ii) If a, b are nonzero integers, consider the following chain of divisions:
| a |= q0 · |b|+ r0, where 0 ≤ r0 < |b|,
|b| = q1 · r0 + r1, where 0 ≤ r1 < r0,
r0 = q2 · r1 + r2, where 0 ≤ r2 < r1,
. . .
rn = qn+2 · rn+1 + rn+2, where 0 ≤ rn+2 < rn+1,
. . .
Then {rn} is a strictly decreasing chain of nonnegative integers, so one of
them has to be 0. The last nonzero remainder in this chain is a greatest
common divisor for a and b.
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Proof: i) Let d = (a, b). We show that d = (b, r). We clearly have that
d | b, and since d | a, we also get that d | a − qb = r, so d is a common
divisor of b and r. Now if c | b and c | r, we have that c | bq + r = a, so
c | d.
Conversely, if d = (b, r), we show that d = (a, b). We clearly have that d | b,
and since d | r, we also get that d | bq + r = a, so d is a common divisor of
a and b. Now if c | a and c | b, then c | a− bq = r, so c | d.
ii) Assume that rn is the last nonzero term of the sequence of remainders,
so rn+1 = 0. Applying i) repeatedly we get that (| a |, | b |) = (| b |, r0) =
(r0, r1) = . . . = (rn, rn+1) = (rn, 0) = rn, so rn = (a, b).

Remark 1.2.11 If we find d = (a, b) using the Euclidean algorithm, we
can use back substitution to write d as a linear combination of a and b.

Exercise 1.2.12 Use the Euclidean algorithm to find (987,−345), then
write it as a linear combination of 987 and −345.

Definition 1.2.13 We say that a and b are relatively prime if 1 = (a, b).

Exercise 1.2.14 i) Show that a and b are relatively prime if and only if
1 = ma+ nb for some m and n.
ii) If 0 6= d = (a, b), a = da1, b = db1, show that 1 = (a1, b1).

Theorem 1.2.15 (Euclid’s Lemma) If 1 = (a, b), and a | bc, then a | c.

Proof: Write 1 = ma+nb, and bc = ae. Then c = mac+nbc = mac+nae =
a(mc+ ne).

Exercise 1.2.16 If 1 = (a, b) and 1 = (a, c), then 1 = (a, bc).

Exercise 1.2.17 Show that if a | c, b | c, and 1 = (a, b), then ab | c. What
happens if 1 6= (a, b)?

Exercise 1.2.18 Show that 6 divides n3 − n.

Definition 1.2.19 An integer p 6= 0, p 6= ±1, is said to be prime if from
p | ab it follows that p | a or p | b.

Exercise 1.2.20 Let p 6= 0, p 6= ±1. The following assertions are equiva-
lent:
i) p is prime.
ii) If p = ab, then one of a and b has the same absolute value as p.
iii) d | p implies that d = ±1 or d = ±p.

Exercise 1.2.21 If p is prime, and p | a1a2 . . . an, then there exists i,
1 ≤ i ≤ n such that p | ai.
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Exercise 1.2.22 Show that any odd prime p is of the form 4n+1 or 4n+3
for some n.

The following important result is another application of the well-ordering
principle.

Theorem 1.2.23 (Fundamental Theorem of Arithmetic) Any inte-
ger n 6= 0,±1 can be factored as a product of primes.(This means that if
n 6= 0,±1, then n = p1p2 . . . pk, where pi is prime, 1 ≤ i ≤ k.) More-
over, the factorization is unique if we disregard the order of the prime
factors or their signs. (This means that if we have another factorization
n = q1q2 . . . ql, where qj is prime, 1 ≤ j ≤ l, then k = l and for any i,
1 ≤ i ≤ k there exists a j, 1 ≤ j ≤ k such that pi = ±qj. Also, it follows
that for any prime p, the number of primes associated in divisibility with
p in any factorization of n as a product of primes does not depend of the
factorization, and is equal to the maximum power of p that divides n.)

Proof: We prove the assertion for integers grater than 1.
Let W = {n | n > 1, n cannot be factored as in the statement}. By the
well-ordering principle, if W is nonempty, then W has a least element m.
Since m ∈W we have that m is not prime, so we can write m = ab, where
1 < a, b < m. Since m is the least element of W it follows that none of
a and b are elements of W , so both of them have a factorization as in the
statement. But replacing those factorizations in m = ab we see that m
has one such factorization, a contradiction. Now for the uniqueness part,
assume that

p1p2 . . . pk = q1q2 . . . ql

are two factorizations as products of primes, and we proceed by induction
on the length of the factorization, which is the maximum of k and l. The
case when the length is 1 is clear. Assume that the length is greater than
1 and the assertion is true for smaller lengths. Then p1 | q1q2 . . . ql, and so
p1 divides one of the qj . It follows that p1 = ±qj , and after canceling p1

we can apply the induction hypothesis.

Exercise 1.2.24 Why do we ask p 6= 0, p 6= ±1 in Definition 1.2.19?

The following old result and its proof go back to Euclid.

Theorem 1.2.25 There are infinitely many prime numbers.

Proof: We assume that p1, p2, . . . , pn are all the prime numbers, and look
for a contradiction. We let n = 1 + p1p2 . . . pn. Then |p1p2 . . . pn| > 1, so
n 6= 0, n 6= ±1. By Theorem 1.2.23 there exists i, 1 ≤ i ≤ n such that
pi | n. Then pi | n− p1p2 . . . pn = 1, a contradiction.
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Exercise 1.2.26 Show that if p is prime, then
√
p is irrational by proving

that there are no integers a and b such that a2 = pb2.

Exercise 1.2.27 (P. Ionescu) Prove that it is not possible to draw an equi-
lateral triangle on graph paper such that all vertices are at nodes of the grid.
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Solutions to the Exercises on Section 1.2

Exercise 1.2.3 Prove the following:
i) 1 | a for all a.
ii) a | 0 for all a.
iii) If a | b and b | c, then a | c.
iv) If a | b and c | d, then ac | bd.
v) If a | b and a | c, then a | ub+ vc for all u, v.
vi) If a | 1, then a = ±1.
vii) If a | b and b | a, then a = ±b.
Solution: i) a = 1 · a.
ii) 0 = a · 0.
iii) We have that b = ad and c = be = ade.
iv) We have that b = ae and d = cf , so bd = acef .
v) We have b = ad and c = ae, so ub+ vc = uad+ vae = a(ud+ ve).
vi) We have 1 = ab, so |a| = 1.
vii) If both a and b are 0, the statement is clear. If one of them is not 0, the
other one has to be different from 0 as well. In that case we have b = au
and a = bv = auv, so 1 = uv.

Exercise 1.2.4 Prove that a product of three consecutive integers is divisible
by 3.
Solution: A product of three consecutive integers has the form n(n+1)(n+
2). By Theorem 1.2.1 we have that n = 3q or n = 3q + 1 or n = 3q + 2.
If n = 3q, then n(n + 1)(n + 2) = 3q(3q + 1)(3q + 2). If n = 3q + 1, then
n(n+ 1)(n+ 2) = (3q+ 1)(3q+ 2)(3q+ 3) = 3(3q+ 1)(3q+ 2)(q+ 1). If n =
3q+2, then n(n+1)(n+2) = (3q+2)(3q+3)(3q+4) = 3(3q+2)(q+1)(3q+4).

Exercise 1.2.6 If d1 = (a, b) and d2 = (a, b), then d1 = ±d2.
Solution: Since d1 = (a, b), d2 | a, and d2 | b, it follows that d2 | d1.
Similarly, d1 | d2.

Exercise 1.2.9 i) Show by giving an example that u and v in Corollary
1.2.8 are not unique.
ii) Show by giving an example that d = ua+ vb does not imply d = (a, b).
Solution: i) We have 1 = (2, 3), and 1 = 2 · (−1) + 3 · 1 = 2 · 2 + 3 · (−1).
ii) 2 = 1 · 1 + 1 · 1.

Exercise 1.2.12 Use the Euclidean algorithm to find (987,−345), then
write it as a linear combination of 987 and −345.
Solution: Since (987,−345) = (987, 345) we have:
987 = 2 · 345 + 297, 0 ≤ 297 < 345
345 = 1 · 297 + 48, 0 ≤ 48 < 297
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297 = 6 · 48 + 9, 0 ≤ 9 < 48
48 = 5 · 9 + 3, 0 ≤ 3 < 9
9 = 3 ·3+0. Then 3 = (987, 345), and 3 = 48−5 ·9 = 48−5 ·(297−6 ·48) =
31 · 48 − 5 · 297 = 31 · (345 − 1 · 297) − 5 · 297 = 31 · 345 − 36 · 297 =
31 ·345−36 · (987−2 ·345) = 103 ·345−36 ·987 = (−103) · (−345)−36 ·987.

Exercise 1.2.14 i) Show that a and b are relatively prime if and only if
1 = ma+ nb for some m and n.
ii) If 0 6= d = (a, b), a = da1, b = db1, show that 1 = (a1, b1).
Solution: i) If 1 = (a, b), then 1 is a linear combination of a and b by
Corollary 1.2.8. Conversely, if 1 = ma + nb, d | a and d | b, it follows that
d | 1.
ii) Write d = au+ bv = da1u+ db1v, divide by d, then apply i).

Exercise 1.2.16 If 1 = (a, b) and 1 = (a, c), then 1 = (a, bc).
Solution: Write au+bv = 1 and as+ct = 1. Then 1 = (au+bv)(as+ct) =
a2us+ auct+ bvas+ bvct = a(aus+ uct+ bvs) + (bc)(vt).

Exercise 1.2.17 Show that if a | c, b | c, and 1 = (a, b), then ab | c. What
happens if 1 6= (a, b)?
Solution: Let c = ad, c = bf , and 1 = au + bv. Then c = auc + bvc =
aubf + bvad = (ab)(uf + vd). If 1 6= (a, b) the assertion is false: 4 | 12 and
6 | 12, but 24 does not divide 12.

Exercise 1.2.18 Show that 6 divides n3 − n.
Solution: We have that n3 − n = n(n2 − 1) = n(n − 1)(n + 1) = (n −
1)n(n + 1), a product of three consecutive numbers, so by Exercise 1.2.4
3 | n3 − n. Since similarly 2 divides a product of two consecutive numbers,
we also have 2 | n3 − n. Since 1 = (2, 3), it follows from Exercise 1.2.17
that 6 | n3 − n.

Exercise 1.2.20 Let p 6= 0, p 6= ±1. The following assertions are equiva-
lent:
i) p is prime.
ii) If p = ab, then one of a and b has the same absolute value as p.
iii) d | p implies that d = ±1 or d = ±p.
Solution: i) ⇒ ii). Since p = ab, it follows that a | p and b | p, and also
that p | ab. Since p is prime, it follows that p | a or p | b. Therefore a = ±p
or b = ±p by Exercise 1.2.3, vii).
ii) ⇒ iii). Let p = de. It follows that |d| = |p|, in which case d = ±p, or
|e| = |p|, in which case d = ±1.
iii)⇒ i). Let p | ab, and consider d = (a, p). From the hypothesis it follows
that either d = ±1, in which case p | b by Euclid’s lemma, or d = ±a, which
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means that p | a.

Exercise 1.2.21 If p is prime, and p | a1a2 . . . an, then there exists i,
1 ≤ i ≤ n such that p | ai.
Solution: We use induction on n. If n = 1 there is nothing to prove. If
n > 1 and the assertion is true for numbers < n, we have p | a1 · (a2 . . . an),
so either p | a1 or p | a2 . . . an and we can apply the induction hypothesis.

Exercise 1.2.22 Show that any odd prime p is of the form 4n+1 or 4n+3
for some n.
Solution: By the division algorithm we have that p = 4n or p = 4n+ 1 or
p = 4n+ 2 = 2(2n+ 1) or p = 4n+ 3. The first and third cases contradict
either the fact that p is prime, or that p is odd, so the conclusion follows.

Exercise 1.2.24 Why do we ask p 6= 0, p 6= ±1 in Definition 1.2.19?
Solution: While it is true that 0 satisfies the definition of prime num-
bers, and ±1 satisfy the equivalent conditions in Exercise 1.2.20, accepting
any of these three numbers as prime would hurt the uniqueness of the de-
composition as a product of prime numbers in the fundamental theorem of
arithmetic (Theorem 1.2.23).

Exercise 1.2.26 Show that if p is prime, then
√
p is irrational by proving

that there are no integers a and b such that a2 = pb2.
Solution: Assume that such a and b exist, and look at the maximum
powers of p dividing both sides of the equality a2 = pb2. The maximum
power of p dividing the left is even, while the maximum power of p dividing
the right is odd, and this contradicts the uniqueness of the decomposition
as a product of prime numbers in the fundamental theorem of arithmetic
(Theorem 1.2.23).

Exercise 1.2.27 (P. Ionescu) Prove that it is not possible to draw an
equilateral triangle on graph paper such that all vertices are at nodes of the
grid.
Solution: Suppose such an equilateral triangle exists, and draw horizontal
and vertical lines through the vertices of the triangle in order to inscribe it
in a rectangle whose sides have integer lengths. This rectangle is the union
of the equilateral triangle and two or three right triangles. Right triangles
whose legs have integer lengths have rational areas (either an integer or
half of an integer). Denote by l the side of the equilateral triangle. By
the Pythagorean theorem, l2 is an integer. It follows that the area of the

triangle, which is l2
√

3
4 , is rational, so

√
3 is rational, a contradiction.
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1.3 Equivalence relations and factor sets

In this section we start introducing one of the most fundamental concepts
of modern mathematics: the notion of factor (or quotient) structure. We
actually start with no structure at all, since in this section we only consider
sets, but we will soon be looking at more and more structures when we
consider factor groups or factor rings later on. We start with the following:

Definition 1.3.1 If M is a set, a subset R of the cartesian product M×M
is called a (binary) relation on M . We will write xRy if (x, y) ∈ R, and
we say that x is in the relation R with y.

Definition 1.3.2 A relation E on the set M is called an equivalence re-
lation if it satisfies the following three properties for arbitrarily chosen
x, y, z ∈M :
i) xEx (reflexivity).
ii) xEy ⇒ yEx (symmetry).
iii) xEy and yEz ⇒ xEz (transitivity).

We give some examples of equivalence relations, but we leave the verifica-
tions as an exercise:

Exercise 1.3.3 Prove that the following relations are equivalence relations:
i) On the set Z: a ≡ b⇔ a = b.
ii) On the set Z: fix n > 0; then a ≡ b (mod n)⇔ n | a− b. (This is called
congruence modulo n.)
iii) On the set Z: a ∼d b ⇔ a | b and b | a. (This is called association in
divisibility.)
iv) On the set of points in the plane: fix a point C; then ARB ⇔ A and B
are at the same distance from C.
v) Let M and N be sets and f : M −→ N a function. Define the following
relation on M : xRfy ⇔ f(x) = f(y).

Definition 1.3.4 Let E be an equivalence relation on the set M , and x ∈
M . We define the equivalence class of x relative to E, by

x̂E = {y ∈M | xEy}.

If there is no danger of confusion we will omit the index and write x̂ = x̂E .
An equivalence class for E is the equivalence class of some element in M .

Exercise 1.3.5 Describe the equivalence classes of the equivalence rela-
tions in Exercise 1.3.3.
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Exercise 1.3.6 If y ∈ x̂, then x̂ = ŷ.

We now recall the definition of a partition of a set.

Definition 1.3.7 Let M be a set. A family {Mi}i∈I of subsets of M is
called a partition of M if the following conditions are satisfied:
i) Mi 6= ∅ for all i ∈ I.
ii) The sets in the family are disjoint, i.e. Mi ∩Mj = ∅ if i, j ∈ I, i 6= j.
iii) The sets cover M , i.e. M = ∪i∈IMi (This means that any element in
M belongs to one of the Mi’s).

Proposition 1.3.8 The equivalence classes of an equivalence relation E on
the set M form a partition of M .

Proof: We need to check the three conditions in Definition 1.3.7.
i) An equivalence class is x̂ for some x ∈ M , so x̂ 6= ∅ because x ∈ x̂ by
reflexivity.
ii) Two equivalence classes are either disjoint or they coincide. Indeed, if
x̂ ∩ ŷ 6= ∅, let z ∈ x̂ ∩ ŷ, and then x̂ = ŷ = ẑ by Exercise 1.3.6.
iii) If x ∈M , then x ∈ x̂ as remarked in i).

Exercise 1.3.9 Let M be a set, and {Mi}i∈I a partition of M . Define the
following relation on M : xRy ⇔ there exists i ∈ I such that x, y ∈ Mi.
Then R is an equivalence relation.

Proposition 1.3.10 There exists a bijective correspondence between the
set of equivalence classes on a set M and the set of partitions on M .

Proof: We start with and equivalence relation E on M . We form the par-
tition of M consisting of the equivalence classes of E , then we associate the
equivalence relation R as in Exercise 1.3.9. This means that xRy if and
only if x, y belong to an equivalence class of E , if and only if xEy, so R = E
and we got back to E .
Conversely, start with a partition {Mi}i∈I of M , and consider the equiva-
lence relation R as in Exercise 1.3.9. Then the equivalence classes of R are
the Mi’s, since we can check that if x ∈Mi, then Mi = x̂.

Definition 1.3.11 If M is a set and E is an equivalence relation on M , the
factor set (or quotient set) of M through E is the set of equivalence classes
of E and is denoted by M/E. If we select one element in each equivalence
class and denote the set of all these elements by S, then the factor set of
M through E can be described as

M/E = {x̂ | x ∈ S}.

S is called a complete system of representatives for the equivalence classes
of E,
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Exercise 1.3.12 Describe the factor sets in Exercise 1.3.3 and indicate a
complete system of representatives for each one.

As we did in the case of injective and surjective functions, we will describe
the notion of factor set in a way that does not make any reference to
elements. We first give a second definition of a factor set, then show that
the two definitions are equivalent.

Definition 1.3.13 If M is a set, a factor set of M is a pair (N, p), where
N is a set and p : M −→ N is a surjective function.

Example 1.3.14 A factor set in the sense of Definition 1.3.11 is also a
factor set in the sense of Definition 1.3.13, because the function p : M −→
M/E, defined by p(x) = x̂, is surjective (this function is called the canonical
surjection).

The following important result ensures that the two definitions of a factor
set are actually the same:

Theorem 1.3.15 (The Universal Property of the Factor Set) Let
(N, p) be a factor set of the set M , let X be a set and f : M −→ X a
function.
i) There exists a function u : N −→ X such that f = up (we say that f
factors through p), which means that the diagram

M

J
J
J
J
J
Ĵ

N

u

X
?

-

f

p

is commutative, if and only if Rp ⊆ Rf (i.e. p(x1) = p(x2) ⇒ f(x1) =
f(x2)). If u exists, then it is unique.
If u as in i) exists, then:
ii) u is surjective if and only if f is surjective.
iii) u is injective if and only if Rp = Rf (i.e. p(x1) = p(x2) ⇔ f(x1) =
f(x2)).

Proof: i) Assume that a function u like in the statement exists, and let
x1, x2 ∈ M such that p(x1) = p(x2). Then f(x1) = u(p(x1)) = u(p(x2)) =
f(x2). Conversely, assume that p(x1) = p(x2) ⇒ f(x1) = f(x2) and let
y ∈ N . Since p is surjective, let x ∈ M such that p(x) = y, and define
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u(y) = f(x). We need to show that the definition is correct, i.e. it does
not depend on the choice of x. Indeed, if we have another x1 ∈ M such
that p(x1) = y, then p(x) = p(x1) = y, so f(x) = f(x1), and the definition
of u(y) does not depend on x. Now if two functions u1 and u2 with the
property that u1p = u2p = f exist, we let y ∈ N . Again since p is surjective
there exists x ∈ M such that p(x) = y, and hence u1(y) = u1(p(x)) =
f(x) = u2(p(x)) = u2(y), so u1 = u2.
ii) If u is surjective, then f = up is surjective because it is a composition of
surjective functions (see Exercise 1.1.15). Conversely, if f = up is surjective,
then u is surjective by Exercise 1.1.17.
iii) If u is injective, let f(x1) = f(x2). It follows that u(p(x1)) = u(p(x2)),
and so p(x1) = p(x2). Conversely, assume that p(x1) = p(x2) ⇔ f(x1) =
f(x2) and let y1, y2 ∈ N such that u(y1) = u(y2). Since p is surjective
let x1, x2 ∈ M such that p(x1) = y1 and p(x2) = y2. Then we have
f(x1) = u(p(x1)) = u(p(x2)) = f(x2). By the hypothesis we have that
p(x1) = p(x2), so y1 = y2 and u is injective.

Corollary 1.3.16 If (N1, p1) and (N2, p2) are two factor sets of M such
that Rp1 = Rp2 , then there exists a bijective function u : N1 −→ N2 such
that up1 = p2.

Proof: Take (N, p) = (N1, p1), X = N2 and f = p2 in Theorem 1.3.15,
hence we find u as in the statement, which is bijective. We can actually only
use i) in Theorem 1.3.15: also take (N, p) = (N2, p2), X = N1 and f = p1,
and find v, vp2 = p1. Then uvp1 = p1, and vup2 = p2, so uv = IdN1

and
vu = IdN2

by uniqueness.

Corollary 1.3.17 If (N, p) is a factor set of M , then there exists a bijec-
tion u : N −→M/Rp such that u ◦ p is the canonical surjection sending an
element to its equivalence class.

Proof: Take (N1, p1) = (N, p) and (N2, p2) = (M/Rp, can), where can :
M −→M/Rp, can(x) = x̂. Then can(x1) = can(x2) if and only if x1Rpx2

if and only if p(x1) = p(x2), and we can apply Corollary 1.3.16.

For a set M we will denote by P(M) the set of all subsets of M . If M =
{x1, x2, . . . , xm}, then we write card(M) = m.

Exercise 1.3.18 Let M = {x1, x2, . . . , xm} and N = {y1, y2, . . . , yn}.
i) If A1, A2, . . . , Ak ∈ P(M), prove by induction on k that

card(A1 ∪A2 ∪ . . . ∪Ak) =

k∑
i=1

card(Ai)−
∑

1≤i<j≤k

card(Ai ∩Aj)+
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+ . . .+ (−1)k+1card(∩ki=1Ai)

(This is the inclusion-exclusion principle)
ii) The number of functions from M to N is nm.
iii) card(P(M)) = 2m.
iv) If m = n, the number of bijective functions from M to N is m!.
v) If m ≤ n, the number of injective functions from M to N is nPm =

n!
(n−m)! .

vi) If m ≥ n, the number of surjective functions from M to N is:

nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m + . . .+ (−1)n−1

(
n

n− 1

)
,

where

(
n

k

)
= nCk =

n!

k!(n− k)!
.

vii) Let k ≤ m. The number of equivalence relations on M such that the
factor set has k elements is:

Em,k =
1

k!
(km−

(
k

1

)
(k−1)m−1 +

(
k

2

)
(k−2)m−2 + . . .+(−1)k−1

(
k

k − 1

)
),

and so the number of equivalence relations on M is Em,1+Em,2+. . .+Em,m.

Exercise 1.3.19 i) Let A be a set and B ∈ P(A). Define the following
relation on P(A): if X,Y ∈ P(A), then XRY if and only if X∩B = Y ∩B.
Show that R is an equivalence relation and there exists a bijection between
the factor set P(A)/R and P(B).
ii) Let A and B be nonempty sets, and denote by BA the set of functions
from A to B. Choose a ∈ A, and define the following relation on BA: fRg
if and only if f(a) = g(a). Show that R is an equivalence relation and there
exists a bijection between the factor set BA/R and B.
iii) With the same notation as in ii), let C ∈ P(A), and define the following
relation on BA: fR′g if and only if f(x) = g(x) for all x ∈ C. Show that
R′ is an equivalence relation and there exists a bijection between the factor
set BA/R′ and BC .
iv) Show that i) and ii) can be obtained as particular cases of iii).

Exercise 1.3.20 Show that the relation defined on R by xRy if and only
if x− y ∈ Z is an equivalence relation, and there is a bijection between the
factor set and a circle.
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Solutions to the Exercises on Section 1.3

Exercise 1.3.3 Prove that the following relations are equivalence relations:
i) On the set Z: a ≡ b⇔ a = b.
ii) On the set Z: fix n > 0; then a ≡ b (mod n)⇔ n | a− b. (This is called
congruence modulo n.)
iii) On the set Z: a ∼d b ⇔ a | b and b | a. (This is called association in
divisibility.)
iv) On the set of points in the plane: fix a point C; then ARB ⇔ A and B
are at the same distance from C.
v) Let M and N be sets and f : M −→ N a function. Define the following
relation on M : xRfy ⇔ f(x) = f(y).
Solution: i) If a ∈ Z, then a = a; if a = b, then b = a; if a = b and b = c,
then a = c.
ii) If a ∈ Z, then n | a − a = 0; if n | a − b, then n | b − a; if n | a − b and
n | b − c, then n | a − b + b − c = a − c. (Note that i) is a particular case
of ii)), we get it for n = 0. Also note that a ≡ b (mod n))⇔ a and b have
the same remainder when divided by n.)
iii) If a ∈ Z, then a ∼d a, because a | a; symmetry is clear; transitivity
follows from the transitivity of divisibility, applied twice.
iv) Similar to i), because ARB ⇔ |AC| = |BC|.
v) Similar to i) or iv).

Exercise 1.3.5 Describe the equivalence classes of the equivalence relations
in Exercise 1.3.3.
Solution: i) If a ∈ Z, then â = {a}.
ii) If a ∈ Z, then â = {a+ kn | k ∈ Z}.
iii) If a ∈ Z, then â = {a,−a}.
iv) Â=circle with center C and radius |AC|.
v) If x ∈M , then x̂ = f−1(f(x)) = f−1({f(x)}).

Exercise 1.3.6 If y ∈ x̂, then x̂ = ŷ.
Solution: If y ∈ x̂, then ŷ ⊆ x̂, by symmetry and transitivity. Also, x ∈ ŷ
by symmetry, so x̂ = ŷ.

Exercise 1.3.9 Let M be a set, and {Mi}i∈I a partition of M . Define the
following relation on M : xRy ⇔ there exists i ∈ I such that x, y ∈ Mi.
Then R is an equivalence relation.
Solution: The reflexive property follows from the fact that any x ∈ M
belongs to one of the Mi’s. Symmetry is clear, because the order of x and
y in ”x, y ∈ Mi” is not important. Now, if x, y ∈ Mi and y, z ∈ Mj , then
y ∈Mi ∩Mj , so i = j.
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Exercise 1.3.12 Describe the factor sets in Exercise 1.3.3 and indicate a
complete system of representatives for each one.
Solution: i) The integers form a complete system of representatives, so
the factor set is in a bijective correspondence with Z.
ii) A complete system of representatives is the set of all positive remainders:

{0, 1, . . . , n−1}, so the factor set can be described as Zn = {0̂, 1̂, . . . , n̂− 1}
(We call Zn ”Z mod n”, and if the context is clear, we can omit the hats).
Indeed, for any a ∈ Z there exist q and r such that a = nq+r, 0 ≤ r ≤ n−1
so a ∈ r̂. Now, if a ∈ î∩ ĵ, where 0 ≤ i < j ≤ n−1, it follows that n | j− i,
and since 0 ≤ j − i ≤ n− 1 it follows that j − i = 0, or i = j.
iii) The factor set is {n̂ | n ∈ Z, n̂ = {−n, n} }. A complete system of
representatives is N.
iv) The factor set is the set of all circles centered at C. A complete system
of representatives is a ray (half line) starting at C.
v) The factor set is the set of all fibers of f (i.e. preimages of images of
elements of M). A complete set of representatives is selected by choosing
one element x in each fiber f−1(y), where y ∈ Im(f) = f(M). Therefore,
any complete system of representatives is in a bijective correspondence with
Im(f) = f(M).

Exercise 1.3.18 Let M = {x1, x2, . . . , xm} and N = {y1, y2, . . . , yn}.
i) If A1, A2, . . . , Ak ∈ P(M), prove by induction on k that

card(A1 ∪A2 ∪ . . . ∪Ak) =

k∑
i=1

card(Ai)−
∑

1≤i<j≤k

card(Ai ∩Aj)+

+ . . .+ (−1)k+1card(∩ki=1Ai)

(This is the inclusion-exclusion principle)
ii) The number of functions from M to N is nm.
iii) card(P(M)) = 2m.
iv) If m = n, the number of bijective functions from M to N is m!.
v) If m ≤ n, the number of injective functions from M to N is nPm =

n!
(n−m)! .

vi) If m ≥ n, the number of surjective functions from M to N is:

nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m + . . .+ (−1)n−1

(
n

n− 1

)
,

where

(
n

k

)
= nCk =

n!

k!(n− k)!
.

vii) Let k ≤ m. The number of equivalence relations on M such that the
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factor set has k elements is:

Em,k =
1

k!
(km−

(
k

1

)
(k−1)m−1 +

(
k

2

)
(k−2)m−2 + . . .+(−1)k−1

(
k

k − 1

)
),

and so the number of equivalence relations on M is Em,1+Em,2+. . .+Em,m.
Solution: i) For k = 2 the assertion is clear, just note that when you add
the number of elements of A1 and A2, the elements in the intersection are
counted twice. Assume now that k > 2 and the assertion is true for k − 1
sets. Then we have

(A1 ∪A2 ∪ . . . ∪Ak−1) ∩Ak = ∪i<k(Ai ∩Ak),

so applying the case k = 2 we get

card(A1 ∪A2 ∪ . . . ∪Ak) = card(A1 ∪A2 ∪ . . . ∪Ak−1) + card(Ak)−

−card(∪i<k(Ai ∩Ak)),

and we can apply the induction hypothesis and regroup the terms to get
the assertion for k.
ii) We use induction on m. If m = 1, then M has one element, and it is clear
that there are exactly n functions form M to N . If we assume that there
are nm−1 functions from {x1, . . . , xm−1} to N , then each function from M
to N can be obtained by extending one of those functions by defining it on
xm. Since this can be done in n ways, it follows that there are nm−1 ·n = nm

functions from M to N .
iii) The function φ : P(M) −→ {0, 1}M , defined by

φ(X)(x) =

{
1 if x ∈ X
0 if x /∈ X

which is called the characteristic function of the subset X, is a bijection,
with inverse ψ : {0, 1}M −→ P(M), defined by ψ(f) = f−1(1). Then the
assertion follows from ii).
iv) To define a bijection from M to N , we can give it any value at x1,
then x2 can be sent to any of the remaining m− 1 values, and so on, until
the value at xm will be the only element of Y left available. So there are
m · (m− 1) · . . . · 1 = m! bijective functions from M to N .
v) There is a bijection between the set in injective functions from M to
N and the set of ordered subsets with m elements of N . Since there are(
n

m

)
= nCm =

n!

m!(n−m)!
subsets of N with m elements, and each set

can be ordered in m! ways by iv), the number of injective functions from
M to N is m! · nCm = nPm.
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vi) Let us denote by Ai the set of functions from M to N which do not
take the value yi. The set of functions that are not surjective is A1 ∪
A2 ∪ . . . ∪ An, so the number of surjective functions is nm − card(A1 ∪
A2 ∪ . . . ∪ An). But Ai is the set of functions from M to the set N \
{yi} = {y1, . . . , yi−1, yi+1, . . . , yn}, so card(Ai) = (n − 1)m, and therefore∑n
i=1 card(Ai) = n(n−1)m. Similarly, Ai∩Aj is the set of functions fromM

toN\{yi, yj}, and so card(Ai∩Aj) = (n−2)m, and so
∑
i<j card(Ai∩Aj) =(

n
2

)
(n− 2)m, and so on. Note that A1 ∩A2 ∩ . . . ∩An = ∅.

vi) By Proposition 1.3.10 we need to count the partitions of M into k
subsets. Each partition defines a surjection from M to the set {1, 2, . . . , k},
defined by ordering the sets in the partition and sending each element of
M to the index of the set in the partition that contains it. Since ordering
the sets in the partition can be done in k! different ways, it follows that
the number of partitions of M into k subsets is the number of surjective
functions from M to {1, 2, . . . , k} divided by k!.

Exercise 1.3.19 i) Let A be a set and B ∈ P(A). Define the following
relation on P(A): if X,Y ∈ P(A), then XRY if and only if X∩B = Y ∩B.
Show that R is an equivalence relation and there exists a bijection between
the factor set P(A)/R and P(B).
ii) Let A and B be nonempty sets, and denote by BA the set of functions
from A to B. Choose a ∈ A, and define the following relation on BA: fRg
if and only if f(a) = g(a). Show that R is an equivalence relation and there
exists a bijection between the factor set BA/R and B.
iii) With the same notation as in ii), let C ∈ P(A), and define the following
relation on BA: fR′g if and only if f(x) = g(x) for all x ∈ C. Show that
R′ is an equivalence relation and there exists a bijection between the factor
set BA/R′ and BC .
iv) Show that i) and ii) can be obtained as particular cases of iii).
Solution: i) Let f : P(A) −→ P(B), f(X) = X ∩B. Then f is surjective,
R = Rf is an equivalence relation by Exercise 1.3.3, v), and we can use
Corollary 1.3.16 for M = P(A), N1 = P(A)/R, p1 = can, N2 = P(B),
p2 = f .
ii) Let F : BA −→ B, F (f) = f(a). Then F is surjective, R = RF is an
equivalence relation by Exercise 1.3.3, v), and we can use Corollary 1.3.16
for M = BA, N1 = BA/R, p1 = can, N2 = B, p2 = F .
iii) Let F : BA −→ BC , F (f) = the restriction of f to C. Then F is
surjective, R = RF is an equivalence relation by Exercise 1.3.3, v), and we
can use Corollary 1.3.16 for M = BA, N1 = BA/R, p1 = can, N2 = BC ,
p2 = F .
iv) We can get ii) from iii) by taking C = {a}, and i) from iii) by taking
B = {0, 1}, A = A and B = C, and using the bijection between subsets
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and characteristic functions defined in the solution of Exercise 1.3.18, iii).

Exercise 1.3.20 Show that the relation defined on R by xRy if and only
if x− y ∈ Z is an equivalence relation, and there is a bijection between the
factor set and a circle.
Solution: Let C denote the unit circle centered at the origin, and define
f : R −→ C by f(x) = (cos(2π(x − [x])), sin(2π(x − [x]))), where [x] is
the greatest integer less than or equal to x. Then 0 ≤ x − [x] < 1, and so
(x− [x])− (y− [y]) ∈ Z if and only if (x− [x])− (y− [y]) = 0, i.e. x−y ∈ Z,
thus R = Rf , and we can use Corollary 1.3.16 for M = R, N1 = R/R,
p1 = can, N2 = C, p2 = f .
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1.4 Groups and morphisms of groups

Definition 1.4.1 A binary operation on the set M is a function · : M ×
M −→M , ·(x, y) = xy.

Definition 1.4.2 A set G, together with a binary operation · on G, denoted
by (G, ·), is called a group if the following conditions are satisfied:
G1) the operation is associative, i.e. x(yz) = (xy)z for all x, y, z ∈ G.
G2) the operation has an identity element, i.e. there exists an element
e ∈ G such that ex = xe = x for all x ∈ G.
G3) every element in G has a symmetric element, i.e. for any x ∈ G there
exists an element x′ ∈ G such that xx′ = x′x = e.
If the following condition is also satisfied:
G4) the operation is commutative, i.e. xy = yx for all x, y ∈ G,
then the group is said to be abelian (or commutative).

As we can see in the above definition, our notation for a generic group
operation will be multiplicative, i.e. a generic group will be denoted by
(G, ·), (or simply G if it is clear what the operation is) where the operation
· : G×G −→ G, ·(a, b) = ab is not necessarily the multiplication.

Exercise 1.4.3 Write the definition of the group in additive notation, i.e.
rewrite Definition 1.4.2 for (G,+), where + : G×G −→ G, +(x, y) = x+y.

Exercise 1.4.4 i) If e1 and e2 are identity elements in a group, i.e. they
both satisfy condition G2) in Definition 1.4.2, then prove that e1 = e2. This
means that the identity element in a group is unique. Our notation for it
will be 1G if the notation for the operation of the group is multiplicative,
and 0G if the notation for the operation of the group is additive.
ii) Show that the symmetric element of an element x in a group G is unique,
i.e. if x′ and x′′ both satisfy the condition in Definition 1.4.2, G3), then
x′ = x′′. If the notation is multiplicative, we will call the symmetric element
of x the inverse of x and we will denote it by x−1. If the notation is additive,
we will call the symmetric element of x the opposite of x and we will denote
it by −x.
iii) Prove that if in a group G we have xy = xz, it follows that y = z (this
is called the cancelation law).

Exercise 1.4.5 Which of the following are groups:
i) (N,+), the set of natural numbers, the operation is the addition of natu-
ral numbers.
ii) (N, ·), the set of natural numbers, the operation is the multiplication of
natural numbers.
iii) (Z,+), the set of integers, the operation is the addition of integers.
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iv) (Z, ·), the set of integers, the operation is the multiplication of integers.
v) (Q,+), the set of rational numbers, the operation is the addition of ra-
tional numbers.
vi) (Q, ·), the set of rational numbers, the operation is the multiplication of
rational numbers.
vii) (R,+), the set of real numbers, the operation is the addition of real
numbers.
viii) (R, ·), the set of real numbers, the operation is the multiplication of
real numbers.
ix) (C,+), the set of complex numbers, the operation is the addition of com-
plex numbers.
x) (C, ·), the set of complex numbers, the operation is the multiplication of
complex numbers.
xi) (N∗, ·), the set of nonzero natural numbers, the operation is the multi-
plication of natural numbers.
xii) (Z∗, ·), the set of nonzero integers, the operation is the multiplication
of integers.
xiii) (Q∗, ·), the set of nonzero rational numbers, the operation is the mul-
tiplication of rational numbers.
xiv) (R∗, ·), the set of nonzero real numbers, the operation is the multipli-
cation of real numbers.
xv) (C∗, ·), the set of nonzero complex numbers, the operation is the multi-
plication of complex numbers.
xvi) ((0,∞), ·), the interval (0,∞), the operation is the multiplication of
real numbers.
xvii) ((−∞, 0), ·), the interval (−∞, 0), the operation is the multiplication
of real numbers.
xviii) (S(M), ◦), S(M) = {f : M −→M | f is bijective} and ◦ is the com-
position of functions. We will denote Sn = S({1, 2, . . . , n}).
xix) (GM , ·), where (G, ·) is a group, M is a set, GM is the set of functions
defined on M with values in G, and (f · g)(x) = f(x)g(x) for f, g ∈ GM ,
x ∈ G.
xx) (GL2(C), ·), where

GL2(C) =

{[
a b
c d

]
| a, b, c, d ∈ C, ad− bc 6= 0

}
and · is the multiplication of matrices.
xxi) ({1,−1}, ·).
xxii) ({1,−1},+).
xxiii) ({0},+).
xxiv) ({1}, ·).
xxv) ({0}, ·).
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xxvi) (Q8, ·), where · is the multiplication of matrices, and Q8 is the follow-
ing subset of M2(C):

Q8 =

{[
1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
i 0
0 −i

]
,

[
−i 0
0 i

]
,

[
0 1
−1 0

]
,

[
0 −1
1 0

]
,

[
0 i
i 0

]
,

[
0 −i
−i 0

]}
.

xxvii) (P(M), ∗), where M is a set, and A ∗ B = {x ∈ M | x ∈ A ∪ B, x /∈
A ∩B}.

We are now going to define two operations on the set Zn (see Exercise
1.3.12, ii)). In order to do that we will need the following:

Exercise 1.4.6 Let n > 0 be an integer, and assume that a ≡ b (mod n)
and c ≡ d (mod n). Then:
i) a+ c ≡ b+ d (mod n).
ii) ac ≡ bd (mod n).

The previous exercise shows that we can talk about the sum and product
of elements in Zn: if â, b̂ ∈ Zn, define

â+ b̂ = â+ b,

and
âb̂ = âb.

Exercise 1.4.7 Which of the following sets are groups:
i) (Zn,+).
ii) (Zn, ·).
iii) (Un, ·), where Un = {â ∈ Zn | 1 = (a, n)}.
iv) (Un,+).

Exercise 1.4.8 Let G1 and G2 be groups, and define the following opera-
tion on the cartesian product G1 × G2: (x, y) · (x′, y′) = (xx′, yy′), where
x, x′ ∈ G1 and y, y′ ∈ G2. Show that G1×G2 is a group with this operation
(it is called the direct product of the groups G1 and G2).

Definition 1.4.9 If G and G′ are groups, a function f : G −→ G′ is called
a group morphism if f preserves the group operation, i.e. f(xy) = f(x)f(y)
for all x, y ∈ G. The morphism f is said to be an injective morphism if
the function f is injective. Similarly, if the function f is surjective, we
say that f is a surjective morphism. A group morphism f : G −→ G′ is
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called an isomorphism if there exists a group morphism f ′ : G′ −→ G such
that f ◦ f ′ = IdG′ and f ′ ◦ f = IdG; we then say that the groups G and
G′ are isomorphic, and we write G ' G′. A morphism from G to G is
called an endomorphism of G, and an isomorphism from G to G is called
an automorphism of G.

The following properties of group morphisms are left as exercises:

Exercise 1.4.10 Let f : G −→ G′ and g : G′ −→ G′′ be group morphisms.
Then:
i) f(1G) = 1G′ .
ii) For x ∈ G, we have f(x−1) = f(x)−1.
iii) gf is a group morphism.
iv) f is an isomorphism if and only if f is bijective.

Exercise 1.4.11 Which of the following maps are group morphisms? For
each of them decide if they are injective, surjective, or an isomorphism. If
a morphism is an isomorphism, find the inverse.
i) IdG : G −→ G.
ii) i : Z −→ Q, i(x) = x/1 for x ∈ Z.
iii) If x ∈ G, fx : G −→ G, fx(g) = xgx−1 for all g ∈ G.
iv) G is a group, M is a nonempty set, GM is as in Exercise 1.4.5, xix),
and ϕ : G −→ GM , ϕ(g)(x) = g for all x ∈M .
v) ln : (0,∞) −→ R.
vi) f : Z4 −→ Z2, f(â(mod 4)) = â(mod 2).
vii) g : Z2 −→ Z4, g(â(mod 2)) = â(mod 4).
viii) p1 : G1 ×G2 −→ G1, p1(x, y) = x.

Exercise 1.4.12 If ϕ : M −→ N is a bijection, show that S(M) ' S(N)
(see Exercise 1.4.5, xviii)). In particular, if M has n elements, then M '
Sn.

Exercise 1.4.13 Write all the elements of S3 and find the inverse of each
element.
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Solutions to the Exercises on Section 1.4

Exercise 1.4.3 Write the definition of the group in additive notation, i.e.
rewrite Definition 1.4.2 for (G,+), where + : G×G −→ G, +(x, y) = x+y.
Solution: G1) x+ (y + z) = (x+ y) + z for all x, y, z ∈ G.
G2) there exists an element e ∈ G such that e+x = x+e = x for all x ∈ G.
G3) for any x ∈ G there exists an element x′ ∈ G such that x + x′ =
x′ + x = e.
G is abelian if the following condition is also satisfied:
G4) x+ y = y + x for all x, y ∈ G

Exercise 1.4.4 i) If e1 and e2 are identity elements in a group, i.e. they
both satisfy condition G2) in Definition 1.4.2, then prove that e1 = e2. This
means that the identity element in a group is unique. Our notation for it
will be 1G if the notation for the operation of the group is multiplicative,
and 0G if the notation for the operation of the group is additive.
ii) Show that the symmetric element of an element x in a group G is unique,
i.e. if x′ and x′′ both satisfy the condition in Definition 1.4.2, G3), then
x′ = x′′. If the notation is multiplicative, we will call the symmetric element
of x the inverse of x and we will denote it by x−1. If the notation is additive,
we will call the symmetric element of x the opposite of x and we will denote
it by −x.
iii) Prove that if in a group G we have xy = xz, it follows that y = z (this
is called the cancelation law).
Solution: i) Taking x = e2 in G2) for e1 we get: e1e2 = e2e1 = e2. Taking
x = e1 in G2) for e2 we get: e2e1 = e1e2 = e1. Comparing the two we get
e1e2 = e2e1 = e2 = e1.
ii) Since xx′ = 1G, it follows that x′′xx′ = x′′, and since x′′x = 1G, we get
that x′ = x′′.
iii) If xy = xz, then x−1xy = x−1xz, so y = z.

Exercise 1.4.5 Which of the following are groups:
i) (N,+), the set of natural numbers, the operation is the addition of natu-
ral numbers.
ii) (N, ·), the set of natural numbers, the operation is the multiplication of
natural numbers.
iii) (Z,+), the set of integers, the operation is the addition of integers.
iv) (Z, ·), the set of integers, the operation is the multiplication of integers.
v) (Q,+), the set of rational numbers, the operation is the addition of ra-
tional numbers.
vi) (Q, ·), the set of rational numbers, the operation is the multiplication of
rational numbers.
vii) (R,+), the set of real numbers, the operation is the addition of real
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numbers.
viii) (R, ·), the set of real numbers, the operation is the multiplication of
real numbers.
ix) (C,+), the set of complex numbers, the operation is the addition of com-
plex numbers.
x) (C, ·), the set of complex numbers, the operation is the multiplication of
complex numbers.
xi) (N∗, ·), the set of nonzero natural numbers, the operation is the multi-
plication of natural numbers.
xii) (Z∗, ·), the set of nonzero integers, the operation is the multiplication
of integers.
xiii) (Q∗, ·), the set of nonzero rational numbers, the operation is the mul-
tiplication of rational numbers.
xiv) (R∗, ·), the set of nonzero real numbers, the operation is the multipli-
cation of real numbers.
xv) (C∗, ·), the set of nonzero complex numbers, the operation is the multi-
plication of complex numbers.
xvi) ((0,∞), ·), the interval (0,∞), the operation is the multiplication of
real numbers.
xvii) ((−∞, 0), ·), the interval (−∞, 0), the operation is the multiplication
of real numbers.
xviii) (S(M), ◦), S(M) = {f : M −→M | f is bijective} and ◦ is the com-
position of functions. We will denote Sn = S({1, 2, . . . , n}).
xix) (GM , ·), where (G, ·) is a group, M is a set, GM is the set of functions
defined on M with values in G, and (f · g)(x) = f(x)g(x) for f, g ∈ GM ,
x ∈ G.
xx) (GL2(C), ·), where

GL2(C) =

{[
a b
c d

]
| a, b, c, d ∈ C, ad− bc 6= 0

}
and · is the multiplication of matrices.
xxi) ({1,−1}, ·).
xxii) ({1,−1},+).
xxiii) ({0},+).
xxiv) ({1}, ·).
xxv) ({0}, ·).
xxvi) (Q8, ·), where · is the multiplication of matrices, and Q8 is the follow-
ing subset of M2(C):

Q8 =

{[
1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
i 0
0 −i

]
,

[
−i 0
0 i

]
,
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0 1
−1 0

]
,

[
0 −1
1 0

]
,

[
0 i
i 0

]
,

[
0 −i
−i 0

]}
.

xxvii) (P(M), ∗), where M is a set, and A ∗ B = {x ∈ M | x ∈ A ∪ B, x /∈
A ∩B}.
Solution: i) No, G3) is not satisfied: x+ 1 6= 0 for all x ∈ N.
ii) No, G3) is not satisfied: x · 0 6= 1 for all x ∈ N.
iii) (Z,+) is an abelian group: the sum of two integers is an integer; addi-
tion is associative and commutative; 0 is the identity element; the opposite
of x ∈ Z is −x.
iv) No, G3) is not satisfied: x · 0 6= 1 for all x ∈ Z.
v) (Q,+) is an abelian group: the sum of two rational numbers is a rational
number; addition is associative and commutative; 0 is the identity element;
the opposite of x ∈ Q is −x.
vi) No, G3) is not satisfied: x · 0 6= 1 for all x ∈ Q.
vii) (R,+) is an abelian group: the sum of two real numbers is a real num-
ber; addition is associative; 0 is the identity element; the opposite of x ∈ R
is −x.
viii) No, G3) is not satisfied: x · 0 6= 1 for all x ∈ R.
ix) (C,+) is an abelian group: the sum of two complex numbers is a com-
plex number; addition is associative and commutative; 0 is the identity
element; the opposite of x ∈ C is −x.
x) No, G3) is not satisfied: x · 0 6= 1 for all x ∈ C.
xi) No, G3) is not satisfied: x · 2 6= 1 for all x ∈ N∗.
xii) No, G3) is not satisfied: x · 2 6= 1 for all x ∈ Z∗.
xiii) (Q∗, ·) is an abelian group: the product of two nonzero rational num-
bers is a nonzero rational number; multiplication is associative and com-
mutative; 1 is the identity element; the inverse of x ∈ Q∗ is 1/x.
xiv) (R∗, ·) is an abelian group: the product of two nonzero real numbers
is a nonzero real number; multiplication is associative and commutative; 1
is the identity element; the inverse of x ∈ R∗ is 1/x.
xv) (C∗, ·) is an abelian group: the product of two nonzero complex numbers
is a nonzero complex number; multiplication is associative and commuta-
tive; 1 is the identity element; the inverse of a+ bi ∈ C∗ is

a

a2 + b2
− b

a2 + b2
i.

xvi) ((0,∞), ·) is an abelian group: the product of two positive real numbers
is a positive real number; multiplication is associative and commutative; 1
is the identity element; the inverse of x ∈ (0,∞) is 1/x.
xvii) No, · is not an operation on (−∞, 0), because (−1) · (−1) /∈ (−∞, 0).
xviii) (S(M), ◦) is a group. The composition of two bijective functions is
bijective; composition of functions is associative; the identity element is
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IdM ; a bijective function is invertible. S(M) is not necessarily abelian: S2

is abelian, but S3 is not: the transpositions (12) and (13) do not commute
(see Exercise 1.4.13).
xix) (GM , ·) is a group, and it is abelian if G is abelian. It is clear that
f ·g ∈ GM . The operation on GM is associative because the operation on G
is associative. The identity element is the constant function 1 : M −→ G,
1(x) = 1G for all x ∈ M . The inverse of f ∈ GM is f−1 : M −→ G,
f−1(x) = f(x)−1 for x ∈M .
xx) (GL2(C), ·) is a nonabelian group. Recall that multiplication of matri-
ces is defined as[

a b
c d

]
·
[
a′ b′

c′ d′

]
=

[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]
and it is associative. The identity element is

I2 =

[
1 0
0 1

]
,

and the inverse of a matrix is given by[
a b
c d

]−1

=

[
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

]
.

GL2(C) is nonabelian because[
1 0
0 2

]
·
[

0 1
1 0

]
=

[
0 1
2 0

]
and [

0 1
1 0

]
·
[

1 0
0 2

]
=

[
0 2
1 0

]
xxi) ({1,−1}, ·) is an abelian group.
xxii) ({1,−1},+) is not a group because 1 + 1 /∈ {1,−1}.
xxiii) ({0},+) is an abelian group.
xxiv) ({1}, ·) is an abelian group.
xxv) ({0}, ·) is an abelian group.
xxvi) (Q8, ·) is a nonabelian group, called the quaternion group. If we
denote

1 =

[
1 0
0 1

]
− 1 =

[
−1 0
0 −1

]
i =

[
0 −1
1 0

]
− i =

[
0 1
−1 0

]

j =

[
0 i
i 0

]
− j =

[
0 −i
−i 0

]
k =

[
−i 0
0 i

]
− k =

[
i 0
0 −i

]
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then we can check that i2 = j2 = k2 = ijk = −1, and we can use these
relations to check that · is an operation on Q8. Q8 is not abelian because
ij 6= ji.
xxvii) (P(M), ∗) is an abelian group. If A,B,C ∈ P(M), then both A ∗
(B ∗ C) and (A ∗B) ∗ C are equal to the set

{x ∈M | x ∈ A ∪B ∪ C, x /∈ (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)},

so ∗ is associative. The identity element is ∅ and the symmetric of the set
A is A itself.

Exercise 1.4.6 Let n > 0 be an integer, and assume that a ≡ b (mod n)
and c ≡ d (mod n). Then:
i) a+ c ≡ b+ d (mod n).
ii) ac ≡ bd (mod n).
Solution: i) Since n | a − b and n | c − d, let k, l be integers such that
a−b = kn and c−d = ln. Then a−b+c−d = (k+ l)n, so n | a+c−(b+d).
ii) With the notation of i), we have ac− bd = ac− bc+ bc− bd = c(a− b) +
b(c− d) = ckn+ bln = n(ck + bl), so n | ac− bd.

Exercise 1.4.7 Which of the following sets are groups:
i) (Zn,+).
ii) (Zn, ·).
iii) (Un, ·), where Un = {â ∈ Zn | 1 = (a, n)}.
iv) (Un,+).
Solution: i) (Zn,+) is an abelian group. By Exercise 1.4.6 we have that
+ is an operation, and it is associative and commutative because addition
of the integers is so. The identity element is 0̂, and the opposite of â is
n̂− a.
ii) (Zn, ·) is not a group if n 6= 1, because G3) is not satisfied, 0̂ · â = 0̂ 6= 1̂
for all a.
iii) (Un, ·) is an abelian group, because · is associative and commutative,
and 1̂ is the identity element. If 1 = (a, n), then 1 = au + nv, so 1̂ =
̂au+ nv = âû+ n̂v̂ = âû, so the inverse of â is û.

iv) We clearly have that 1̂ ∈ Un, but if we add n copies of 1̂ we get 0̂ /∈ Un,
so + is not an operation on Un.

Exercise 1.4.8 Let G1 and G2 be groups, and define the following operation
on the cartesian product G1×G2: (x, y) · (x′, y′) = (xx′, yy′), where x, x′ ∈
G1 and y, y′ ∈ G2. Show that G1 ×G2 is a group with this operation (it is
called the direct product of the groups G1 and G2).
Solution: It is clear that · is an operation and it is associative. The
identity element is (1G1

, 1G2
), and the inverse of (x1, x2) is (x−1

1 , x−1
2 ).
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Exercise 1.4.10 Let f : G −→ G′ and g : G′ −→ G′′ be group morphisms.
Then:
i) f(1G) = 1G′ .
ii) For x ∈ G, we have f(x−1) = f(x)−1.
iii) gf is a group morphism.
iv) f is an isomorphism if and only if f is bijective.
Solution: i) 1G ·1G = 1G, so f(1G ·1G) = f(1G), or f(1G)f(1G) = f(1G) =
f(1G)1G′ , and the assertion follows from the cancelation law.
ii) We have that f(x)f(x−1) = f(xx−1) = f(1G) = 1G′ , so the assertion
follows by multiplying both sides of this equality by f(x)−1.
iii) gf(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)).
iv) We have to prove that if the morphism f is bijective, then its inverse
f−1 is also a morphism. We have f−1(x′y′) = f−1(f(f−1(x′))f(f−1(y′))) =
f−1(f(f−1(x′)f−1(y′))) = f−1f(f−1(x′)f−1(y′)) = f−1(x′)f−1(y′).

Exercise 1.4.11 Which of the following maps are group morphisms? For
each of them decide if they are injective, surjective, or an isomorphism. If
a morphism is an isomorphism, find the inverse.
i) IdG : G −→ G.
ii) i : Z −→ Q, i(x) = x/1 for x ∈ Z.
iii) If x ∈ G, fx : G −→ G, fx(g) = xgx−1 for all g ∈ G.
iv) G is a group, M is a nonempty set, GM is as in Exercise 1.4.5, xix),
and ϕ : G −→ GM , ϕ(g)(x) = g for all x ∈M .
v) ln : (0,∞) −→ R.
vi) f : Z4 −→ Z2, f(â(mod 4)) = â(mod 2).
vii) g : Z2 −→ Z4, g(â(mod 2)) = â(mod 4).
viii) p1 : G1 ×G2 −→ G1, p1(x, y) = x.
Solution: i) it is an isomorphism, and it is its own inverse.
ii) this is an injective morphism.
iii) fx(gh) = xghx−1 = xgx−1xhx−1 = fx(g)fx(h). It is an isomorphism,
and the inverse of fx is fx−1 .
iv) We have ϕ(gh)(x) = gh = ϕ(g)ϕ(h)(x) for all x ∈ M , so ϕ is a group
morphism. It is injective, because if ϕ(g) = ϕ(h), then ϕ(g)(x) = ϕ(h)(x)
for all x ∈M , so g = h.
v) We have ln(xy) = ln(x) + ln(y), so ln is a group morphism. Since ln is
bijective, with inverse the exponential function, ln is an isomorphism.
vi) Let us check that f is correctly defined: if â(mod 4) = b̂(mod 4), then

4 | a − b, so 2 | a − b and hence â(mod 2) = b̂(mod 2), or f(â(mod 4)) =

f(b̂(mod 4)), and f is correctly defined. By the definition of addition mod
4 or mod 2, f is a group morphism which is clearly surjective.
vii) g is not correctly defined: 1̂(mod 2) = 3̂(mod 2), but 1̂(mod 4) 6=
3̂(mod 4)).
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viii) We have p1((x, y)(x′, y′)) = p1(xx′, yy′) = xx′ = p1(x, y)p1(x′, y′), so
p1 is a group morphism. It is clearly surjective, because if x ∈ G1, then
x = p1(x, 1G2

).

Exercise 1.4.12 If ϕ : M −→ N is a bijection, show that S(M) ' S(N)
(see Exercise 1.4.5, xviii)). In particular, if M has n elements, then M '
Sn.
Solution: Define ψ : S(M) −→ S(N) by ψ(f) = ϕfϕ−1 for f ∈ S(M). It
is easy to check that ψ is a morphism and that its inverse is ψ−1 : S(N) −→
S(M), ψ−1(g) = ϕ−1gϕ.

Exercise 1.4.13 Write all the elements of S3 and find the inverse of each
element.
Solution: We will write

σ =

(
1 2 3
2 3 1

)
if σ(1) = 2, σ(2) = 3, and σ(3) = 1. We will also write this as σ = (123)
(the cycle (a1a2 . . . ak) in Sn is the function that sends ai to ai+1 for i =
1, . . . , k − 1, and ak to a1, and leaves all the other elements unchanged;
the set {a1, a2, . . . , ak} is called the orbit of the cycle, and k is called its
length). With this notation we have

S3 = {Id, (12), (13), (23), (123), (132)}.

Each of Id, (12), (13), (23) is its own inverse, and the inverse of (123) is
(132). Note that S3 is not abelian because (12)(13) = (132) and (13)(12) =
(123).
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1.5 Subgroups and normal subgroups

We know that both (R∗, ·) and ((0,∞), ·) are groups. This means that
the operation of the group (R∗, ·) restricted to the subset (0,∞) is also an
operation, and it satisfies the axioms in the definition of a group. We say
that the operation of the group (R∗, ·) induces a group structure on the
subset (0,∞), or that (0,∞) is a subgroup of R∗. In general we have the
following:

Definition 1.5.1 Let G be a group, and H a nonempty subset of G. Then
H is called a subgroup of G if the operation on G induces an operation on
H such that H together with the induced operation forms a group. If H is
a subgroup of G we write H ≤ G.

Trivial examples of subgroups in any group G are the so called improper
subgroups {1G} and G itself. When checking that a certain nonempty
subset H of a group G is a subgroup we need to check three conditions:
SG1) If x, y ∈ H, then xy ∈ H. This means that the operation on G
induces an operation on H. (If this is true, we say that H is closed, or
stable, under the operation of G.)
Associativity is a gimme, because we know it holds for elements of G, and
all elements of H are also elements of G.
SG2) 1G ∈ H. This comes from condition G2) in the definition of a group
applied to H: if e is an identity element of H, then ee = e in H, and when
we consider this equality in G and multiply both sides by e−1 we get that
e = 1G.
SG3) If x ∈ H, then x−1 ∈ H. Because of G2, any inverse of x in H will
be an inverse of x in G, so the assertion is true because of the uniqueness
of the inverse.

Proposition 1.5.2 Let G be a group and ∅ 6= H ⊆ G. Then the following
assertions are equivalent:
i) H ≤ G.
ii) If x, y ∈ H, then x−1y ∈ H.

Proof: i) ⇒ ii). Let x, y ∈ H. By SG3) we have x−1 ∈ H, and by SG1)
we get x−1y ∈ H.
ii)⇒ i). We first check SG2). Let x ∈ H, then by ii) x−1x = 1G ∈ H. Now
for x ∈ H we can use ii) for x and 1G to get x−11G = x−1 ∈ H, so SG3)
also holds. Finally, if x, y ∈ H, then xy = (x−1)−1y ∈ H by SG3) and ii),
so SG1) holds too.

Exercise 1.5.3 Write in additive notation conditions SG1), SG2), SG3),
and Proposition 1.5.2.
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Exercise 1.5.4 Let G be a group and ∅ 6= H ⊆ G. Then the following
assertions are equivalent:
i) H ≤ G.
ii) If x, y ∈ H, then xy−1 ∈ H.

If ∅ 6= H ⊆ G is a finite subset, it is a lot easier to check that H ≤ G:

Proposition 1.5.5 Let G be a group and ∅ 6= H ⊆ G a finite subset. Then
the following assertions are equivalent:
i) H ≤ G.
ii) If x, y ∈ H, then xy ∈ H.

Proof: We only prove ii)⇒ i), because the converse is obvious. Let x ∈ H,
and consider the function ϕ : H −→ H, defined by ϕ(y) = xy for y ∈ H.
Then ϕ takes values in H because of ii), and it is injective because of the
cancelation law in G. Since H is finite, it follows that ϕ is also surjective,
so there exists x′ ∈ H such that ϕ(x′) = x. This means xx′ = x, and after
considering this equality in G and multiplying both sides on the left by x−1,
we get that x′ = 1G, so we checked SG2). We now use again the fact that
ϕ is surjective, so there exists x′′ ∈ H such that ϕ(x′′) = 1G. This means
xx′′ = 1G, and after considering this equality in G and multiplying both
sides on the left by x−1, we get that x′′ = x−1, so we also checked SG3).

Exercise 1.5.6 Which of the following subsets are subgroups:
i) Z ⊆ Q.
ii) N ⊆ Z.
iii) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
iv) {0, 2, 4} ⊆ Z5.
v) {0, 2, 4} ⊆ Z6.
vi) {Id, (12)} ⊆ S3.
vii) {Id, (12), (13)} ⊆ S3.
viii) {Id, (123)} ⊆ S3.
ix) {Id, (123), (132)} ⊆ S3.
x) O(2) = {A ∈ GL2(R) | A−1 = At} ⊆ GL2(R) (see Exercise 1.4.5, xx)).
xi) SO(2) = {A ∈ O(2) | det(A) = 1} ⊆ O(2)
xii) {1,−1, i,−i} ⊆ Q8 = {1,−1, i,−i, j,−j, k,−k}, the quaternion group,
see Exercise 1.4.5, xxvi).
xiii) H ∩K, where H,K ≤ G.
xiv) H ∪K, where H,K ≤ G.

We now show that all the subgroups of Z look like the one in Exercise 1.5.6
iii).

Proposition 1.5.7 If H ≤ Z, then there exists n ∈ Z such that H = nZ.
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Proof: If H = {0} we take n = 0. If H 6= {0}, we consider the set
W = {x ∈ H | x > 0}. Then if 0 6= x ∈ H, then we also have −x ∈ H
and so W 6= ∅. By the well-ordering principle, W has a smallest element
n. Since H is a subgroup and n ∈ H, it is clear that nZ ⊆ H. Conversely,
if m ∈ H, we write m = qn + r, where 0 ≤ n. Since r = m − nq ∈ H it
follows that r = 0 because otherwise we get a contradiction with the fact
that n is the least element in W , and so m = nq ∈ nZ.

Exercise 1.5.8 Let f : G −→ G′ be a morphism of groups. Then:
i) f(G) ≤ G′ (we denote f(G) by Im(f) and call it the image of f).
ii) f−1(1G′) ≤ G (we denote f−1(1G′) by Ker(f) and call it the kernel of
f).
iii) If H ≤ G, then f(H) ≤ G′.
iv) If H ′ ≤ G′, then f−1(H ′) ≤ G.
v) f is surjective ⇔ Im(f) = G′.
vi) f is injective ⇔ Ker(f) = {1G}.

The following result is a version for groups of Proposition 1.1.14:

Proposition 1.5.9 Let f : G −→ G′ be a group morphism. Then the
following assertions hold:
i) f is injective if and only if given any group X, and group morphisms
g, h : X −→ G such that f ◦ g = f ◦ h, it follows that g = h.
ii) f is surjective if and only if given any group X, and group morphisms
g, h : G′ −→ X such that g ◦ f = h ◦ f , it follows that g = h.

Proof: We will only prove i), because ii) is very hard to prove (it is easy
to see, of course, that if f is surjective, then the condition in ii) holds, the
other implication is hard). We already know from Proposition 1.1.14 i) that
if f is injective, then the condition is satisfied, because groups are sets, and
group morphisms are functions. We now assume that f is not injective, and
therefore Ker(f) 6= {1G} by Exercise 1.5.8 vi). Choose X = Ker(f) and
take g : X −→ G to be the inclusion, and h : X −→ G to be the constant
function sending all elements of X to 1G. It is clear that fg = fh, but
g 6= h because there is an x ∈ X, x 6= 1, so g(x) 6= h(x), and the proof is
complete.

Let now G be a group, and E a subset of G. There exists a smallest
subgroup of G that contains all the elements of E, it is the intersection
of all the subgroups containing E. Such subgroups clearly exist, since G
contains E. We call it the subgroup generated by the set E. It is clear that
the subgroup generated by ∅ is {1G}. If the group is generated by a set
with one element, the group is called cyclic. A description of the subgroup
generated by a set is given in the following:
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Proposition 1.5.10 Let E be a subset of the group G. The subgroup H
generated by E consists of all finite products of elements of E or inverses
of elements of E.

Proof: Let H ′ the set of all finite products of elements of E or inverses
of elements of E. Since H is a subgroup that contains E, it is clear that
H ′ ⊆ H. Since H is the smallest subgroup that contains E, in order to
prove the inclusion H ⊆ H ′ it is enough to prove that H ′ is a subgroup
that contains E. It is clear that H ′ contains E, and that if x, y ∈ H ′, then
x−1y ∈ H ′, which proves the claim.

If H,K ≤ G, the subgroup generated by H ∪K will be denoted by HK (or
H +K in additive notation). By the previous result, if G is a cyclic group
generated by the element a, then we have

G = {ak | k ∈ Z},

where

ak =

 the product of k copies of a if k > 0
1G if k = 0
the product of − k copies of a−1 if k < 0

In additive notation, if G is a cyclic group generated by the element a, then
we have

G = {ka | k ∈ Z},

where

ka =

 the sum of k copies of a if k > 0
0G if k = 0
the sum of − k copies of − a if k < 0

Example 1.5.11 It is clear that Z is cyclic (it is generated by 1 or -1),
and nZ is also cyclic for any n (it is generated by n or −n). Then Zn is
cyclic, generated by 1. Since all cyclic groups are clearly abelian, S3 is not
cyclic. It can also be checked that Z2 × Z2 is abelian but not cyclic.

We now introduce an important class of subgroups.

Definition 1.5.12 Let G be a group and H ≤ G. We will say that H is
a normal subgroup of G (and we will write H E G) if for any x ∈ G and
h ∈ H we have xhx−1 ∈ H.

If we denote xHx−1 = {xhx−1 | h ∈ H}, the condition in the definition
above becomes xHx−1 ⊆ H for all x ∈ G (we can also use ≤ instead of
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⊆, since xHx−1 is a subgroup of G, hence of H if it is contained in it). It
is clear that the trivial subgroups {1G} and G are normal, and also that
any subgroup of an abelian group is normal. Here are some examples and
counterexamples.

Exercise 1.5.13 Which of the following subsets are normal subgroups:
i) Z ⊆ Q.
ii) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
iii) {0, 2, 4} ⊆ Z6.
iv) {Id, (12)} ⊆ S3.
v) {Id, (123), (132)} ⊆ S3.
vi) O(2) = {A ∈ GL2(R) | A−1 = At} ⊆ GL2(R) (see Exercise 1.4.5, xx)).
vii) SO(2) = {A ∈ O(2) | det(A) = 1} ⊆ O(2)
viii) {1,−1, i,−i} ⊆ Q8 = {1,−1, i,−i, j,−j, k,−k}, the quaternion group,
see Exercise 1.4.5, xxvi).

We end this section with the study of the behavior of normal groups through
group morphisms.

Proposition 1.5.14 Let f : G −→ G′ be a group morphism. Then the
following assertions hold:
i) If H ′ E G′, then f−1(H ′) E G.
ii) If f is surjective and H E G, then f(H) E G′.

Proof: i) We know from Exercise 1.5.8 iv) that f−1(H ′) ≤ G. Let
x ∈ G and h ∈ f−1(H ′). We know that f(h) ∈ H ′ and we want to
prove that f(xhx−1) ∈ H ′. We have f(xhx−1) = f(x)f(h)f(x−1) =
f(x)f(h)f(x)−1 ∈ H ′, because H ′ E G′.
ii) We know from Exercise 1.5.8 iii) that f(H) ≤ G′. Let x′ ∈ G′ and
h′ ∈ f(H). Then h′ = f(h) for some h ∈ H, and since f is surjective,
x′ = f(x) for some x ∈ G. We then have x′h′x′−1 = f(x)f(h)f(x)−1 =
f(x)f(h)f(x−1) = f(xhx−1) ∈ f(H), since H E G.

Exercise 1.5.15 Give an example to show that the assertion in Proposi-
tion 1.5.14 ii) is not true if f is not surjective.

Corollary 1.5.16 Let f : G −→ G′ be a surjective group morphism. There
exists a bijective correspondence between the subgroups of G′ and the sub-
groups of G which contain Ker(f). This correspondence induces a bijective
correspondence between the normal subgroups of G′ and the normal sub-
groups of G which contain Ker(f).

Proof: Let H ′ ≤ G′. Then f−1(H ′) ≤ G and Ker(f) = f−1(1G) ⊆
f−1(H ′). If H ≤ G and Ker(f) ⊆ H, then f(H) ≤ G′. We prove first that

f(f−1(H ′)) = H ′ (1.1)
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Let h′ ∈ H ′. Since f is surjective, h′ = f(h) for some h ∈ G. Since it is
clear that h ∈ f−1(H ′) this shows that H ′ ⊆ f(f−1(H ′)). Conversely, let
h′ ∈ f(f−1(H ′)). Then h′ = f(h), where h ∈ f−1(H ′). But this means
f(h) ∈ H ′, so h′ ∈ H ′.
We now prove

f−1(f(H)) = H (1.2)

Indeed, if h ∈ f−1(f(H)), then f(h) ∈ f(H), so f(h) = f(h1), where
h1 ∈ H. Then hh−1

1 ∈ Ker(f) ⊆ H, so h ∈ H. Conversely, if h ∈ H, then
f(h) ∈ f(H), and so clearly h ∈ f−1(f(H)).
By (1.1) and (1.2) we see that the correspondences defined above are bijec-
tions inverse to each other. The statement about normal subgroups follows
from Proposition 1.5.14.

Exercise 1.5.17 Show that any subgroup of Zn is generated by an element
d̂, where d | n.
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Solutions to the Exercises on Section 1.5

Exercise 1.5.3 Write in additive notation conditions SG1), SG2), SG3),
and Proposition 1.5.2.
Solution: SG1) If x, y ∈ H, then x+ y ∈ H.
SG2) 0G ∈ H.
SG3) If x ∈ H, then −x ∈ H.

Exercise 1.5.4 Let G be a group and ∅ 6= H ⊆ G. Then the following
assertions are equivalent:
i) H ≤ G.
ii) If x, y ∈ H, then xy−1 ∈ H.
Solution: i)⇒ ii). Let x, y ∈ H. By SG3) we have y−1 ∈ H, and by SG1)
we get xy−1 ∈ H.
ii)⇒ i). We first check SG2). Let x ∈ H, then by ii) xx−1 = 1G ∈ H. Now
for x ∈ H we can use ii) for x and 1G to get 1Gx

−1 = x−1 ∈ H, so SG3)
also holds. Finally, if x, y ∈ H, then xy = x(y−1)−1 ∈ H by SG3) and ii),
so SG1) holds too.

Exercise 1.5.6 Which of the following subsets are subgroups:
i) Z ⊆ Q.
ii) N ⊆ Z.
iii) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
iv) {0, 2, 4} ⊆ Z5.
v) {0, 2, 4} ⊆ Z6.
vi) {Id, (12)} ⊆ S3.
vii) {Id, (12), (13)} ⊆ S3.
viii) {Id, (123)} ⊆ S3.
ix) {Id, (123), (132)} ⊆ S3.
x) O(2) = {A ∈ GL2(R) | A−1 = At} ⊆ GL2(R) (see Exercise 1.4.5, xx)).
xi) SO(2) = {A ∈ O(2) | det(A) = 1} ⊆ O(2)
xii) {1,−1, i,−i} ⊆ Q8 = {1,−1, i,−i, j,−j, k,−k}, the quaternion group,
see Exercise 1.4.5, xxvi).
xiii) H ∩K, where H,K ≤ G.
xiv) H ∪K, where H,K ≤ G.
Solution: i) Z ≤ Q, because 0 ∈ Z, and n−m ∈ Z for all integers m,n.
ii) Not a subgroup, 1− 2 /∈ N.
iii) nZ ≤ Z, because 0 = n · 0 ∈ nZ, and if k, k′ ∈ Z, then

nk − nk′ = n(k − k′) ∈ nZ.

iv) Not a subgroup, 2 + 4 = 1 /∈ {0, 2, 4}.
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v) {0, 2, 4} ≤ Z6, because {0, 2, 4} is closed under +:

2 + 2 = 4, 2 + 4 = 0, 4 + 4 = 2.

vi) {Id, (12)} ≤ S3, because (12)(12) = Id.
vii) Not a subgroup, (12)(13) = (132) /∈ {Id, (12), (13)}.
viii) Not a subgroup, (123)(123) = (132) /∈ {Id, (123)}.
ix) {Id, (123), (132)} ≤ S3, because (123)(123) = (132) and (132)(132) =
(123).
x) O(2) ≤ GL2(R), because I2 ∈ O(2), and if A,B ∈ O(2), then

(A−1B)−1 = B−1A = Bt(At)t = (AtB)t = (A−1B)t.

xi) SO(2) ≤ O(2), because I2 ∈ SO(2), and if A,B ∈ SO(2), then
det(A−1B) = det(AtB) = det(At)det(B) = det(A)det(B) = 1.
xii) {1,−1, i,−i} ≤ Q8, because

x ∈ {1,−1, i,−i} ⇒ −x ∈ {1,−1, i,−i},

so we only have to check that i2 = −1.
xiii) Clearly H ∩ K 6= ∅, because 1G ∈ H ∩ K. If x, y ∈ H ∩ K, then
x, y ∈ H and x, y ∈ K, so x−1y ∈ H and x−1y ∈ K, so x−1y ∈ H ∩ K.
Note that the same proof works for the intersection of an arbitrary family
of subgroups, not just two subgroups.
xiv) If one of H or K is contained in the other one, then the union is equal
to the larger of the two, and it is therefore a subgroup. Now if H 6⊆ K and
K 6⊆ H we show that H ∪K is not a subgroup. Indeed, let x ∈ H, x /∈ K,
y ∈ K, and y /∈ H. Then xy /∈ H ∪K, because if xy ∈ H it follows that
y = x−1xy ∈ H, and if xy ∈ K, then x = xyy−1 ∈ K.

Exercise 1.5.8 Let f : G −→ G′ be a morphism of groups. Then:
i) f(G) ≤ G′ (we denote f(G) by Im(f) and call it the image of f).
ii) f−1(1G′) ≤ G (we denote

Ker(f) = f−1(1G′)

and call it the kernel of f).
iii) If H ≤ G, then f(H) ≤ G′.
iv) If H ′ ≤ G′, then f−1(H ′) ≤ G.
v) f is surjective ⇔ Im(f) = G′.
vi) f is injective ⇔ Ker(f) = {1G}.
Solution: i) 1G′ = f(1G) ∈ f(G), and if x′, y′ ∈ f(G), then x′ = f(x) and
y′ = f(y), so x′−1y′ = f(x)−1f(y) = f(x−1)f(y) = f(x−1y) ∈ f(G).
ii) 1G ∈ f−1(1G′), and if x, y ∈ f−1(1G′), then f(x−1y) = f(x)−1f(y) =
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= 1G′ .
iii) 1G′ = f(1G) ∈ f(H), and if x′, y′ ∈ f(H), then x′ = f(x) and y′ = f(y)
for some x, y ∈ H, so x−1y ∈ H and x′−1y′ = f(x)−1f(y) = f(x−1)f(y) =
f(x−1y) ∈ f(H).
iv) 1G ∈ f−1(H ′), and if x, y ∈ f−1(H ′), then f(x), f(y) ∈ H ′, and
f(x−1y) = f(x)−1f(y) = H ′.
v) is obvious.
vi) Assume that f is injective, and let x ∈ Ker(f). Then f(x) = f(1G) =
1G′ , so x = 1G. Conversely, we assume now that Ker(f) = {1G} and
we prove that f is injective. Let x, y ∈ G such that f(x) = f(y). Then
f(x)f(y)−1 = 1G′ , so f(xy−1) = 1G′ , i.e. xy−1 ∈ Ker(f) = {1G}. There-
fore xy−1 = 1G, so x = y.

Exercise 1.5.13 Which of the following subsets are normal subgroups:
i) Z ⊆ Q.
ii) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
iii) {0, 2, 4} ⊆ Z6.
iv) {Id, (12)} ⊆ S3.
v) {Id, (123), (132)} ⊆ S3.
vi) O(2) = {A ∈ GL2(R) | A−1 = At} ⊆ GL2(R) (see Exercise 1.4.5, xx)).
vii) SO(2) = {A ∈ O(2) | det(A) = 1} ⊆ O(2)
viii) {1,−1, i,−i} ⊆ Q8 = {1,−1, i,−i, j,−j, k,−k}, the quaternion group,
see Exercise 1.4.5, xxvi).
Solution: i), ii), iii). The subsets are subgroups of abelian groups by
Exercise 1.5.6, so they are normal subgroups.
iv) No, because (13)(12)(13) = (23) /∈ {Id, (12)}.
v) {Id, (123), (132)}E S3, because we can check that

(12)(123)(12) = (13)(123)(13) = (23)(123)(23) = (132)

and

(12)(132)(12) = (13)(132)(13) = (23)(132)(23) = (123).

vi) No, because(
2 0
0 1

)(
0 1
1 0

)(
1/2 0
0 1

)
=

(
0 2

1/2 0

)
/∈ O(2)

vii) The map ϕ : O(2) −→ {1,−1} defined by ϕ(A) = det(A) is a group
morphism, and Ker(ϕ) = SO(2), so SO(2) E O(2).
viii) {1,−1, i,−i} E Q8. Since x ∈ {1,−1, i,−i} ⇒ −x ∈ {1,−1, i,−i},
we only need to check that ii(−i) = i ∈ {1,−1, i,−i}, ji(−j) = −i ∈
{1,−1, i,−i}, and ki(−k) = −i ∈ {1,−1, i,−i}, so {1,−1, i,−i}E Q8.
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Exercise 1.5.15 Give an example to show that the assertion in Proposition
1.5.14 ii) is not true if f is not surjective.
Solution: Let i : {Id, (12)} −→ S3 denote the inclusion. Then i is a group
morphism because {Id, (12)} ≤ S3, {Id, (12)} E {Id, (12)}, but {Id, (12)}
is not normal in S3 by Exercise 1.5.13 iv).

Exercise 1.5.17 Show that any subgroup of Zn is generated by an element
d̂, where d | n.
Solution: The map f : Z −→ Zn defined by f(a) = â is a surjective group
morphism, so by Corollary 1.5.16 there exists a bijective correspondence
between the subgroups of Zn and the subgroups of Z that contain Ker(f) =
nZ. Now aZ ⊆ bZ⇔ a ∈ bZ⇔ b | a. Therefore, a subgroup of Zn is f(dZ)
for some d | n.
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1.6 Factor groups

Let G be a group and H ≤ G. We define two relations on G:

x ≡l y (mod H)⇐⇒ x−1y ∈ H,

and
x ≡r y (mod H)⇐⇒ xy−1 ∈ H.

Proposition 1.6.1 ≡l (mod H) is an equivalence relation on G.

Proof: If x ∈ G, then x−1x = 1G ∈ H, so the relation is reflexive. If
x−1y ∈ H, then (x−1y)−1 = y−1x ∈ H, so the relation is symmetric. Now
if x−1y ∈ H and y−1z ∈ H, then x−1z = x−1yy−1z ∈ H, so the relation is
transitive.

Exercise 1.6.2 ≡r (mod H) is an equivalence relation on G.

Proposition 1.6.3 Let G be a group, H ≤ G and x ∈ G. Denote by x̂ the
equivalence class of x with respect to the equivalence relation ≡l (mod H).
Then x̂ = xH = {xh | h ∈ H}. We will call xH the left coset of x relative
to H.

Proof: We have that

x̂ = {y ∈ G | x ≡l y (mod H)}
= {y ∈ G | x−1y ∈ H}
= {y ∈ G | x−1y = h, h ∈ H}
= {y ∈ G | y = xh, h ∈ H}
= {xh ∈ G | h ∈ H} = xH.

Exercise 1.6.4 Let G be a group, H ≤ G and x ∈ G. Denote by x̂ the
equivalence class of x with respect to the equivalence relation ≡r (mod H).
Then x̂ = Hx = {hx | h ∈ H}. We will call Hx the right coset of x relative
to H.

Proposition 1.6.5 The map

ϕ : G/ ≡l (mod H) −→ G/ ≡r (mod H),

defined by ϕ(xH) = Hx−1, is a bijection.
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Proof: We first need to show that ϕ is well defined. Indeed, if xH = yH,
then x−1y ∈ H, so (x−1y)−1 = y−1(x−1)−1 ∈ H, and hence Hy−1 = Hx−1.
Now define ψ : G/ ≡r (mod H) −→ G/ ≡l (mod H) by ψ(Hx) =
x−1H. The fact that ψ is well defined is checked as above. It is clear
that ϕ(ψ(Hx)) = Hx and ψ(ϕ(xH)) = xH for all x ∈ G, so ϕ and ψ are
bijections inverse to each other.

We will now see why the notion of normal subgroup is so important.

Theorem 1.6.6 Let G be a group and H ≤ G. The following assertions
are equivalent:
i) H is a normal subgroup.
ii) The two equivalence relations defined by H coincide: for x, y ∈ G we
have

x ≡l y (mod H)⇐⇒ x ≡r y (mod H).

Proof: i) ⇒ ii). Assume that H E G and x−1y ∈ H. Then x(x−1y)x−1 ∈
H, so yx−1 ∈ H, and therefore xy−1 ∈ H. The fact that xy−1 ∈ H ⇒
x−1y ∈ H is proved similarly.
ii) ⇒ i). Let x ∈ G and h ∈ H. We want to prove that xhx−1 ∈ H.
We know that xH = Hx, so xh = h1x for some h1 ∈ H. It follows that
xhx−1 = h1xx

−1 = h1 ∈ H, and the proof is complete.

If H E G it follows from Theorem 1.6.6 that the factor sets with respect to
the two identical equivalence relations defined by H coincide. Our notation
for this factor set will be G/H.
Recall from Exercise 1.3.3 v) that a function f defined on a set M also
defines an equivalence relation Rf on M . We now consider the analog
situation for groups.

Proposition 1.6.7 Let f : G −→ G′ be a morphism of groups. Then
Rf coincides with the equivalence relation defined by the normal subgroup
Ker(f) on G.

Proof: For x, y ∈ G, we have that xRfy if and only if f(x) = f(y) if and
only if f(x)f(y)−1 = 1G′ if and only if f(x)f(y−1) = 1G′ if and only if
f(xy−1) = 1G′ if and only if xy−1 ∈ Ker(f).

Proposition 1.6.8 If HEG, G/H is a group, and the canonical surjection
from G to G/H is a group morphism.

Proof: We have that can : G −→ G/H sends x ∈ G to Hx = xH.
We define the operation on G/H by (xH)(yH) = (xy)H. We check that
the operation is well defined. Let x′H = xH and y′H = yH. Then
(xy)−1(x′y′) = y−1x−1x′y′ = y−1h1y

′ = y−1y′h2 for some h1, h2 ∈ H.
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Therefore (xy)−1(x′y′) ∈ H, and so (xy)H = (x′y′)H.
It is easy to see that G/H is a group with this operation, and the definition
ensures that can is a morphism of groups. Note that the inverse of xH in
G/H is x−1H, and 1G/H = H.

Definition 1.6.9 The group G/H defined in Proposition 1.6.8 is called the
factor group of the group G relative to the normal subgroup H.

As in the case of factor sets, we can define the factor group without any
reference to elements: we will say that a factor group of the group G is
a pair (N, p), where N is a group and p : G −→ N is a surjective group
morphism. Again as in the case of sets, it turns out that the two definitions
are equivalent. One implication follows from Proposition 1.6.7. The other
one follows from a result similar to Theorem 1.3.15:

Theorem 1.6.10 (The Universal Property of the Factor Group)
Let (N, p) be a factor group of the group G, let X be a group and f : G −→
X a group morphism.
i) There exists a group morphism u : N −→ X such that f = up, which
means that the diagram

G

J
J
J
J
J
Ĵ

N

u

X
?

-

f

p

is commutative, if and only if Ker(p) ⊆ Ker(f). If u exists, then it is
unique.
If u as in i) exists, then:
ii) u is surjective if and only if f is surjective.
iii) u is injective if and only if Ker(p) = Ker(f).

Proof: Using Theorem 1.3.15 and Proposition 1.6.7 we see that the only
thing left to prove is that if a function u as in the statement exists, then it
is a group morphism. Let x′, y′ ∈ N , and x, y ∈ G such that p(x) = x′ and
p(y) = y′. Then u(x′y′) = u(p(x)p(y)) = u(p(xy)) = f(xy) = f(x)f(y) =
u(p(x))u(p(y)) = u(x′)u(y′).

Corollary 1.6.11 If (N1, p1) and (N2, p2) are two factor groups of G such
that Ker(p1) = Ker(p2), then there exists an isomorphism u : N1 −→ N2

such that up1 = p2.
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Proof: Take (N, p) = (N1, p1), X = N2 and f = p2 in Theorem 1.6.10.

Corollary 1.6.12 If (N, p) is a factor group of G, then there exists an
isomorphism u : N −→ G/Ker(p) such that u◦p is the canonical surjection.

Proof: Take (N1, p1) = (N, p) and (N2, p2) = (G/Ker(p), can), where
can : G −→ G/Ker(p), can(x) = xKer(p). Then Ker(can) = Ker(p) and
we can apply Corollary 1.6.11.

Corollary 1.6.13 (The First Isomorphism Theorem for Groups)
Let f : G −→ G′ be a group morphism. Then

G/Ker(f) ' Im(f).

Proof: Use Corollary 1.6.12 for (Im(f), f).

Corollary 1.6.14 (The Second Isomorphism Theorem for Groups)
Let H,K ≤ G be such that H is a normal subgroup of HK, the subgroup
of G generated by H and K. Then H ∩K is a normal subgroup of K, and

K/H ∩K ' HK/H.

Proof: Define f : K −→ HK/H to be the composition of the inclu-
sion i : K ⊆ HK with the canonical surjection can : HK −→ HK/H,
f = can ◦ i. We have that f is surjective, because for any element α ∈
HK/H we have that α = can(x1y1x2y2 . . . xnyn), where xi ∈ H and
yi ∈ K. But then α = can(x1)can(y1)can(x2)can(y2) . . . can(xn)can(yn) =
can(y1)can(y2) . . . can(yn) = can(y1y2 . . . yn), because can(xi) = H. If we
prove that Ker(f) = H ∩K the assertion will follow from Corollary 1.6.13.
It is clear that H ∩ K ⊆ Kerf(f). Let now y ∈ Ker(f). It follows that
y ∈ K and can(y) = H, so y ∈ H. Therefore y ∈ H ∩K and the proof is
complete.

Corollary 1.6.15 (The Third Isomorphism Theorem for Groups)
Let G be a group and H ≤ N two normal subgroups of G. Then

(G/H)/(N/H) ' G/N.

Proof: Define f : G/H −→ G/N by f(xH) = xN . We have that f is well
defined, because if x−1y ∈ H it follows that x−1y ∈ N , since H ⊆ N . It
is clear that f is surjective and Ker(f) = N/H, so the result follows from
Corollary 1.6.13.

Exercise 1.6.16 Any cyclic group is isomorphic to a Zn.
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Exercise 1.6.17 Prove the following isomorphisms:
i) Z8/{0, 4} ' Z4.
ii) S3/{Id, (123), (132)} ' Z2.
iii) Q8/{1,−1, i,−i} ' Z2, where Q8 = {1,−1, i,−i, j,−j, k,−k} is the
quaternion group from Exercise 1.4.5, xxvi).
iv) Q8/{1,−1} ' Z2 × Z2, where Q8 = {1,−1, i,−i, j,−j, k,−k} is the
quaternion group from Exercise 1.4.5, xxvi).

We end this section by mentioning another way of introducing factor groups.
Instead of starting with a group G and a normal subgroup of G, we start
with an equivalence relation R on the set G which is compatible with the
group operation, i.e. we can multiply relations: if x1Ry1 and x2Ry2, then
x1y1Rx2y2. The fact that then the factor set G/R becomes a group such
that the canonical surjection is a group morphism follows from the fact
that xRy if and only if x and y are congruent modulo the normal subgroup
C1 = {h ∈ G | hR1}.
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Solutions to the Exercises on Section 1.6

Exercise 1.6.2 ≡r (mod H) is an equivalence relation on G.
Solution: If x ∈ G, then xx−1 = 1G ∈ H, so the relation is reflexive. If
xy−1 ∈ H, then (xy−1)−1 = yx−1 ∈ H, so the relation is symmetric. Now
if xy−1 ∈ H and yz−1 ∈ H, then xz−1 = xy−1yz−1 ∈ H, so the relation is
transitive.

Exercise 1.6.4 Let G be a group, H ≤ G and x ∈ G. Denote by x̂ the
equivalence class of x with respect to the equivalence relation ≡r (mod H).
Then x̂ = Hx = {hx | h ∈ H}. We will call Hx the right coset of x relative
to H.
Solution: We have that

x̂ = {y ∈ G | y ≡r x (mod H)}
= {y ∈ G | yx−1 ∈ H}
= {y ∈ G | yx−1 = h, h ∈ H}
= {y ∈ G | y = hx, h ∈ H}
= {hx ∈ G | h ∈ H} = Hx.

Exercise 1.6.16 Any cyclic group is isomorphic to a Zn.
Solution: If G is cyclic, then

G =< a >= {ak | k ∈ Z},

and it is easy to check that the function

f : Z −→ G, f(k) = ak,

is a surjective group morphism. Consequently, G ' Z/Ker(f) by Corollary
1.6.13.

Exercise 1.6.17 Prove the following isomorphisms:
i) Z8/{0, 4} ' Z4.
ii) S3/{Id, (123), (132)} ' Z2.
iii) Q8/{1,−1, i,−i} ' Z2, where Q8 = {1,−1, i,−i, j,−j, k,−k} is the
quaternion group from Exercise 1.4.5, xxvi).
iv) Q8/{1,−1} ' Z2 × Z2, where Q8 = {1,−1, i,−i, j,−j, k,−k} is the
quaternion group from Exercise 1.4.5, xxvi).
Solution: i) Define f : Z8 −→ Z4 by f(0) = f(4) = 0, f(1) = f(5) = 1,
f(2) = f(6) = 2, and f(3) = f(7) = 3. Then f is a surjective group
morphism, and Ker(f) = {0, 4}, so we can apply Corollary 1.6.13.
ii) Define f : S3 −→ Z2 by f((12)) = f((13)) = f((23)) = 1, and f(Id) =
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f((123)) = f((132)) = 0. Then f is a surjective group morphism, and
Ker(f) = {Id, (123), (132)}, hence we can apply Corollary 1.6.13.
iii) Define f : Q8 −→ Z2 by f(1) = f(−1) = f(i) = f(−i) = 0 and
f(j) = f(−j) = f(k) = f(−k) = 1. Then f is a surjective group morphism,
and Ker(f) = {1,−1, i,−i}, thus we can apply Corollary 1.6.13.
iv) Define f : Q8 −→ Z2 × Z2 by f(1) = f(−1) = (0, 0), f(i) = f(−i) =
(1, 0), f(j) = f(−j) = (0, 1), and f(k) = f(−k) = (1, 1). Then f is
a surjective group morphism, and Ker(f) = {1,−1}, so we can apply
Corollary 1.6.13.
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1.7 Finite groups and the Lagrange theorem

A finite group is a group G such that the set G is finite.

Definition 1.7.1 Let G be a group. The order of the group G, if G is
finite, is equal to the number of elements of G. If G has n elements, we
will write |G| = n. If G is infinite we say that G has infinite order, and we
write |G| =∞.

We saw in Proposition 1.6.5 that the set of left cosets of a group relative
to a subgroup is in a bijection with the set of right cosets. This allows us
to give the following:

Definition 1.7.2 Let G be a group, and H ≤ G. The index of H in G, is
equal to the number of left (or right) cosets of G relative to H, if there are
finitely many such cosets. If there are n cosets, we will write |G : H| = n.
If there are infinitely many cosets we say that H has infinite index in G,
and we write |G : H| =∞. Note that if HE G, then the order of the factor
group G/H coincides with the index of H in G: |G/H| = |G : H|.

It is clear that any subgroup of a finite group is finite and has finite in-
dex. An infinite group can have finite subgroups ({1,−1} ≤ (0,∞)), or
subgroups of finite index (|Z : nZ| = n if n > 0).

Exercise 1.7.3 A subgroup of index two is normal.

Theorem 1.7.4 Let G be a finite group, and H ≤ G. Then

|G| = |H| |G : H| .

Proof: G is equal to the union of the left cosets relative to H, and the
cosets are disjoint, so the order of G is equal to the sum of elements of
the left cosets. In each left coset xH there are |H| elements, because the
function ϕ : H −→ xH, ϕ(h) = hx is bijective (it is clearly surjective, and
it is also injective by the cancelation law). On the other hand, there are
exactly |G : H| cosets, so the result follows.

Corollary 1.7.5 The order of a subgroup of a finite group divides the order
of the group.

Definition 1.7.6 Let G be a group and a ∈ G. The order of a is the order
of < a >, the cyclic subgroup generated by a (recall that < a >= {ak | k ∈
Z}). We write |a| = |< a >|.
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Exercise 1.7.7 Let G be a finite group and a ∈ G. Then:
i) the order of a divides the order of G.
ii) |a| = 1 if and only if a = 1G.
iii) |a| =

∣∣a−1
∣∣.

Exercise 1.7.8 Find the orders of all the elements of the group:
i) Z4.
ii) Z2 × Z2.
iii) Z6.
iv) S3.
v) The quaternion group Q8.

Proposition 1.7.9 Let a ∈ G, |a| = n. Then n is the smallest element of
the set {m ∈ N | am = 1G}.

Proof: Since |a| = n, it follows that < a >= {1G, a, a2, . . . , an−1} has n
elements, i.e. the elements 1G, a, a

2, . . . , an−1 are distinct, so in particular
ak 6= 1G if 0 < k < n. Since we know that an ∈< a >, it follows that
an = 1G, and the assertion is proved.

Exercise 1.7.10 Let a ∈ G, |a| = n. If am = 1G, then n | m.

Exercise 1.7.11 If |G| = n and a ∈ G, then an = 1G.

Exercise 1.7.12 Any group of prime order is cyclic.

Proposition 1.7.13 A group of order 6 is isomorphic to Z6 or S3.

Proof: If G is cyclic, then G is isomorphic to Z6. If G is not cyclic, there
are no elements of order 6, so all elements different from 1G have order 2 or
3. If all elements have order 2, and we pick two such elements, x and y, then
xy also has order 2, so xyxy = 1G, and multiplying this equality by x on the
left and y on the right we get yx = xy. It follows that {1G, x, y, xy} ≤ G, so
by the Lagrange theorem 4 | 6, a contradiction. It follows that there exists
an element θ ∈ G of order 3. Then H = {1G, θ, θ2} has index 2, so it is
normal. We prove that any element z in the complement of H has order 2.
Indeed, z2 ∈ H (G/H has order 2), and if z2 = θ or z2 = θ2 we get that the
order of z is 3 or 6. Since G is not cyclic, the order cannot be 6. If the order
is 3 and z2 = θ2, then θ2z = 1G, so z = θ, a contradiction. Similarly, if
z2 = θ we get z = θ2, a contradiction. In conclusion, the order of z is 2. Let
now τ ∈ G, τ /∈ H. Then we know that the elements τ, τθ, τθ2 are distinct
and not in H, so they all have order 2 and G = {1G, θ, θ2, τ, τθ, τθ2}. We
have θτ = (θ2)−1τ−1 = (τθ2)−1 = τθ2, and θ2τ = θ−1τ−1 = (τθ)−1 = τθ,
and we can check that the group morphism ϕ : S3 −→ G, ϕ((12)) = τ and
ϕ((123)) = θ is an isomorphism.
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Exercise 1.7.14 Prove that a group of order 4 is isomorphic to Z4 or
Z2 × Z2.

We now recall the definition of a least common multiple of two integers.
(Note that the definition can be extended to any number of integers.)

Definition 1.7.15 If a and b are integers, we say that m is a least common
multiple of a and b (and we write m = [a, b]) if the following conditions hold:
i) a | m and b | m.
ii) If a | n and b | n, then m | n.

Exercise 1.7.16 If a and b are integers, then ab = (a, b)[a, b] (this means
that if not both of a and b are 0, then [a, b] = ab/(a, b).)

Proposition 1.7.17 Let a, b ∈ G, |a| = m, |b| = n, and ab = ba. Then
i) if 1 = (m,n), then |ab| = mn.
ii) is it true that |ab| = [m,n]?

Proof: i) Let k = |ab|. It is clear that (ab)mn = amnbmn = 1G, so
k | mn by Exercise 1.7.10. Now since (ab)k = akbk = 1G, then (ab)nk =
ankbnk = ank = 1G. Then by Exercise 1.7.10 we get that m | nk, and since
1 = (m,n) we have m | k by Euclid’s lemma. Similarly, n | k, and hence
mn = [m,n] | k, so mn = k.
ii) Take |a| = m > 1, and b = a−1. By Exercise 1.7.7 iii), |b| = m. Then
ab = ba = 1G has order 1 6= [m,m] = m, so the answer is no.

Exercise 1.7.18 Give an example to show that the conclusion of Proposi-
tion 1.7.17 i) is not true if ab 6= ba.

Exercise 1.7.19 Show that:
i) Zn × Zm ' Znm ⇔ 1 = (m,n).
ii) nZ ∩mZ = [m,n]Z.
iii) nZ +mZ = (m,n)Z.

Exercise 1.7.20 Let (a1a2 . . . ak) ∈ Sn be a cycle of length k. Show that
|(a1a2 . . . ak)| = k.

Exercise 1.7.20 provides a quick way to find the order of a permutation in
Sn. We first write the permutation as a product of disjoint cycles, then,
since disjoint cycles commute, we find the order of the permutation as the
least common multiple of the lengths of those cycles.

Exercise 1.7.21 Find the order of

σ =

(
1 2 3 4 5 6 7 8 9 10
3 6 5 8 1 2 10 7 9 4

)
∈ S10.
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We now define the signature of a permutation. For any σ ∈ Sn, define

ε(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)

i− j
.

If σ, τ ∈ Sn we have

ε(στ) =
∏

1≤i<j≤n

στ(i)− στ(j)

i− j
=

=
∏

1≤i<j≤n

τ(i)− τ(j)

i− j
· στ(i)− στ(j)

τ(i)− τ(j)
= ε(σ)ε(τ).

Therefore
ε : Sn −→ {1,−1}

is a group morphism. This morphism is surjective, the identity is sent to
one, and any transposition is sent to −1. The permutations in the kernel of
this morphism (denoted by An and called the alternating group) are called
even, and the other ones are called odd. To see why they are called even
and odd, consider a cycle in Sn of length k, and write it as a product of
transpositions like this:

(i1i2 . . . ik) = (i1ik)(i1ik−1) . . . (i1i3)(i1i2).

Therefore any even (odd) permutation can be written as a product of an
even (odd) number of transpositions. In particular, a cycle is even if and
only if it has odd length.

The next important result is Cayley’s theorem. It says that any group is
isomorphic to a permutation group (i.e. a subgroup of a symmetric group
S(M), see Exercise 1.4.5, xviii)), and we leave the proof as an exercise.

Exercise 1.7.22 Let G be a group. Prove that the map ϕ : G −→ S(G)
sending x ∈ G to ϕ(x) : G −→ G, ϕ(x)(g) = xg is an injective morphism
of groups.

Historically, the first studied groups were groups of permutations (of solu-
tions of polynomial equations). Groups also arise naturally as symmetries
of various geometric objects. The group of symmetries of a plane figure
consists of all the transformations applied to a cutout of that figure after
we take it out of a board before putting it back in the hole. It is clear that
the options that we have before putting the cutout back are rotations, or
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flips, or combinations of these. We call these transformations symmetries,
and the operation is composition. Let us look at a few examples.

We start with the symmetries of a rectangle. Once we cut the rectangle
from a board and we take it out, we have the following options before we
put it back in: do nothing, just put it back, we denote this by I. Rotate
the rectangle by π (left or right, it’s the same transformation), we denote
this by R. Flip it upside down, we denote this by F . Twist it left to right
or right to left, we call this T . Combining all these gives the following table
for this group

◦ I R F T
I I R F T
R R I T F
F F T I R
T T F R I

This group is called the Klein Four Group, is usually denoted by V4 and is
easily seen to be isomorphic to Z2 × Z2.

Something really interesting happens if we repeat the experiment with the
rectangle, but this time attach a ribbon to the center of the rectangle and
hold the other end, without twisting it. If we just take out the rectangle
and put it back in without doing anything, we get 1, as before. However,
if we rotate the rectangle by 2π before putting it back in, we get a new
transformation, denoted by −1, in which the rectangle is exactly as in the
initial position, but the ribbon has a full twist. The surprising thing is
that it does not matter if the twist is on the left or on the right (we are
allowed to move the rectangle and the end of the ribbon as long as we
don’t twist them). This is the famous Dirac belt trick, or the Balinese
candle-dance trick (look them up in YouTube), which says that two twists
in the ribbon are the same as no twist. In order to convince ourselves that
this is true, put two twists (4π) in the ribbon, move your hand holding
the ribbon closer to the rectangle (without twisting) until a loop is formed,
then ask a friend to grab the rectangle and move it through the loop (again,
without twisting). Now pull your hand holding the ribbon away and watch
the twists disappear (if you look at the ribbon before pulling you will get
a better uderstanding of the Balinese candle-dance trick). Now let’s check
that a left twist is the same as a right twist. Start with a left twist, then
add (temporarily) another left twist. Perform the Dirac belt trick to make
all twists disappear. Finally, we need to undo the left twist that we put
in, and this is done by performing a right twist. Now let’s see what other
transformations we can get. Rotating the rectangle by π clockwise adds
half a twist to the ribbon with the right side of the ribbon up. We denote
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this by i. Rotating the rectangle by π counterclockwise adds half a twist
to the ribbon with the left side of the ribbon up. We denote this by −i.
Flipping the rectangle such that the ribbon is on top is denoted by j, and
flipping it such that the ribbon is on the bottom is denoted by −j. Finally,
twisting the rectangle to the right puts a half twist on the ribbon (right
side up), and we denote this by k, while twisting the rectangle to the left
puts a half twist on the ribbon (left side up), and we denote this by −k.
As you have probably guessed the group of symmetries of this “tethered”
rectangle is the quaternion group Q8 (see Exercise 1.4.5, xxvi)). We just
check that composition by -1 is what it should be. For example, adding
a full left twist to a left half twist is equivalent to a right half twist. To
see this, add a temporary left half twist to get two twists, make the twists
disappear, then undo the left half twist by adding a right half twist.

We find now the group of symmetries of an equilateral triangle, which is
called the dihedral group D3. If we denote by 1 the identity transformation
(does nothing), by θ the counterclockwise rotation of 2π

3 about the center
of the triangle, and by τ the flip along one of the heights of the triangle,
then we can check that

D3 = {1, θ, θ2, τ, θτ, θ2τ},

θ3 = τ2 = 1, τθ = θ2τ , so D3 ' S3 as in the proof of Proposition 1.7.13.
Another way to see this is to mark the vertices of the cutout and the vertices
of the hole by ·, ··, and · · · (we use these rather than 1, 2, and 3 so that they
can be read from the other side as well), and note that the transformations
of the triangle correspond in fact to the permutations of the vertices.

The group of transformations of a square, which is called the dihedral group
D4, is obtained as follows: we denote by θ the counterclockwise rotation
of π

2 about the center of the square, and by τ the flip along one of the
perpendiculars from the center to one of the sides, then we can check that

D4 = {1, θ, θ2, θ3, τ, θτ, θ2τ, θ3τ},

θ4 = τ2 = 1, τθ = θ3τ .

The group of transformations of a regular polygon with n sides, which is
called the dihedral group Dn, is obtained as follows: we denote by θ the
counterclockwise rotation of 2π

n about the center of the polygon, and by τ
the flip along one of the perpendiculars from the center to one of the sides,
then we can check that

Dn = {1, θ, θ2, . . . , θn−1, τ, θτ, θ2τ, . . . , θn−1τ},

θn = τ2 = 1, τθ = θn−1τ .
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Solutions to the Exercises on Section 1.7

Exercise 1.7.3 A subgroup of index two is normal.
Solution: Let H ≤ G, |G : H| = 2. The left cosets of G relative to H
are H and xH for some x ∈ G, while the right cosets are H and Hx. But
Hx = xH = G \H, so H E G.

Exercise 1.7.7 Let G be a finite group and a ∈ G. Then:
i) the order of a divides the order of G.
ii) |a| = 1 if and only if a = 1G.
iii) |a| =

∣∣a−1
∣∣.

Solution: i) The order of a is the order of the subgroup generated by a,
so the assertion follows from the Lagrange theorem.
ii) The subgroup generated by a is equal to {1G} if and only if a = 1G.
iii) ak = 1G ⇔ (a−1)k = 1G.

Exercise 1.7.8 Find the orders of all the elements of the group:
i) Z4.
ii) Z2 × Z2.
iii) Z6.
iv) S3.
v) The quaternion group Q8.
Solution: The order of the identity element in a group is 1, so we will
ignore the identity element in all cases.
i) The order of 1 and 3 is 4, and the order of 2 is 2.
ii) All elements different from (0, 0) have order 2.
iii) The order of 1 and 5 is 6, the order of 2 and 4 is 3, and the order of 3
is 2.
iv) The order of (12), (13), and (23) is 2, and the order of (123) and (132)
is 3.
v) The order of −1 is 2, and the order of i,−i, j,−j, k, and −k is 4.

Exercise 1.7.10 Let a ∈ G, |a| = n. If am = 1G, then n | m.
Solution: By the division algorithm we have m = qn+r, where 0 ≤ r < n.
If r 6= 0, then am = anq+r = (an)qar = ar = 1G, and this contradicts
Proposition 1.7.9. In conclusion r = 0, or n | m.

Exercise 1.7.11 If |G| = n and a ∈ G, then an = 1G.
Solution: Since G is finite, the order of a is also finite, and by Exercise
1.7.7 i), n = k |a|. Then an = (a|a|)k = 1kG = 1G.

Exercise 1.7.12 Any group of prime order is cyclic.
Solution: Let a ∈ G, a 6= 1G. Then |a| 6= 1 and it divides the order of G.
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Since the order of G is prime, it follows that |a| = |G|, or < a >= G.

Exercise 1.7.14 Prove that a group of order 4 is isomorphic to Z4 or
Z2 × Z2.
Solution: Let G be a group of order 4. If there exists an element of order
4, then the group is cyclic, hence isomorphic to Z4. If there are no elements
of order 4, then all elements different from 1G have order 2. Let x, y be
two distinct such elements. Then the elements 1G, x, y, xy are distinct,
and hence G = {1G, x, y, xy}. Then the map f : G −→ Z2 × Z2, defined
by f(1G) = (0, 0), f(x) = (1, 0), f(y) = (0, 1), and f(xy) = (1, 1) is an
isomorphism.

Exercise 1.7.16 If a and b are integers, then ab = (a, b)[a, b] (this means
that if not both of a and b are 0, then [a, b] = ab/(a, b).)
Solution: It is clear that [0, 0] = (0, 0) = 0. Now if a and b are not both
0, let d = (a, b). We have that d | a | ab, so ab = md. We show that
m = [a, b]. We have that a = da1 and b = db1. Therefore, da1db1 = md,
hence a1db1 = a1b = ab1 = m, i.e. m is a multiple of a and b. Now if a | n
and b | n, it follows that n = aa2 and n = bb2, so na1 = ba1b2 = mb2,
and nb1 = ab1a2 = ma2. Let u, v be such that 1 = ua1 + vb1. Then
n = n(ua1 + vb1) = umb2 + vma2 = m(ub2 + va2).

Exercise 1.7.18 Give an example to show that the conclusion of Proposi-
tion 1.7.17 i) is not true if ab 6= ba.
Solution: The order of (12) in S3 is 2, and the order of (123) is 3, but the
order of (12)(123) = (23) is 2.

Exercise 1.7.19 Show that:
i) Zn × Zm ' Znm ⇔ 1 = (m,n).
ii) nZ ∩mZ = [m,n]Z.
iii) nZ +mZ = (m,n)Z.
Solution: i) If 1 = (m,n), the order of (1, 0) is n, the order of (0, 1) is
m, and (1, 0) and (0, 1) commute, so the order of (1, 1) is [n,m] = nm,
i.e. Zn × Zm is cyclic of order nm, hence isomorphic to Znm. Conversely,
if 1 6= (m,n), then there is a least common multiple k = [m,n] such that
0 < k < nm. For any (a, b) ∈ Zn × Zm, we have k(a, b) = (0, 0), so there
are no elements of order nm in Zn × Zm.
The right to left implication is known as the Chinese Remainder The-
orem, and is usually given in this form: if 1 = (m,n), then the system
of two congruences x ≡ a (mod m) and x ≡ b (mod n) has a solu-
tion. A constructive proof of this statement goes like this: since 1 =
(m,n) we have 1 = m(m−1)(mod n) + n(n−1)(mod m). A solution to the
first congruence is of the form mt + a, and we find t by asking it to
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also be a solution to the second congruence: mt + a ≡ b (mod n), so
t = (m−1)(mod n)(b− a), and a solution to the system will be congruent to
m(m−1)(mod n)(b − a) + a (mod mn). Collecting terms in a and b and re-
placing 1−m(m−1)(mod n) = n(n−1)(mod m) produces the more symmetric
system solution n(n−1)(mod m)a+m(m−1)(mod n)b (mod mn).
ii) Let nZ ∩mZ = kZ. We will show that k = [m,n]. Obviously kZ ⊆ nZ
and kZ ⊆ mZ, so n | k and m | k. Now if n | l and m | l, then lZ ⊆ nZ and
lZ ⊆ mZ, so lZ ⊆ nZ ∩mZ = kZ, so k | l.
iii) Let nZ + mZ = dZ. We show that d = (a, b). Since nZ ⊆ dZ and
mZ ⊆ dZ, it follows that d | n and d | m. Now if s | n and s | m, it follows
that s divides any linear combination of n and m, in particular s | d.

Exercise 1.7.20 Let (a1a2 . . . ak) ∈ Sn be a cycle of length k. Show that
|(a1a2 . . . ak)| = k.
Solution: Let σ = (a1a2 . . . ak). Then σ2(a1) = a3, σ3(a1) = a4, . . .
σk−1(a1) = ak, and σk = Id.

Exercise 1.7.21 Find the order of

σ =

(
1 2 3 4 5 6 7 8 9 10
3 6 5 8 1 2 10 7 9 4

)
∈ S10.

Solution: We have that σ = (135)(26)(487 10), so |σ| = [3, 2, 4] = 12.

Exercise 1.7.22 Let G be a group. Prove that the map ϕ : G −→ S(G)
sending x ∈ G to ϕ(x) : G −→ G, ϕ(x)(g) = xg is an injective morphism
of groups.
Solution: First we have that ϕ(xy)(g) = (xy)g = x(yg) = ϕ(x)(yg) =
ϕ(x)(ϕ(y)(g)) = ϕ(x)ϕ(y)(g) for all g ∈ G, so ϕ(xy) = ϕ(x)ϕ(y), i.e. ϕ
is a group morphism. Now if x ∈ Ker(ϕ), it follows that ϕ(x) = IdG, in
particular ϕ(x)(1G) = x1G = 1G. Therefore x = 1G, i.e. Ker(ϕ) = {1G},
so ϕ is injective.
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Chapter 2

Rings

2.1 Rings and morphisms of rings

In this section we continue the process started in Section 1.4: there we
started with a set and considered an operation on that set. Now we are
starting with a group and consider a second operation on it.

Definition 2.1.1 A ring is a set R with at least two elements, 0R and 1R,
and two operations, + and ·, called addition and multiplication, such that
the following conditions hold:
i) (R,+) is an abelian group with identity element 0R.
ii) Multiplication is associative and has identity element 1R. This means
that for all a, b, c ∈ R we have:

a(bc) = (ab)c and a1R = 1Ra = a.

iii) Multiplication is distributive with respect to addition, i.e. for all a, b, c ∈
R we have:

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

If multiplication is commutative, we say that the ring is commutative.

Exercise 2.1.2 Let (R,+, ·) be a ring. Then the following hold:
i) a0R = 0Ra = 0R for all a ∈ R.
ii) Rule of signs: a(−b) = (−a)b = −ab, and (−a)(−b) = ab.
iii) a(b1 + b2 + . . .+ bn) = ab1 + ab2 + . . .+ abn and (b1 + b2 + . . .+ bn)a =
b1a+ b2a+ . . .+ bna for all n ≥ 2 and a, b1, b2, . . . , bn ∈ R.
iv) Newton’s binomial formula: If R is commutative, then for all a, b ∈ R
and n ≥ 1 we have

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + . . .+

(
n

n− 1

)
abn−1 + bn.

65
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Definition 2.1.3 An element a in a ring R is called invertible (or a unit),
if it has an inverse with respect to multiplication, i.e. there exists a′ ∈ R
such that aa′ = a′a = 1R. The inverse of a unit a ∈ R is unique (see
Exercise 1.4.4 ii)) and will be denoted by a−1. The set of units of the ring
R will be denoted by U(R).
An element a in a ring R is called a left zero divisor if there exists b ∈ R,
b 6= 0R, such that ab = 0R. Similarly, a will be a right zero divisor if there
exists b ∈ R, b 6= 0R, such that ba = 0R.

Exercise 2.1.4 Let (R,+, ·) be a ring. Then:
i) 0R is a zero divisor (left and right).
ii) if a ∈ R is a unit, a is not a zero divisor (left or right).
iii) if a ∈ R is a zero divisor, a is not a unit.
iv) (U(R), ·) is a group.

Definition 2.1.5 A commutative ring F is called a field if any non-zero
element of R is a unit (i.e. U(F ) = F ∗ = F \ {0F }). A commutative ring
D is called a domain if D has no zero divisors other than 0D.

Exercise 2.1.6 Show that any field is a domain.

We give now some examples of rings, but leave the verification as an exer-
cise.

Exercise 2.1.7 Show that the following are rings. Which ones are com-
mutative? Which ones are domains? Which ones are fields?
i) (Z,+, ·).
ii) (Q,+, ·).
iii) (R,+, ·).
iv) (C,+, ·).
v) The set of 2 × 2 matrices with real entries, together with the addition
and multiplication of matrices: (M2(R),+, ·).
vi) (C[0, 1],+, ·), where

C[0, 1] = {f : [0, 1] −→ R | f is continuous},

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), f, g ∈ C[0, 1], x ∈ [0, 1].

vii) (Z2,+, ·).
viii) (Z4,+, ·).
ix) (Zn,+, ·).
x) (End(G),+, ·), where (G,+) is an abelian group,

End(G) = {f : G −→ G | f is a group morphism},
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(f + g)(x) = f(x) + g(x), (fg)(x) = (f ◦ g)(x), f, g ∈ End(G), x ∈ G.

xi) H = {a + bi + cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}, with
componentwise addition and multiplication defined by using distributivity
and the relations between i, j, k.
xii) If F4 = {0, 1, a, b} is a field, write the addition and multiplication tables
of F4.

Exercise 2.1.8 Give an example of a domain that is not a field.

Exercise 2.1.9 If R is a ring and a, b ∈ R, then
i) if ab = 0R, does it follow that ba = 0R?
ii) if ab = 1R, does it follow that ba = 1R?
iii) (Jacobson-Kaplansky) if ab = 1R and ba 6= 1R, then the set of left
inverses of b, L = {c ∈ R | cb = 1}, is infinite.

Definition 2.1.10 Let R and R′ be rings, and f : R −→ R′. We say that
f is a ring morphism if the following hold:
i) f is a group morphism, i.e. f(x+ y) = f(x) + f(y) for all x, y ∈ R.
ii) f(xy) = f(x)f(y) for all x, y ∈ R.
iii) f(1R) = 1R′ .
The morphism f is said to be an injective morphism if the function f is
injective. Similarly, if the function f is surjective, we say that f is a sur-
jective morphism. A ring morphism f : R −→ R′ is called an isomorphism
if there exists a ring morphism f ′ : R′ −→ R such that f ◦ f ′ = IdR′ and
f ′ ◦ f = IdR; we then say that the rings R and R′ are isomorphic, and we
write R ' R′. A morphism from R to R is called an endomorphism of R,
and an isomorphism from R to R is called an automorphism of R.

We remark that since f is a group morphism, it is automatic that f(0R) =
0R′ (see Exercise 1.4.10 i)). For ring morphisms we have to ask that f(1R) =
1R′ , because it does not follow from the other two conditions. Indeed, the
constant map 0R from R to R satisfies i) and ii) from Definition 2.1.10, but
not iii).

Exercise 2.1.11 Let R1 and R2 be rings, and define the following opera-
tions on the cartesian product R1 × R2: (x, y) + (x′, y′) = (x + x′, y + y′)
and (x, y) · (x′, y′) = (xx′, yy′), where x, x′ ∈ R1 and y, y′ ∈ R2. Show that
R1 × R2 is a ring with these operations (it is called the direct product of
the rings R1 and R2).

The following properties of ring morphisms are left as exercises:



68 CHAPTER 2. RINGS

Exercise 2.1.12 Let f : R −→ R′ and g : R′ −→ R′′ be ring morphisms.
Then:
i) if x ∈ U(R), then f(x) ∈ U(R′), and we have f(x−1) = f(x)−1.
ii) gf is a ring morphism.
iii) f is an isomorphism if and only if f is bijective.

Exercise 2.1.13 Which of the following maps are ring morphisms? For
each of them decide if they are injective, surjective, or an isomorphism. If
a morphism is an isomorphism, find the inverse.
i) IdR : R −→ R.
ii) i : Z −→ Q, i(x) = x/1 for x ∈ Z.
iii) If x ∈ U(R), fx : R −→ R, fx(y) = xyx−1 for all y ∈ R.
iv) f : Z4 −→ Z2, f(â(mod 4)) = â(mod 2).
v) g : Z2 −→ Z4, g(â(mod 2)) = â(mod 4).
vi) p1 : R1 ×R2 −→ R1, p1(x, y) = x.
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Solutions to the Exercises on Section 2.1

Exercise 2.1.2 Let (R,+, ·) be a ring. Then the following hold:
i) a0R = 0Ra = 0R for all a ∈ R.
ii) Rule of signs: a(−b) = (−a)b = −ab, and (−a)(−b) = ab.
iii) a(b1 + b2 + . . .+ bn) = ab1 + ab2 + . . .+ abn and (b1 + b2 + . . .+ bn)a =
b1a+ b2a+ . . .+ bna for all n ≥ 2 and a, b1, b2, . . . , bn ∈ R.
iv) Newton’s binomial formula: If R is commutative, then for all a, b ∈ R
and n ≥ 1 we have

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + . . .+

(
n

n− 1

)
abn−1 + bn.

Solution: i) a0R = a(0R + 0R) = a0R + a0R, and after adding −a0R to
both sides we get a0R = 0R. The equality 0Ra = 0R is proved similarly.
ii) 0R = a0R = a(b − b) = ab + a(−b), so a(−b) = −ab. The proof of
(−a)b = −ab is similar. Now (−a)(−b) = (−(−a))b = ab.
iii) Use induction on n. For n = 2 we have a(b1+b2) = ab1+ab2 which is the
distributivity law. If the assertion is true for n, then a(b1+. . .+bn+bn+1) =
a(b1 + . . .+ bn) + abn+1 = ab1 + . . .+ abn + abn+1.
iv) We use induction on n. For n = 1 the assertion is clear. Now assume
the assertion is true for n and compute (a + b)n+1 = (a + b)n(a + b) =
an+1 +

(
n
1

)
anb+

(
n
2

)
an−1b2 + . . .+

(
n
n−1

)
a2bn−1 + abn + anb+

(
n
1

)
an−1b2 +(

n
2

)
an−2b3 + . . . +

(
n
n−1

)
abn + bn+1. The assertion follows after collecting

like terms and using
(
n
k

)
+
(
n
k−1

)
=
(
n+1
k

)
for all 1 ≤ k ≤ n, which may be

verified directly.

Exercise 2.1.4 Let (R,+, ·) be a ring. Then:
i) 0R is a zero divisor (left and right).
ii) if a ∈ R is a unit, a is not a zero divisor (left or right).
iii) if a ∈ R is a zero divisor, a is not a unit.
iv) (U(R), ·) is a group.
Solution: i) 0R1R = 1R0R = 0R.
ii) Assume that a is a unit, and let ab = 0R. After multiplying by a−1 on
the left, we get b = 0R. Similarly, if ba = 0R, then b = 0R.
iii) is logically equivalent to ii).
iv) Multiplication is associative, 1R ∈ U(R), and all elements in U have
inverses.

Exercise 2.1.6 Show that any field is a domain.
Solution: Let F be a field. We need to show that if ab = 0F , then a = 0F
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or b = 0F . Let ab = 0F and a 6= 0F . Then a−1 exists, and after multiplying
by it on the left we get b = 0F .

Exercise 2.1.7 Show that the following are rings. Which ones are com-
mutative? Which ones are domains? Which ones are fields?
i) (Z,+, ·).
ii) (Q,+, ·).
iii) (R,+, ·).
iv) (C,+, ·).
v) The set of 2 × 2 matrices with real entries, together with the addition
and multiplication of matrices: (M2(R),+, ·).
vi) (C[0, 1],+, ·), where

C[0, 1] = {f : [0, 1] −→ R | f is continuous},

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), f, g ∈ C[0, 1], x ∈ [0, 1].

vii) (Z2,+, ·).
viii) (Z4,+, ·).
ix) (Zn,+, ·).
x) (End(G),+, ·), where (G,+) is an abelian group,

End(G) = {f : G −→ G | f is a group morphism},

(f + g)(x) = f(x) + g(x), (fg)(x) = (f ◦ g)(x), f, g ∈ End(G), x ∈ G.
xi) H = {a + bi + cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}, with
componentwise addition and multiplication defined by using distributivity
and the relations between i, j, k.
xii) If F4 = {0, 1, a, b} is a field, write the addition and multiplication tables
of F4.
Solution: i) Z is a domain, but not a field, since 2 does not have an inverse
in Z.
ii), iii), iv) are fields.
v) M2(R) is a ring, but it is not commutative and it has zero divisors,
because [

0 1
0 0

] [
1 0
0 0

]
=

[
0 0
0 0

]
and [

1 0
0 0

] [
0 1
0 0

]
=

[
0 1
0 0

]
vi) C[0, 1] is a commutative ring and it has zero divisors, since fg = 0,
where

f(x) =

{
0.5− x if 0 ≤ x ≤ 0.5
0 if 0.5 < x ≤ 1

g(x) =

{
0 if 0 ≤ x ≤ 0.5
0.5− x if 0.5 < x ≤ 1
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vii) Z2 is a field.
viii) Z4 is a commutative ring, and it has zero divisors since 2 · 2 = 0.
ix) Zp is a field if p is prime. Indeed, if 0 < a < p, then 1 = (a, p), so
1 = au + pv, and therefore the coset of u is the inverse of a in Zp. If n is
not prime, then n = kl, 1 < k, l < n so in Zn we have k, l 6= 0 and kl = 0.
x) End(G) is a ring. If G is the group ZN like in Exercise 1.4.5 xix), i.e.

ZN = {(a0, a1, a2, . . .) | ai ∈ Z}

and the operation is the componentwise addition, then we have the following
elements p, l, r ∈ End(G):

p(a0, a1, a2, . . .) = (a0, 0, 0, . . .) r(a0, a1, a2, . . .) = (0, a0, a1, . . .).

We then have that p, r 6= 0 but pr = 0 and rp 6= 0, so in general End(G) is
not commutative and it has zero divisors.
xi) H is a ring in which all nonzero elements are units, and is not commu-
tative. Such a ring is called a division ring. For example, the inverse of
a+ bi+ cj + dk 6= 0 is

1

a2 + b2 + c2 + d2
(a− bi− cj − dk).

The elements of H are called quaternions and H is called the ring of real
quaternions. We can represent quaternions as matrices in M2(C) by using
the matrix representations of 1, i, j, and k as in the solution to Exercise
1.4.5, xxvi):

a+ bi+ cj+ dk = a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]
+ c

[
0 i
i 0

]
+ d

[
−i 0
0 i

]
=

=

[
a− di −b+ ci
b+ ci a+ di

]
.

We can also construct H using C in the same way we constructed C using
R:

a+ bi+ cj + dk = a+ bi+ cj + dij = a+ bi+ (c+ di)j.

xii) The elements 1, 1 + 1, 1 + a and 1 + b are distinct, so

{1, 1 + 1, 1 + a, 1 + b} = F4.

Therefore
1 + 1 + 1 + 1 + a+ 1 + b = 1 + a+ b,

and after adding to both sides the opposite of 1+a+b we get 1+1+1+1 = 0.
But

1 + 1 + 1 + 1 = (1 + 1)(1 + 1) = (1 + 1)2 = 0,
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so 1 + 1 = 0. It follows that a + a = b + b = 0. Now a + b cannot be 0,
because after adding a to both sides we would get a = b; it cannot be a
or b because we would get that either b = 0 or a = 0, so it has to be that
a+ b = 1. In conclusion, the addition table of F4 is

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

Now ab cannot be 0, a, or b, so ab = 1. Then a2 cannot be 0, 1, or a, so we
must have a2 = b, and, similarly, b2 = a. In conclusion, the multiplication
table of F4 is

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

Exercise 2.1.8 Give an example of a domain that is not a field.
Solution: The ring of integers Z.

Exercise 2.1.9 If R is a ring and a, b ∈ R, then
i) if ab = 0R, does it follow that ba = 0R?
ii) if ab = 1R, does it follow that ba = 1R?
iii) (Jacobson-Kaplansky) if ab = 1R and ba 6= 1R, then the set of left in-
verses of b, L = {c ∈ R | cb = 1}, is infinite.
Solution: i) See the solution of Exercise 2.1.7 v).
ii) With the notation in the solution of Exercise 2.1.7 x), also let l ∈
End(G), l(a0, a1, a2, . . .) = (a1, a2, . . .). Then lr = 1 and rl 6= 1. We
also remark that this provides another example for i): r is a right zero
divisor because pr = 0, but it is not a left zero divisor because it has a left
inverse.
iii) (Bitzer) Define f : L −→ L, f(c) = bc− 1 + a, where 1 = 1R. We show
that f is injective but not surjective, and therefore L is infinite by Exercise
1.1.7. We first show that f is injective: if bc − 1 + a = bc′ − 1 + a, then
bc = bc′, so c = c′ after multiplying on the left by a. Now, if there is a c
such that f(c) = bc − 1 + a = a, it follows that bc = 1, so c = a, which
contradicts the fact that ba 6= 1. In conclusion, there is no c such that
f(c) = a, i.e. f is not surjective.

Exercise 2.1.11 Let R1 and R2 be rings, and define the following opera-
tions on the cartesian product R1 × R2: (x, y) + (x′, y′) = (x + x′, y + y′)
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and (x, y) · (x′, y′) = (xx′, yy′), where x, x′ ∈ R1 and y, y′ ∈ R2. Show that
R1 × R2 is a ring with these operations (it is called the direct product of
the rings R1 and R2).
Solution: We already know that R1 and R2 is an abelian group with ad-
dition. Distributivity follows from the distributivity in R1 and R2, and the
identity element is (1R1

, 1R2
).

Exercise 2.1.12 Let f : R −→ R′ and g : R′ −→ R′′ be ring morphisms.
Then:
i) if x ∈ U(R), then f(x) ∈ U(R′), and we have f(x−1) = f(x)−1.
ii) gf is a ring morphism.
iii) f is an isomorphism if and only if f is bijective.
Solution: i) We have that 1R′ = f(1R) = f(xx−1) = f(x)f(x−1).
ii) and iii). We already know from Exercise 1.4.10 iii) and iv) that addition
is preserved. The proof for multiplication is identical.

Exercise 2.1.13 Which of the following maps are ring morphisms? For
each of them decide if they are injective, surjective, or an isomorphism. If
a morphism is an isomorphism, find the inverse.
i) IdR : R −→ R.
ii) i : Z −→ Q, i(x) = x/1 for x ∈ Z.
iii) If x ∈ U(R), fx : R −→ R, fx(y) = xyx−1 for all y ∈ R.
iv) f : Z4 −→ Z2, f(â(mod 4)) = â(mod 2).
v) g : Z2 −→ Z4, g(â(mod 2)) = â(mod 4).
vi) p1 : R1 ×R2 −→ R1, p1(x, y) = x.
Solution: i) It is an isomorphism, equal to its own inverse.
ii) It is an injective ring morphism.
iii) It is an isomorphism, with inverse fx−1 . The fact that the multiplication
or the identity element are preserved follows like in the case of groups (see
Exercise 1.4.11 iii)). In order to show that fx preserves the addition, use
left and right distributivity.
iv) f is a surjective group morphism by Exercise 1.4.11 vi). It is also a ring
morphism by the definition of multiplication for congruence classes.
v) g is not well defined, see Exercise 1.4.11 vii).
vi) p1 is a surjective group morphism by Exercise 1.4.11 viii). It is also
a ring morphism by the definition of multiplication in the direct product
ring.
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2.2 Subrings and ideals

In this section we introduce two notions that are the analogs for rings of
the notions of subgroup and normal subgroup. We begin by the following:

Definition 2.2.1 Let R be a ring, and S a nonempty subset of R. Then S
is called a subring of R if the operations on R induce on S a ring structure.

A trivial example of a subring in any ring R is R itself. When checking
that a certain subset S of a ring R is a subring we need to check three
conditions:
SR1) If x, y ∈ S, then x− y ∈ S.
SR2) 1R ∈ S.
SR3) If x, y ∈ S, then xy ∈ S.
Note that SR2) ensures that S is not empty, and SR1) says that S is
a subgroup of R. In conclusion, a subring of a ring is a subgroup that
contains the identity and is closed under multiplication.

Exercise 2.2.2 Which of the following subsets are subrings:
i) Z ⊆ Q.
ii) Q ⊆ R.
iii) R ⊆ C.
iv) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
v) {0, 2, 4} ⊆ Z6.
vi) the intersection of a family of subrings of a ring R.
vii) D(0, 1) = {f ∈ C[0, 1] | f differentiable on (0, 1)} ⊆ C[0, 1].

Exercise 2.2.3 Let f : R −→ R′ be a morphism of rings. Then:
i) f(R) is a subring of R′ (as in the case of groups, we denote f(R) by
Im(f) and call it the image of f).
ii) is f−1(0R′) a subring of R? (as in the case of groups, we denote f−1(0R′)
by Ker(f) and call it the kernel of f).
iii) If S is a subring of R, then f(S) is a subring of R′.
iv) If S′ is a subring of R′, then f−1(S′) is a subring of R.
v) f is surjective ⇔ Im(f) = R′.
vi) f is injective ⇔ Ker(f) = {0R}.

We now introduce an important notion that plays the same role for rings
that normal subgroups play for groups.

Definition 2.2.4 Let R be a ring and I a nonempty subset of R. We will
say that I is a left ideal of R if I is a subgroup of R and it is closed under
left multiples. This means that the following conditions are satisfied:
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LI1) for any x, y ∈ I we have x− y ∈ I.
LI2) for any x ∈ I and r ∈ R we have rx ∈ I.
We will say that I is a right ideal of R if I is a subgroup of R and it is
closed under right multiples. This means that the following conditions are
satisfied:
RI1) for any x, y ∈ I we have x− y ∈ I.
RI2) for any x ∈ I and r ∈ R we have xr ∈ I.
An ideal that is both a left and a right ideal is called two-sided. Properties
LI2) and RI2) are called absorption properties.

Trivial examples of two-sided ideals in any ring R are {0R} and R itself.
An ideal different from R is called proper.

Exercise 2.2.5 i) A subring of R that is also an ideal (left or right) has
to be equal to R.
ii) In general, the ideal I of R is equal to R ⇔ I contains a unit.

Exercise 2.2.6 Let F be a commutative ring. The following assertions are
equivalent:
i) F is a field.
ii) The only ideals of F are {0F } and F .

Here are some examples.

Exercise 2.2.7 Which of the following subsets are ideals:
i) Z ⊆ Q.
ii) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
iii) {0, 2, 4} ⊆ Z6.
iv) J ⊆M2(R), where

J =

{[
a b
0 0

]∣∣∣∣ a, b ∈ R
}

v) K ⊆M2(R), where

K =

{[
a 0
b 0

]∣∣∣∣ a, b ∈ R
}

vi) the intersection of a family of ideals (left, right, or two-sided) of a ring
R.

Exercise 2.2.8 Let R be a commutative ring, and x1, x2, . . . , xn ∈ R.
Then

I = Rx1 +Rx2 + . . .+Rxn = {a1x1 +a2x2 + . . .+anxn | ai ∈ R, 1 ≤ i ≤ n}
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is an ideal of R, called the ideal generated by x1, x2, . . . , xn. If n = 1, Rx1

is called the principal ideal generated by x1.

Definition 2.2.9 A domain in which all ideals are principal is called a
Principal Ideal Domain (or PID).

Exercise 2.2.10 Show that Z is a PID.

We end this section with the study of the behavior of ideals through ring
morphisms.

Proposition 2.2.11 Let f : R −→ R′ be a ring morphism. Then the
following assertions hold:
i) If I ′ is a left ideal of R′, then f−1(I ′) is a left ideal of R, and the same
is true if we replace ”left” by ”right” or ”two-sided”.
ii) If f is surjective and I is a left ideal of R, then f(I) is a left ideal of
R′, and the same is true if we replace ”left” by ”right” or ”two-sided”.
iii) Ker(f) is a two-sided ideal of R.

Proof: i) We know from Exercise 1.5.8 iv) that f−1(I ′) ≤ R. Let r ∈ R
and x ∈ f−1(I ′). We know that f(x) ∈ I ′ and we want to prove that
f(rx) ∈ I ′. We have f(rx) = f(r)f(x) ∈ I ′, because I ′ is a left ideal of R′.
The proof of the other two assertions is similar.
ii) We know from Exercise 1.5.8 iii) that f(I) ≤ R′. Let r′ ∈ R′ and
x′ ∈ f(I). Then x′ = f(x) for some x ∈ I, and since f is surjective,
r′ = f(r) for some r ∈ R. We then have r′x′ = f(r)f(x) = f(rx) ∈ f(I),
since I is a left ideal of R. The proof of the other two assertions is similar.
iii) follows from i), because {0R′} is a two-sided ideal of R′.

Exercise 2.2.12 Give an example to show that the assertion in Proposi-
tion 2.2.11 ii) is not true if f is not surjective.

Corollary 2.2.13 Let f : R −→ R′ be a surjective ring morphism. There
exists a bijective correspondence between the left ideals of R′ and the left
ideals of R which contain Ker(f), and the assertion remains true if we
replace ”left” by ”right” or ”two-sided”.

Proof: By Corollary 1.5.16 there exists a bijective correspondence between
the subgroups of R′ and the subgroups of R which contain Ker(f), so it is
enough to show that that correspondence maps ideals to ideals. Let I ′ be a
left ideal of R′. Then f−1(I ′) is a left ideal of R and Ker(f) = f−1(0R′) ⊆
f−1(I ′). If I is a left ideal of R and Ker(f) ⊆ I, then f(I) is a left ideal
of R′. The proof of the other two assertions is similar.

Exercise 2.2.14 Show that any ideal of Zn is principal.
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Solutions to the Exercises on Section 2.2

Exercise 2.2.2 Which of the following subsets are subrings:
i) Z ⊆ Q.
ii) Q ⊆ R.
iii) R ⊆ C.
iv) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
v) {0, 2, 4} ⊆ Z6.
vi) the intersection of a family of subrings of a ring R.
vii) D(0, 1) = {f ∈ C[0, 1] | f differentiable on (0, 1)} ⊆ C[0, 1].
Solution: i), ii) and iii) are all subrings.
iv) is not always a subring, because 1 /∈ nZ unless n = ±1.
v) not a subring, it does not contain 1.
vi) if {Si}i∈I is a family of subrings of R, then S = ∩i∈ISi is a subring. If
x, y ∈ S, then x, y ∈ Si for all i ∈ I, so x+ y, xy ∈ Si for all i ∈ I, therefore
x+ y, xy ∈ S. Since 1 ∈ Si for all i ∈ I, it follows that 1 ∈ S.
vii) is a subring, the constant function 1 is differentiable, and the sum and
product of two differentiable functions are differentiable.

Exercise 2.2.3 Let f : R −→ R′ be a morphism of rings. Then:
i) f(R) is a subring of R′ (as in the case of groups, we denote f(R) by
Im(f) and call it the image of f).
ii) is f−1(0R′) a subring of R? (as in the case of groups, we denote f−1(0R′)
by Ker(f) and call it the kernel of f).
iii) If S is a subring of R, then f(S) is a subring of R′.
iv) If S′ is a subring of R′, then f−1(S′) is a subring of R.
v) f is surjective ⇔ Im(f) = R′.
vi) f is injective ⇔ Ker(f) = {0R}.
Solution: i) is a subring. We know that Im(f) is a subgroup of R′. We
have that 1R′ = f(1R) ∈ Im(f), and if x′, y′ ∈ Im(f), then x′ = f(x) and
y′ = f(y), and so x′y′ = f(x)f(y) = f(xy) ∈ Im(f).
ii) not a subring, 1R /∈ Ker(f).
iii) is a subring, the proof is similar to i).
iv) is a subring, we have 1R ∈ f−1(S′). Then if x, y ∈ f−1(S′), so f(x+y) =
f(x) + f(y) ∈ S′, and f(xy) = f(x)f(y) ∈ S′, thus x+ y, xy ∈ f−1(S′).
v) is just the definition of surjectivity.
vi) follows from Exercise 1.5.8 vi), because f is in particular a morphism
of groups.

Exercise 2.2.5 i) A subring of R that is also an ideal (left or right) has to
be equal to R.
ii) In general, the ideal I of R is equal to R ⇔ I contains a unit.
Solution: i) If 1R ∈ I, then any r ∈ R will be in I, since it can be written
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as r = r1R or r = 1Rr, so I = R.
ii) If I = R, then 1R ∈ I is a unit. Conversely, if x ∈ I is a unit, then
1R = xx−1 = x−1x, so 1R ∈ I, thus I = R by i).

Exercise 2.2.6 Let F be a commutative ring. The following assertions are
equivalent:
i) F is a field.
ii) The only ideals of F are {0F } and F .
Solution: i) ⇒ ii). Let I 6= {0F } be an ideal of F . Choose x ∈ I, x 6= 0F .
Since F is a field, x is a unit, so I = F by Exercise 2.2.5 ii).
ii) ⇒ i). Let x ∈ F , x 6= 0F . Then Rx = {rx | r ∈ R} 6= {0F } is an ideal,
so it has to be equal to F , thus 1F = rx for some r ∈ F , i.e. x is a unit.

Exercise 2.2.7 Which of the following subsets are ideals:
i) Z ⊆ Q.
ii) If n ∈ Z, nZ = {nk | k ∈ Z} ⊆ Z.
iii) {0, 2, 4} ⊆ Z6.
iv) J ⊆M2(R), where

J =

{[
a b
0 0

]∣∣∣∣ a, b ∈ R
}

v) K ⊆M2(R), where

K =

{[
a 0
b 0

]∣∣∣∣ a, b ∈ R
}

vi) the intersection of a family of ideals (left, right, or two-sided) of a ring
R.
Solution: i) not an ideal, 1 ∈ Z but Z 6= Q.
ii) We have 0 = n0 ∈ nZ. If x, y ∈ nZ, then x = nk and y = nm, so x−y =
nk− nm = n(k−m) ∈ nZ. Now if l ∈ Z, then lx = l(nk) = n(lk) ∈ nZ, so
nZ is an ideal.
iii) We have {0, 2, 4} = 2Z6 = {2a | a ∈ Z6} = {2 ·0, 2 ·1, 2 ·2, 2 ·3, 2 ·4, 2 ·5},
and the verification that this is an ideal of Z6 is similar to ii).
iv) J is clearly a subgroup. We have[

a b
0 0

] [
c d
e f

]
=

[
ac+ be ad+ bf

0 0

]
∈ J,

and [
0 1
1 0

] [
1 1
0 0

]
=

[
0 0
1 1

]
/∈ J,
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so J is a right ideal but not a left ideal.
v) K is clearly a subgroup. We have[

c d
e f

] [
a 0
b 0

]
=

[
ca+ db 0
da+ fb 0

]
∈ K,

and [
1 0
1 0

] [
0 1
1 0

]
=

[
0 1
0 1

]
/∈ K,

so K is a left ideal but not a right ideal.
vi) if {Ii}i∈I is a family of (right) ideals of R, then I = ∩i∈ISi is a subgroup
by Exercise 2.2.2 vi). If x ∈ I, and y ∈ R, then x ∈ Ii for all i ∈ I, so
xy ∈ Ii for all i ∈ I, therefore xy ∈ I. Similarly for left or two-sided ideals.

Exercise 2.2.8 Let R be a commutative ring, and x1, x2, . . . , xn ∈ R. Then

I = Rx1 +Rx2 + . . .+Rxn = {a1x1 +a2x2 + . . .+anxn | ai ∈ R, 1 ≤ i ≤ n}

is an ideal of R, called the ideal generated by x1, x2, . . . , xn. If n = 1, Rx1

is called the principal ideal generated by x1.
Solution: We have 0R = 0Rx1 + 0Rx2 + . . .+ 0Rxn ∈ I, and

a1x1 + a2x2 + . . .+ anxn − (b1x1 + b2x2 + . . .+ bnxn) =

= (a1 − b1)x1 + (a2 − b2)x2 + . . .+ (an − bn)xn ∈ I.

If r ∈ R, then

r(a1x1 + a2x2 + . . .+ anxn) = (ra1)x1 + (ra2)x2 + . . .+ (ran)xn ∈ I,

so I is an ideal.

Exercise 2.2.10 Show that Z is a PID.
Solution: First, Z is a domain, because it is commutative, and mn 6= 0 if
m 6= 0 and n 6= 0. Then by Proposition 1.5.7 all subgroups of Z are of the
form nZ, and by Exercise 2.2.7 these are ideals. In conclusion, all ideals of
Z are principal.

Exercise 2.2.12 Give an example to show that the assertion in Proposition
2.2.11 ii) is not true if f is not surjective.
Solution: Consider the inclusion Z ⊆ Q, Z is not an ideal of Q.

Exercise 2.2.14 Show that any ideal of Zn is principal.
Solution: Let I be an ideal of Zn. Then I is a subgroup of Zn, so by Corol-
lary 1.5.16 we have that I is the image through the canonical surjection of
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a subgroup of Z which contains nZ, i.e. I = can(dZ) = d̂Zn, where d | n.

But d̂Zn is the principal ideal generated by d̂, so I is principal. (We could

also use Exercise 1.5.17 and the fact that if m ∈ Z, then md̂ = m̂d = m̂d̂).
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2.3 Factor rings

Let G be a group and H E G. Recall that this means that xH = Hx for
all x ∈ G, or, equivalently, that the two congruences modulo H, left and
right, coincide:

x ≡ y(mod H)⇔ xy−1 ∈ H ⇔ x−1y ∈ H.

This also meant that congruence modulo H is compatible with the group
operation, i.e. we can multiply congruences: if x ≡ y(mod H) and z ≡
w(mod H), then xz ≡ yw(mod H), because zw−1 = h ∈ H, xh = h1x for
some h1 ∈ H, and xy−1 = h2 ∈ H, so xz(yw)−1 = xzw−1y−1 = xhy−1 =
h1xy

−1 = h1h2 ∈ H. This is equivalent to the fact that multiplication of
congruence classes (or cosets) relative to H is well defined, or the canonical
surjection from G to G/H is a group morphism.
Let now R be a ring and I a two-sided ideal of R. In particular, I is a
subgroup of the abelian group R (under addition), so I is a normal subgroup
of R. In conclusion, we can introduce a group structure on the factor group
R/I like this:

(x+ I) + (y + I) = (x+ y) + I, x, y ∈ R,

so R/I is a group under the addition defined above, and the canonical
surjection can : R −→ R/I is a surjective group morphism. The zero
element of this group is 0R/I = 0 + I = I. The fact that I is a two-sided
ideal allows us to define multiplication on R/I like this:

(x+ I)(y + I) = xy + I, x, y ∈ R.

In order to show that this multiplication is well defined, we need to show
that if x − x′ ∈ I and y − y′ ∈ I, then xy − x′y′ ∈ I. Now xy − x′y′ =
xy−xy′+xy′−x′y′ = x(y−y′)+(x−x′)y′ ∈ I, because both x(y−y′) and
(x− x′)y′ belong to I (note that both left and right absorption properties
were used). In this way R/I becomes a ring with identity 1R/I = 1 + I.
The fact that the ring axioms are verified follows from the definition of the
operations and the fact that R is a ring. For example left distributivity is
checked as follows:

(x+ I)((y + I) + (z + I)) = (x+ I)(y + z + I)

= x(y + z) + I

= xy + xz + I

= (xy + I) + (xz + I)

= (x+ I)(y + I) + (x+ I)(z + I).
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Definition 2.3.1 If R is a ring, and I is a two-sided ideal of R, the ring
R/I constructed above is called the factor ring of R relative to I.

As in the case of sets or groups, we can define factor rings without any
reference to elements:

Definition 2.3.2 A factor ring of the ring R is a pair (N, p), where N is
a ring, and p : R −→ N is a surjective ring morphism.

Since can : R −→ R/I is a surjective ring morphism, a factor ring in the
sense of Definition 2.3.1 is also a factor ring in the sense of Definition 2.3.2.
The fact that the two definitions are equivalent will follow, as in the case
of sets or groups, from a universal property.

Theorem 2.3.3 (The Universal Property of the Factor Ring) Let
(N, p) be a factor ring of the ring R, let X be a ring and f : R −→ X a
ring morphism.
i) There exists a ring morphism u : N −→ X such that f = up, which
means that the diagram

R

J
J
J
J
J
Ĵ

N

u

X
?

-

f

p

is commutative, if and only if Ker(p) ⊆ Ker(f). If u exists, then it is
unique.
If u as in i) exists, then:
ii) u is surjective if and only if f is surjective.
iii) u is injective if and only if Ker(p) = Ker(f).

Using Theorem 1.6.10 we see that the only thing left to prove is that if a
group morphism u as in the statement exists, then it is a ring morphism.
Since f is a ring morphism, the proof is identical to the one of Theorem
1.6.10.

Exercise 2.3.4 Prove Theorem 2.3.3.

Corollary 2.3.5 If (N1, p1) and (N2, p2) are two factor rings of R such
that Ker(p1) = Ker(p2), then there exists an isomorphism u : N1 −→ N2

such that up1 = p2.
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Exercise 2.3.6 Prove Corollary 2.3.5.

Corollary 2.3.7 If (N, p) is a factor ring of R, then there exists an iso-
morphism u : N −→ R/Ker(p) such that u ◦ p is the canonical surjection.

Exercise 2.3.8 Prove Corollary 2.3.7.

Corollary 2.3.9 (The First Isomorphism Theorem for Rings) Let
f : R −→ R′ be a ring morphism. Then

R/Ker(f) ' Im(f).

Exercise 2.3.10 Prove Corollary 2.3.9.

Read again Corollary 2.2.13 and its proof before attempting the following:

Exercise 2.3.11 There is a bijective correspondence between the ideals of
the factor ring R/I and the ideals of R that contain I.

Corollary 2.3.12 (The Second Isomorphism Theorem for Rings)
Let R be a ring and let I ⊆ J be two-sided ideals of R. Then

(R/I)/(J/I) ' R/J.

Exercise 2.3.13 Prove Corollary 2.3.12.

Exercise 2.3.14 Any factor ring of Z is isomorphic to a Zn for some
integer n ≥ 0.

Exercise 2.3.15 i) Prove that Z3 is isomorphic to a factor ring of Z9.
ii) If d | n are positive integers, prove that Zd is isomorphic to a factor ring
of Zn.

Exercise 2.3.16 Let n > 0 be an integer.
i) Describe the units of the ring Zn.
ii) Describe the zero divisors of the ring Zn.
iii) (Euler’s Theorem) If a is an integer and 1 = (a, n), then aϕ(n) ≡
1(mod n), where ϕ(n) is the Euler function, ϕ(0) = 0, ϕ(1) = 1, and if
m > 1, ϕ(m) = number of natural numbers relatively prime to m and less
than m.
iv) Show that Zn × Zm ' Znm as rings ⇔ 1 = (n,m).
v) ϕ is multiplicative, i.e. ϕ(nm) = ϕ(n)ϕ(m) if 1 = (n,m).
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vi) ϕ(pk) = pk − pk−1.
vii) If n = pk11 p

k2
2 . . . pkss and pi are distinct primes, 1 ≤ i ≤ s, then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

ps

)
.

viii) (Fermat’s Little Theorem) If p is a positive prime and a is an integer,
then ap ≡ a(mod p).

The result in the following exercise is known as Wilson’s Theorem.

Exercise 2.3.17 An integer p > 1 is prime if and only if (p − 1)! ≡
−1(mod p).

As we did at the end of Section 1.6, we mention another way of introducing
factor rings. Instead of starting with a group R and a two-sided ideal of R,
we start with an equivalence relation R on the set R which is compatible
with the ring operations, i.e. we can add and multiply relations: if x1Ry1

and x2Ry2, then x1 + y1Rx2 + y2 and x1y1Rx2y2, and moreover 1 and 0
are not equivalent. The fact that then the factor set R/R becomes a ring
such that the canonical surjection is a ring morphism follows from the fact
that xRy if and only if x and y are congruent modulo the two-sided ideal
C0 = {a ∈ R | aR0}.
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Solutions to the Exercises on Section 2.3

Exercise 2.3.4 Prove Theorem 2.3.3.
Solution: We know that if u exists, then it is a morphism of additive
groups. We have that u(1N ) = u(p(1R)) = f(1R) = 1X . Then let x′, y′ ∈
N , and x, y ∈ R such that p(x) = x′ and p(y) = y′. It follows that
u(x′y′) = u(p(x)p(y)) = u(p(xy)) = f(xy) = f(x)f(y) = u(p(x))u(p(y)) =
u(x′)u(y′).

Exercise 2.3.6 Prove Corollary 2.3.5.
Solution: Take (N, p) = (N1, p1), X = N2 and f = p2 in Theorem 2.3.3.

Exercise 2.3.8 Prove Corollary 2.3.7.
Solution: Take (N1, p1) = (N, p) and (N2, p2) = (R/Ker(p), can), where
can : R −→ R/Ker(p), can(x) = x + Ker(p). Then Ker(can) = Ker(p)
and we can apply Corollary 2.3.5.

Exercise 2.3.10 Prove Corollary 2.3.9.
Solution: Use Corollary 2.3.7 for (Im(f), f).

Exercise 2.3.11 There is a bijective correspondence between the ideals of
the factor ring R/I and the ideals of R that contain I.
Solution: Apply Corollary 2.2.13 for can : R −→ R/I and note that
Ker(can) = I.

Exercise 2.3.13 Prove Corollary 2.3.12.
Solution: Define f : R/I −→ R/J by f(x + I) = x + J . We have that f
is well defined, because if x− y ∈ I it follows that x− y ∈ J , since I ⊆ J .
It is clear that f is surjective and Ker(f) = J/I, so the result follows from
Corollary 2.3.9.

Exercise 2.3.14 Any factor ring of Z is isomorphic to a Zn for some
integer n ≥ 0.
Solution: By Exercise 2.2.10, any ideal of Z is of the form nZ. Then
Z/nZ = Zn.

Exercise 2.3.15 i) Prove that Z3 is isomorphic to a factor ring of Z9.
ii) If d | n are positive integers, prove that Zd is isomorphic to a factor ring
of Zn.
Solution: i) Define f : Z9 −→ Z3 by f(â(mod 9)) = â(mod 3). Since 3 | 9,
f is a well defined surjective ring morphism. Then Z9/Ker(f) ' Z3 by
Theorem 2.3.9. Note that Ker(f) = {0, 3, 6} = 3Z9.
ii) Define f : Zn −→ Zd by f(â(mod n)) = â(mod d). Since d | n, f is a
well defined surjective ring morphism. Then Zn/Ker(f) ' Zd by Theorem
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2.3.9. Note that Ker(f) = dZn.

Exercise 2.3.16 Let n > 0 be an integer.
i) Describe the units of the ring Zn.
ii) Describe the zero divisors of the ring Zn.
iii) (Euler’s Theorem) If a is an integer and 1 = (a, n), then aϕ(n) ≡
1(mod n), where ϕ(n) is the Euler function, ϕ(0) = 0, ϕ(1) = 1, and if
m > 1, ϕ(m) = number of natural numbers relatively prime to m and less
than m.
iv) Show that Zn × Zm ' Znm as rings ⇔ 1 = (n,m).
v) ϕ is multiplicative, i.e. ϕ(nm) = ϕ(n)ϕ(m) if 1 = (n,m).
vi) ϕ(pk) = pk − pk−1.
vii) If n = pk11 p

k2
2 . . . pkss and pi are distinct primes, 1 ≤ i ≤ s, then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

ps

)
.

viii) (Fermat’s Little Theorem) If p is a positive prime and a is an integer,
then ap ≡ a(mod p).
Solution: i) (See Exercise 1.4.7 iii)). The units of Zn are denoted by Un,
they consist of those a ∈ Zn with the property that 1 = (a, n), and they
form an abelian group under multiplication. We have that a ∈ Zn is a unit
if and only if au = 1 for some u, if and only if n | 1 − au if and only if
1− au = nv for some v, if and only if 1 = au+ nv if and only if 1 = (a, n).
ii) If a ∈ Zn is not a unit, then it is a zero divisor. Indeed, if a ∈ Zn is not
a zero divisor, then the map f : Zn −→ Zn, f(b) = ab is injective, because
if ab1 = ab2, then a(b1 − b2) = 0, so b1 − b2 = 0, or b1 = b2. Since Zn
is finite, f is also surjective, so there exists a b such that ab = 1, i.e. a
is a unit. Consequently, by Exercise 2.1.4 iii), the zero divisors in Zn are
precisely the non-units: {a ∈ Zn | 1 6= (a, n)}.
iii) By i), the order of the group Un is ϕ(n) = |Un|. If 1 = (a, n), then â
is an element of the group, hence its order divides the order of the group,
i.e. ϕ(n), by Exercise 1.7.7 i), and the result follows.
iv) If Zn × Zm ' Znm as rings, they are also isomorphic as groups, so
1 = (n,m) by Exercise 1.7.19 i). Conversely, if 1 = (n,m), then the map
f : Znm −→ Zn × Zm, f(â(modnm)) = (â(modn), â(modm)) is an injec-
tive ring morphism, hence an isomorphism (both sets have the same number
of elements).
v) Let 1 = (n,m). By iv) and the definition of multiplication in the direct
product, we have that Un×Um ' Unm. The left hand side has ϕ(n)ϕ(m),
and the right hand side has ϕ(nm) elements, so the result follows.
vi) We count how many numbers between 1 and pk are not relativley prime
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to pk. These numbers are p, 2p, 3p, pk−1p = pk, so there are pk−1 of them.
The rest, i.e. pk − pk−1, are relatively prime to pk.
vii) Since the pi are distinct primes, we apply v) k − 1 times and we get
ϕ(pk11 p

k2
2 . . . pkss ) = ϕ(pk11 )ϕ(pk22 . . . pkss ) = . . . = ϕ(pk11 )ϕ(pk22 ) . . . ϕ(pkss ).

Then by vi) we get ϕ(n) = (pk11 − p
k1−1
1 )(pk22 − p

k2−1
2 ) . . . (pkss − pks−1

s ) =

n
(

1− 1
p1

)(
1− 1

p2

)
. . .
(

1− 1
ps

)
.

viii) We need to show that p | ap − a = a(ap−1 − 1). This is obviously true
if p divides a. If p does not divide a, use iii) for n = p to obtain that p
divides ap−1 − 1.

Exercise 2.3.17 An integer p > 1 is prime if and only if (p − 1)! ≡
−1(mod p).
Solution: If p = 2 the assertion is clear. If p is an odd prime, Up =
{1, 2, . . . , p − 1}. If a ∈ Up is equal to its own inverse, then p | a2 −
1 = (a + 1)(a − 1), so a = p − 1, or a = 1. Therefore, in the product
(p − 1)! = 1 · 2 · 3 · · · (p − 1), each element appears with its inverse (with
the exception of 1 and p − 1, which are their own inverses. Therefore,
(p− 1)! = 1 · 1 · 1 · · · 1 · (p− 1) in Zp, or (p− 1)! ≡ −1(mod p).
Conversely, if (p−1)! ≡ −1(mod p), it follows that p is not divisible by any
prime less than p− 1, so p is prime.
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2.4 Prime and maximal ideals

From now on, all rings will be commutative.

Definition 2.4.1 An ideal P of the commutative ring R is said to be prime
if P 6= R and ab ∈ P implies that a ∈ P or b ∈ P .

Exercise 2.4.2 Show that {0R} is a prime ideal if and only if R is a do-
main.

Exercise 2.4.3 i) Show that {0} is a prime ideal of Z.
ii) Show that if P 6= {0} is a prime ideal of Z, then P = pZ, where p is
prime.

We now investigate how prime ideals behave relative to ring morphisms.

Proposition 2.4.4 Let f : R −→ R′ be a ring morphism (recall that all
rings are commutative).
i) If P ′ is a prime ideal of R′, then P = f−1(P ′) is a prime ideal of R.
ii) If f is surjective, and P is a prime ideal of R such that Ker(f) ⊆ P ,
then P ′ = f(P ) is a prime ideal of R′.

Proof: i) We first remark that P 6= R, because 1R /∈ P = f−1(P ′)
(f(1R) = 1R′ /∈ P ′). We know that P is an ideal of R by Proposition
2.2.11 i). Let now ab ∈ P . Then f(ab) = f(a)f(b) ∈ P ′, and since P ′ is
prime, we have that f(a) ∈ P ′ or f(b) ∈ P ′. So we have a ∈ P or b ∈ P .
ii) We know that P ′ is an ideal of R′ by Proposition 2.2.11 ii). More-
over, P ′ 6= R′, because if 1R′ ∈ P ′, then there exists x ∈ P such that
f(x) = f(1R) = 1R′ . But then x − 1 ∈ Ker(f) ⊆ P , so 1R ∈ P , a contra-
diction. Let now a′b′ ∈ P ′. Then a′ = f(a) and b′ = f(b), where a, b ∈ R,
and f(a)f(b) = f(ab) ∈ P ′. This means that f(ab) = f(x) for some x ∈ P .
But then ab − x ∈ P , so ab ∈ P . It follows that a ∈ P or b ∈ P , i.e.
a′ = f(a) ∈ f(P ) = P ′, or b′ = f(b) ∈ f(P ) = P ′.

Exercise 2.4.5 Give examples to show that Proposition 2.4.4 ii) fails if
either f is not surjective, or P does not contain Ker(f).

Corollary 2.4.6 The following are equivalent for an ideal P of R:
i) P is prime.
ii) R/P is a domain.

Proof: Use Proposition 2.4.4 for can : R −→ R/P , can(x) = x + P ,
P = Ker(can), and P ′ = {0R/P }.

Exercise 2.4.7 Prove Corollary 2.4.6 using the definition of a prime ideal.
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Exercise 2.4.8 Show that a prime ideal of Zn is of the form pZn, where
p ∈ Z is a prime divisor of n.

Definition 2.4.9 An ideal M of the commutative ring R is said to be max-
imal if M 6= R and for any ideal I of R such that M ⊆ I ⊆ R it follows
that I = M or I = R.

Exercise 2.4.10 Show that {0R} is a maximal ideal if and only if R is a
field.

Proposition 2.4.11 Let f : R −→ R′ be a surjective ring morphism (recall
that all rings are commutative).
i) If M ′ is a maximal ideal of R′, then M = f−1(M ′) is a maximal ideal
of R.
ii) If M is a maximal ideal of R such that Ker(f) ⊆M , then M ′ = f(M)
is a maximal ideal of R′.

Proof: Recall from Corollary 2.2.13 that there is a bijective correspondence
between the ideals of R′ and the ideals of R that contain Ker(f). Since
this correspondence preserves inclusions, the result follows.

Use Proposition 2.4.11 to prove the following:

Exercise 2.4.12 The following are equivalent for an ideal M of R:
i) M is maximal.
ii) R/M is a field.

Exercise 2.4.13 Prove Exercise 2.4.12 using the definition of a maximal
ideal.

Exercise 2.4.14 M is a maximal ideal of Z if and only if M = pZ, where
p is prime.

Exercise 2.4.15 i) Show that if M is a maximal ideal of R, then M is
prime.
ii) Give an example of a prime ideal that is not maximal.

Exercise 2.4.16 i) Find the maximal ideals of Zn.
ii) Can you find a prime ideal in Zn that is not maximal?

Exercise 2.4.17 Any proper ideal of Z is contained in a maximal ideal of
Z.

The assertion of Exercise 2.4.17 remains true if we replace Z by a commu-
tative ring R, but we will not prove this.
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Solutions to the Exercises on Section 2.4

Exercise 2.4.2 Show that {0R} is a prime ideal if and only if R is a
domain.
Solution: R is a domain if and only if ab = 0R implies a = 0R or b = 0R,
i.e. {0R} is a prime ideal.

Exercise 2.4.3 i) Show that {0} is a prime ideal of Z.
ii) Show that if P 6= {0} is a prime ideal of Z, then P = pZ, where p is
prime.
Solution: i) Z is a domain.
ii) If pZ, p 6= 0, is a prime ideal, then pZ 6= Z, i.e. p 6= ±1. Now pZ is a
prime ideal ⇔ if ab ∈ pZ then a ∈ pZ or b ∈ pZ ⇔ if p | ab then p | a or
p | b, so p is prime.

Exercise 2.4.5 Give examples to show that Proposition 2.4.4 ii) fails if
either f is not surjective, or P does not contain Ker(f).
Solution: Consider first the inclusion of Z in Q. Then 2Z is a prime ideal
of Z, but it is not even an ideal of Q. Now look at can : Z −→ Z2, which
is a surjective ring morphism. Then 3Z is a prime ideal of Z, it does not
contain Ker(can) = 2Z, and can(3Z) = Z2, so it is not a prime ideal.

Exercise 2.4.7 Prove Corollary 2.4.6 using the definition of a prime ideal.
Solution: By Exercise 2.4.2, R/P is a domain ⇔ {0R/P } is a prime ideal
⇔ (a+ P )(b+ P ) = P implies a+ P = P or b+ P = P ⇔ ab ∈ P implies
a ∈ P or b ∈ P ⇔ P is a prime ideal.

Exercise 2.4.8 Show that a prime ideal of Zn is of the form pZn, where
p ∈ Z is a prime divisor of n.
Solution: The prime ideals of Zn are images through the canonical sur-
jection can : Z −→ Zn of prime ideals of Z that contain Ker(can) = nZ,
i.e. pZ, where p | n and p is prime. Then can(pZ) = pZn.

Exercise 2.4.10 Show that {0R} is a maximal ideal if and only if R is a
field.
Solution: R is a field ⇔ {0R} and R are the only ideals of R ⇔ {0R} is
a maximal ideal.

Exercise 2.4.12 The following are equivalent for an ideal M of R:
i) M is maximal.
ii) R/M is a field.
Solution: Let can : R −→ R/M denote the canonical surjection.
i) ⇒ ii). We have that M = Ker(can), so if M is maximal we get that
can(M) = {M} = {0R/M} is also maximal, i.e. R/M is a field.
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ii) ⇒ i). If R/M is a field, then {0R/M} is maximal, so M = Ker(can) is
maximal.

Exercise 2.4.13 Prove Exercise 2.4.12 using the definition of a maximal
ideal.
Solution: i) ⇒ ii). If M is maximal, let x + M ∈ R/M , x + M 6= 0R/M ,
i.e. x /∈ M . Then I = M + xR = {a + xr | a ∈ M, r ∈ R} is an ideal
of R that strictly contains M (because x ∈ I and x /∈ M). Since M is
maximal, we have I = R, so 1 = a+ xr for some m ∈M and r ∈ R. Then
(x+M)(r +M) = xr +M = 1 +M , so x+M is a unit.
ii) ⇒ i). Let M ⊆ I ⊆ R, and assume M 6= I. Let x ∈ I, x /∈ M . Since
R/M is a field, x + M has an inverse r + M , i.e. xr + M = 1 + M , or
1− xr ∈M ⊆ I. Then 1− xr = b ∈ I, so 1 = xr + b ∈ I, i.e. I = R.

Exercise 2.4.14 M is a maximal ideal of Z if and only if M = pZ, where
p is prime.
Solution: The ideal M = pZ is maximal if and only if p 6= ±1 and if
pZ ⊆ dZ ⊆ Z then dZ = pZ or dZ = Z, if and only if d 6= 0, d 6= ±1, and
if d | p, then d = ±p or d = ±1, if and only if p is prime by Exercise 1.2.20
iii).

Exercise 2.4.15 i) Show that if M is a maximal ideal of R, then M is
prime.
ii) Give an example of a prime ideal that is not maximal.
Solution: i) If M is maximal, then R/M is a field, hence a domain, so M
is prime.
ii) The ideal {0} of Z is prime because Z is a domain, but not maximal,
because Z is not a field.

Exercise 2.4.16 i) Find the maximal ideals of Zn.
ii) Can you find a prime ideal in Zn that is not maximal?
Solution: We assume that n > 1.
i) will follow from ii).
ii) No, by Exercise 2.4.8 a prime ideal of Zn is of the form pZn = pZ/nZ, so
Zn/pZn = (Z/nZ)/(pZ/nZ, which is isomorphic to Zp by Corollary 2.3.12.
Therefore all prime ideals of Zn are maximal.

Exercise 2.4.17 Any proper ideal of Z is contained in a maximal ideal of
Z.
Solution: Any integer n 6= ±1 has a prime divisor p, so nZ ⊆ pZ.
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2.5 Rings of fractions

Recall that all rings considered here are commutative.

Definition 2.5.1 Let R be a commutative ring, and S ⊆ R. We say that
S is a multiplicative subset if the following conditions are satisfied:
MS1) 1R ∈ S.
MS2) if s, t ∈ S, then st ∈ S.
MS3) S does not contain any zero divisors.

Exercise 2.5.2 i) If P is a prime ideal of R, show that R \ P has proper-
ties MS1) and MS2).
ii) If R is a domain and P is a prime ideal of R, then R \ P is a multi-
plicative set.
iii) If R is a domain, show that S = R∗ = {r ∈ R | r 6= 0R} is a multi-
plicative set.
iv) If f ∈ R is not a zero divisor, then S = {fk | k ∈ N} is a multiplicative
set.
v) If R is a commutative ring, the set S = {s ∈ R | s is not a zero divisor}
is a multiplicative subset.
vi) Is {1, 3, 5} ⊆ Z6 a multiplicative set?
vii) Is {1, 3, 5, 7} ⊆ Z8 a multiplicative set?

Lemma 2.5.3 Let R be a commutative ring and S a multiplicative subset
in R. The relation on R× S defined by

(a, s) ∼ (b, t) ⇔ at = bs

is an equivalence relation.

Proof: The relation is clearly reflexive, i.e. for any (a, s) ∈ R × S we
have (a, s) ∼ (a, s), since as = as. If (a, s) ∼ (b, t), then at = bs, so
bs = at, and therefore (b, t) ∼ (a, s), i.e. the relation is symmetric. Finally,
if (a, s) ∼ (b, t) and (b, t) ∼ (c, u), then at = bs and bu = ct. Multiplying
the first equality by u and the second one by s, we get atu = bsu, and
bsu = cts. Consequently, we get atu = cts, so t(au− cs) = 0R. Since t ∈ S
is not a zero divisor, we get au = cs, i.e. (a, s) = (c, u), so the relation is
transitive, and the proof is complete.

The equivalence class of the element (a, s) ∈ R × S will be denoted by
a

s
and called a fraction. The element a will be called the numerator of the

fraction
a

s
, and the element s will be called the denominator of the fraction

a

s
. We remark that if we allow zero divisors in S, then the relation defined



2.5. RINGS OF FRACTIONS 93

in Lemma 2.5.3 is not an equivalence relation, because it is not transitive.
To see this, assume that a ∈ S and b ∈ R, b 6= 0R such that ab = 0R. Then
we have

b

1R
=
ab

a
=

0R
a

=
0R
1R
,

since it is easy to check each equality, however
b

1R
6= 0R

1R
, because b 6= 0R.

It is possible to allow zero divisors in S by changing the definition of the
equivalence relation on R× S, but we will not do this here.

Proposition 2.5.4 Let R be a commutative ring, S a multiplicative subset
in R, and denote by

S−1R =
R× S
∼

=
{a
s

∣∣∣ (a, s) ∈ R× S
}

the factor set of the set R× S relative to the equivalence relation ∼. Then
S−1R becomes a commutative ring with the following operations:

a

s
+
b

t
=
at+ bs

st
,

and
a

s
· b
t

=
ab

st
.

Moreover, the map

ϕS : R −→ S−1R, ϕ(a) =
a

1R

is an injective ring morphism that sends each s ∈ S to a unit in S−1R. We
will call ϕS the canonical injection.

Proof: We first need to show that the two operations are well defined, i.e.
the definitions do not depend on the representatives chosen. This means

that if
a

s
=
a′

s′
and

b

t
=
b′

t′
, we need to prove that

at+ bs

st
=
a′t′ + b′s′

s′t′
,

and
ab

st
=
a′b′

s′t′
.

In order to prove the first equality, we need to show that (at + bs)s′t′ =
(a′t′+b′s′)st. We know that as′ = a′s and bt′ = b′t, so, after multiplying the
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first by tt′ and the second by ss′, we get ats′t′ = a′t′st and bss′t′ = b′s′st,
which can be added to obtain the desired equality.
In order to prove the second equality, we need to show that abs′t′ = a′b′st,
which can be obtained by multiplying as′ = a′s and bt′ = b′t.
It may be immediately checked that the addition of fractions defined above

is associative and commutative. Then we have that 0S−1R =
0R
1R

=
0R
s

for

any s ∈ S, and the opposite of
a

s
is
−a
s

, so S−1R is an abelian group with

+.
The multiplication of fractions is obviously associative and commutative,

and 1S−1R =
1R
1R

=
s

s
for any s ∈ S. Distributivity is also easy to check, so

S−1R is a commutative ring.

It is obvious that ϕS is a ring morphism, and if
a

1R
=

0R
1R

, then a = 0R, i.e.

Ker(ϕS) = {0R}, so ϕS is injective.

Finally, if s ∈ S, then ϕ(s) =
s

1R
is a unit with inverse (ϕ(s))−1 =

1R
s

.

Definition 2.5.5 We will call the pair (S−1R,ϕS), defined in Proposition
2.5.4, the ring of fractions of R relative to S (or with denominators in S).

The ring of fractions has the following universal property:

Theorem 2.5.6 (The Universal Property of the Ring of Fractions)
Let R be a commutative ring, S a multiplicative subset in R, and (S−1R,ϕS)
the ring of fractions of the ring R with denominators in S. Then for any
commutative ring A, and any ring morphism ψ : R −→ A, with the property
that ψ(s) is a unit in A for any s ∈ S, there exists a unique ring morphism
θ : S−1R −→ A such that ψ = θϕS, which means that the diagram

R

J
J
J
J
J
Ĵ

S−1R

θ

A
?

-

ψ

ϕS

is commutative.

Proof: Define θ
(a
s

)
= ψ(a)ψ(s)−1. The definition is correct, because if

a

s
=
a′

s′
, then as′ = a′s, so ψ(as′) = ψ(a′s), or ψ(a)ψ(s′) = ψ(a′)ψ(s), and
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so, after multiplying by ψ(s)−1ψ(s′)−1 we get ψ(a)ψ(s)−1 = ψ(a′)ψ(s′)−1.
We check that θ is a ring morphism:

θ

(
a

s
+
b

t

)
= θ

(
at+ bs

st

)
= ψ(at+ bs)ψ(st)−1

= (ψ(at) + ψ(bs))ψ(s)−1ψ(t)−1

= ψ(a)ψ(t)ψ(t)−1ψ(s)−1 + ψ(b)ψ(s)ψ(s)−1ψ(t)−1

= ψ(a)ψ(s)−1 + ψ(b)ψ(t)−1

= θ
(a
s

)
+ θ

(
b

t

)
,

θ

(
a

s
· b
t

)
= θ

(
ab

st

)
= ψ(ab)ψ(st)−1

= ψ(a)ψ(b)ψ(s)−1ψ(t)−1

= ψ(a)ψ(s)−1ψ(b)ψ(t)−1

= θ
(a
s

)
θ

(
b

t

)
,

and

θ

(
1R
1R

)
= ψ(1R)ψ(1R)−1 = 1X1X = 1X .

We have that

θ(ϕS(a)) = θ

(
a

1R

)
= ψ(a)ψ(1R)−1 = ψ(a)1X = ψ(a),

so ψ = θϕS .
We now show that θ is unique. If θ′ is another morphism with the property
that ψ = θ′ϕS , we have

θ′
(a
s

)
= θ′

(
a

1R

)
θ′
(

1R
s

)
= θ′

(
a

1R

)
θ′
(
s

1R

)−1

= θ′(ϕS(a))θ′(ϕS(s))−1

= ψ(a)ψ(s)−1

= θ
(a
s

)
.
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The following corollary says that the ring of fractions is unique, up to an
isomorphism, among the rings satisfying the same universal property.

Corollary 2.5.7 If the pair (T, ξ), where ξ : R −→ T sends the elements
of S to units in T , satisfies the universal property in Theorem 2.5.6, then
there exists an isomorphism θ : S−1R −→ T such that θϕS = ξ, i.e. the
diagram

R

J
J
J
J
J
Ĵ

S−1R

θ

T
?

-

ξ

ϕS

is commutative.

Proof: By the universal property for (S−1R,ϕS) there exists a ring mor-
phism θ : S−1R −→ T such that θϕS = ξ, and by the universal property
for (T, ξ) there exists a ring morphism θ′ : T −→ S−1R such that θ′ξ = ϕS .
It follows that θ′θϕS = θ′ξ = ϕS , and θθ′ξ = θϕS = ξ. Since we also have
that IdS−1RϕS = ϕS and IdT ξ = ξ, by the uniqueness of the morphism in
the universal property we get that θθ′ = IdT and θ′θ = IdS−1R, i.e. θ and
θ′ are isomorphisms inverse to each other.

Definition 2.5.8 If R is a domain, P is a prime ideal of R, and S = R\P ,
the ring of fractions (S−1R,ϕS) is denoted by (RP , ϕP ), and is called the
localization of R at the prime ideal P .

We will refer to the ring of fractions (S−1R,ϕS) simply as S−1R, with
the understanding that it always comes with the injective ring morphism

ϕS : R −→ S−1R, ϕ(a) =
a

1R
.

Definition 2.5.9 If S is the multiplicative subset of Exercise 2.5.2 v), then
we will call the ring of fractions S−1R the total ring of fractions of the ring
R.

Exercise 2.5.10 Show that the total ring of fractions of a domain R is a
field, called the field of fractions of the domain R. Because of Definition
2.5.8, the field of fractions of the domain R is sometimes denoted by R{0R}.
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Exercise 2.5.11 If S is the multiplicative subset of Exercise 2.5.2 vii),
show that S−1Z8 ' Z8.

Exercise 2.5.12 If S consists of units of R, show that S−1R ' R.

Exercise 2.5.13 i) If I is an ideal of R, show that

Ie =
{a
s

∣∣∣a ∈ I}
is an ideal of S−1R.
ii) If J is an ideal of S−1R, show that

Jc = ϕ−1
S (J) = {a ∈ R | ϕS(a) =

a

1R
∈ J}

is an ideal of R, and J = Jce.
iii) Show that there is a bijective correspondence between the prime ideals
of S−1R and the prime ideals of R that are disjoint from S.
iv) Show that if I is not prime we can have I ∩ S = ∅ and I 6= Iec.
v) Show that a ring of fractions of a domain is also a domain.
vi) Find the maximal ideals of RP , where R is a domain and P is prime.

We now show that when constructing a ring of fractions, we can maximize
the set of denominators, i.e. the multiplicative set S, in the sense that we
can assume that all divisors of elements in S are also in S.

Definition 2.5.14 We say that the multiplicative subset S is saturated if
from ST ∈ S it follows that both s and t are in S. This means that for any
t ∈ S and s | t we get that s ∈ S.

Exercise 2.5.15 Let S be a multiplicative set in the ring R. Then:
i)

Ssat = {s ∈ R | ∃t ∈ S, s | t}

is a saturated multiplicative set containing S, and S−1R ' S−1
satR.

ii) If S = {1}, then Ssat = U(R).
iii) If P is a prime ideal in the domain R, and S = R \ P (see Exercise
2.5.2 ii)), then S = Ssat.

Now we see that the condition 1 ∈ S in Definition 2.5.1 could have been
replaced by the weaker condition that S is non-empty. In that case, we
could have defined the canonical injection by ϕ(a) = as

s for s ∈ S and
check that the definition does not depend on the element s.
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We now extend the definition of a maximal ideal as follows: if Γ is a set of
ideals of the ring R, we say that M ∈ Γ is maximal in Γ if it is not properly
contained in any other ideal in Γ. A maximal ideal in the set of all proper
ideals of R is a maximal ideal in the sense of Definition 2.4.9. One way to
show that maximal ideals in Γ 6= ∅ exist is to use Zorn’s Lemma, which
says that if for any non-empty chain of ideals {Ii}i∈Λ (this means that for
any i, j ∈ Λ we either have Ii ⊆ Ij or Ij ⊆ Ii) there exists a J ∈ Γ such
that Ii ⊆ J ∀i ∈ Λ, then Γ has at least one maximal element.

We illustrate the use of Zorn’s Lemma with the following result, due to
Krull. This is a device that produces prime ideals starting with multiplica-
tive subsets.

Proposition 2.5.16 Let S be a multiplicative subset in the commutative
ring R, and I an ideal of R such that I ∩ S = ∅. Then the set

Γ = {J ideal of R | I ⊆ J, J ∩ S = ∅}

has maximal elements, which are prime ideals of R.

Proof: We use Zorn’s Lemma. We have that I ∈ Γ, so Γ 6= ∅. If {Ii}i∈Λ

is a chain in Γ, then J = ∪i∈ΛIi is an ideal of R, and

J ∩ S = (∪i∈ΛIi) ∩ S = ∪i∈Λ(Ii ∩ S) = ∅,

which shows that J ∈ Γ. Since it is clear that Ii ⊆ J ∀i ∈ Λ, then Γ has at
least one maximal element P .

We show that P is a prime ideal. It is clear that P 6= R because 1 /∈ P . If we
now take x, y ∈ R such that x /∈ P and y /∈ P , we have that P ( P + xR,
and so P + xR 6= ∅. Similarly, P ( P + yR, and so P + yR 6= ∅. Let
s = p1 + xa1 and t = p2 + ya2, where s, t ∈ S and p1, p2 ∈ P . Then

st = (p1 + xa1)(p2 + ya2) ∈ P,

because after expanding, the first three products have a factor in P and
the last one is a multiple of xy. We have thus found an element st ∈ P ∩S,
a contradiction.

Exercise 2.5.17 Show that any saturated multiplicative subset is the com-
plement of a union of prime ideals.
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Solutions to the Exercises on Section 2.5

Exercise 2.5.2 i) If P is a prime ideal of R, show that R\P has properties
MS1) and MS2).
ii) If R is a domain and P is a prime ideal of R, then R \ P is a multi-
plicative set.
iii) If R is a domain, show that S = R∗ = {r ∈ R | r 6= 0R} is a multi-
plicative set.
iv) If f ∈ R is not a zero divisor, then S = {fk | k ∈ N} is a multiplicative
set.
v) If R is a commutative ring, the set S = {s ∈ R | s is not a zero divisor}
is a multiplicative subset.
vi) Is {1, 3, 5} ⊆ Z6 a multiplicative set?
vii) Is {1, 3, 5, 7} ⊆ Z8 a multiplicative set?
Solution: i) 1R /∈ P because P 6= R. If a /∈ P and b /∈ P , then ab /∈ P by
the definition of a prime ideal.
ii) follows from i) and the fact that there are no zero divisors in R.
iii) follows from ii), because {0R} is a prime ideal in R.
iv) 1R = f0 ∈ S. If k, l ∈ N, then fkf l = fk+l ∈ S. If fka = ffk−1a = 0R,
then fk−1a = 0R since f is not a zero divisor, and we can continue until
we get a = 0R.
v) 1R is not a zero divisor. It is clear that if a, b are not zero divisors, then
ab is not a zero divisor.
vi) No, 3 is a zero divisor.
vii) Yes, this is actually the set of units in Z8.

Exercise 2.5.10 Show that the total ring of fractions of a domain R is a
field, called the field of fractions of the domain R. Because of Definition
2.5.8, the field of fractions of the domain R is sometimes denoted by R{0R}.

Solution: If
a

b
6= 0R

1R
, it follows that a 6= 0R, so

(a
b

)−1

=
b

a
.

Exercise 2.5.11 If S is the multiplicative subset of Exercise 2.5.2 vii),
show that S−1Z8 ' Z8.
Solution: S consists of units of Z8, see the solution to Exercise 2.5.12
below.

Exercise 2.5.12 If S consists of units of R, show that S−1R ' R.
Solution: Both (R, IdR) and (S−1R,ϕS) satisfy the same universal prop-
erty, so the assertion follows from Corollary 2.5.7.
This can also be proved without using the universal property: we will

prove that the injective ring morphism ϕS : R −→ S−1R, ϕS(r) =
r

1R
, is
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an isomorphism. To do this it is enough to prove that it is surjective. Let
r

s
∈ S−1R. Then ϕS(rs−1) =

rs−1

1R
=
r

s
, because rs−1s = r1R.

Exercise 2.5.13 i) If I is an ideal of R, show that

Ie =
{a
s

∣∣∣a ∈ I}
is an ideal of S−1R.
ii) If J is an ideal of S−1R, show that

Jc = ϕ−1
S (J) = {a ∈ R | ϕS(a) =

a

1R
∈ J}

is an ideal of R, and J = Jce.
iii) Show that there is a bijective correspondence between the prime ideals
of S−1R and the prime ideals of R that are disjoint from S.
iv) Show that if I is not prime we can have I ∩ S = ∅ and I 6= Iec.
v) Show that a ring of fractions of a domain is also a domain.
vi) Find the maximal ideals of RP , where R is a domain and P is prime.

Solution: i) It is clear that
0R
1R
∈ Ie. Now if

a

s
,
b

t
∈ Ie, then

a

s
+
b

t
=
at+ bs

st
∈ Ie,

because at+bs ∈ I. Finally, if
a

s
∈ Ie and

r

t
∈ S−1R, then

a

s
· r
t

=
ar

st
∈ Ie,

because ar ∈ I.
ii) The first assertion follows from Proposition 2.2.11.
We now prove

J = Jce. (2.1)

If
a

s
∈ J , then

s

1R
· a
s

=
a

1R
∈ J , so a ∈ Jc, and therefore

a

s
∈ Jce. Con-

versely, if
a

s
∈ Jce, then a ∈ Jc, and so

a

1R
∈ J . But then

a

s
=

a

1R
· 1R
s
∈ J .

iii) If P is a prime ideal of R and P ∩ S = ∅, then

P e =
{a
s

∣∣∣a ∈ P}
is a proper ideal of S−1R. Indeed, if

1R
1R

=
a

s
∈ P e, then a = s ∈ P ∩ S,

a contradiction. Note that if s ∈ P ∩ S, then P e = S−1R, because P e

contains the unit
s

1R
(we say that in this case P “explodes” in S−1R). P e
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is a prime ideal, because if
a

s
· b
t

=
ab

st
∈ P e, then ab ∈ P , so a ∈ P or

b ∈ P , i.e.
a

s
∈ P e or

b

t
∈ P e.

Now if Q is a prime ideal of S−1R,

Qc = ϕ−1
S (Q) = {a ∈ R | ϕS(a) =

a

1R
∈ Q}

satisfies Qc ∩ S = ∅, because the images of elements in S through ϕS are
units in S−1R. By Proposition 2.4.4 i), Qc is a prime ideal of R.
If P is a prime ideal of R and P ∩ S = ∅, then we have that

P ec = P, (2.2)

because a ∈ P ⇒ a

1R
∈ P e. Conversely, if

a

1R
∈ P e, then

a

1R
=
b

s
∈ P e,

where b ∈ P and s ∈ S. Then as = b ∈ P , and since s /∈ P , we have that
a ∈ P .
Now (2.2) and (2.1) show that P 7→ P e and Q 7→ Qc are bijections inverse
to each other.
iv) Take R = Z, I = 6Z, and S = {1, 2, 4, 8, . . . , 2n, . . .}. Then I ∩ S = ∅
and 3 ∈ Iec, because

3

1
=

6

2
∈ Ie, but 3 /∈ I.

v) We know that {0R} is a prime ideal of R, so by i) {0R}e is also prime.
vi) The bijective correspondences in i) preserve inclusions, so all prime
ideals in RP are contained in P e. Indeed, if P1 is a prime ideal of R such
that P1 ∩ (R \ P ) = ∅, i.e. P1 ⊆ P , then P e1 ⊆ P e. If P e1 is maximal, then
P e1 = P e. In conclusion, RP has only one maximal ideal (we say it is a
”local” ring), namely P e, which is also denoted by PP .

Exercise 2.5.15 Let S be a multiplicative set in the ring R. Then:
i)

Ssat = {s ∈ R | ∃t ∈ S, s | t}

is a saturated multiplicative set containing S, and S−1R ' S−1
satR.

ii) If S = {1}, then Ssat = U(R).
iii) If P is a prime ideal in the domain R, and S = R \ P (see Exercise
2.5.2 ii)), then S = Ssat.
Solution: i) Let s1, s2 ∈ Ssat, and t1, t2 ∈ S such that s1 | t1 and s2 | t2.
Then s1s2 | t1t2 ∈ S. If s ∈ Ssat is a zero divisor, and s | t ∈ S, then t is
also a zero divisor, a contradiction.
Let now ϕ : R −→ S−1R and ϕ′ : R −→ S−1

satR denote the canonical
injections. Since S ⊆ Ssat, by Theorem 2.5.6 there exists a ring morphism
θ : S−1R −→ S−1

satR, θ(at ) = a
t . Since θ is clearly injective, let a

s ∈ S
−1
satR,
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and t ∈ S, t = sr. Then θ(arsr ) = ar
sr = a

s , so θ is also surjective.
ii) If u ∈ U(R), then v | u if and only if v ∈ U(R).
iii) ab /∈ P if and only if a /∈ P and b /∈ P .

Exercise 2.5.17 Show that any saturated multiplicative subset is the com-
plement of a union of prime ideals.
Solution: We need to show that any x /∈ S belongs to a prime disjoint
from S. If x /∈ S, then xR ∩ S = ∅, because S is saturated. If we take
I = xR in Proposition 2.5.16, we get that x belongs to a maximal element,
which is a prime ideal disjoint from S.
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2.6 Polynomial rings

Recall that all rings are commutative, even if the constructions in this
section may be performed without this condition. If R is a ring, we recall
that RN is the set of all functions from N to R. If f is such a function,
we can refer to it as a sequence: f = (a0, a1, . . . , an, . . .), where an = f(n)
for all n ∈ N. Since (R,+) is an abelian group, we recall from Exercise
1.4.5 xix) that RN is an abelian group with the following operation. If
f = (a0, a1, . . . , an, . . .) and g = (b0, b1, . . . , bn, . . .), then

f + g = (a0 + b0, a1 + b1, . . . , an + bn, . . .).

Also recall that the zero element is (0R, 0R, . . .), and the opposite of the
function (a0, a1, . . .) is (−a0,−a1, . . . ). We will introduce a new operation
on RN.

Proposition 2.6.1 If f = (a0, a1, . . . , an, . . .) and g = (b0, b1, . . . , bn, . . .),
then

fg = (c0, c1, . . . , cn, . . .), cn =
∑
i+j=n

aibj , n ∈ N

is commutative, associative, distributive with respect to addition, and has
identity element (1R, 0R, 0R, . . .).

Proof: This multiplication is obviously commutative, because the multi-
plication in R is commutative. Let

h = (c0, c1, . . .), (fg)h = (d0, d1, . . . , dn, . . .),

and

f(gh) = (e0, e1, . . . , en, . . .).
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We have

dn =
∑
k+l=n

(
∑
i+j=k

aibj)cl

=
∑
k+l=n

∑
i+j=k

(aibj)cl

=
∑

i+j+l=n

(aibj)cl

=
∑

i+j+l=n

ai(bjcl)

=
∑
i+k=n

∑
j+l=k

ai(bjcl)

=
∑
i+k=n

ai(
∑
j+l=k

bjcl)

= en

for all n ∈ N, so the multiplication is associative. Now

f(g + h) = (a0(b0 + c0), . . . ,
∑
i+j=n

ai(bj + cj), . . .)

= (a0b0 + a0c0, . . . ,
∑
i+j=n

aibj +
∑
i+j=n

aicj , . . .)

= fg + fh,

so multiplication is distributive with respect to addition.
It is easy to see that (1R, 0R, 0R, . . .) is the identity element for multiplica-
tion (writing the element on position j as δ0,j will make this even easier).

Definition 2.6.2 (RN,+, ·) is a commutative ring. If we denote

X = (0R, 1R, 0R, . . .) (2.3)

(i.e. X : N −→ R is the function that sends 1 to 1R and all the other
natural numbers to 0R), then we can check that

Xn = (0R, . . . , 0R, 1R, 0R, . . .), n times 0R in the beginning,

and an element f = (a0, a1, . . . , an, . . .) can be written as

f =

∞∑
i=0

aiX
i,



2.6. POLYNOMIAL RINGS 105

where X0 = 1R. We will call f a formal series (or formal power series),
and the elements ai the coefficients of the series f . We call a0 the free term
or the constant term of f . We will denote

R[[X]] = RN,

and we will call it the ring of formal series in one indeterminate with coef-
ficients in R. We will call the injective ring morphism

ϕ : R −→ R[[X]], ϕ(a) = (a, 0R, . . .)

the canonical injection.

Exercise 2.6.3 Check that the canonical injection

ϕ : R −→ R[[X]], ϕ(a) = (a, 0R, . . .)

is an injective ring morphism.

Remark 2.6.4 Note that it does not make much sense to call X a “vari-
able” (even though you might see it called this way in some texts), because it
does not vary, it does not take any values. In fact, X is a function defined
on N with values in R, and its definition is given in (2.3).

Definition 2.6.5 A formal series with only finitely many nonzero coeffi-
cients is called a polynomial. The sum and product of two polynomials are
also polynomials, so the polynomials form a subring of R[[X]], denoted by
R[X]. It is clear that the canonical injection ϕ takes values in R[X]. If we
identify 0R by ϕ(0R) and 1R by ϕ(1R), then 0R[X] = 0R and 1R[X] = 1R.
We call R[X] the polynomial ring in one indeterminate with coefficients in
R. Note that R[X] always comes with ϕ : R −→ R[X], which gives a way
of regarding elements of R as polynomials (called constants).

Exercise 2.6.6 Check that R[X] is a subring of R[[X]].

A polynomial f ∈ R[X] may be written uniquely as

f = a0 + a1X + a2X
2 + . . . anX

n,

where aiX
i = ϕ(ai)X

i = (0R, . . . , 0R, ai, 0R, . . .), i times 0R in the begin-
ning.

Exercise 2.6.7 Why are the coefficients of a polynomial unique?
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A polynomial of the form aXi is called a monomial. A formal series is a
formal sum of monomials, and a polynomial is a (finite) sum of monomials.

Definition 2.6.8 If f ∈ R[X], f 6= 0R, then f may be written uniquely as

f = a0 + a1X + a2X
2 + . . . anX

n, an 6= 0R.

We call n the degree of f , and we write deg(f) = n (in this case an is
called the leading coefficient of f). Note that the zero polynomial does not
have a degree.

Exercise 2.6.9 Let f, g ∈ R[X], f, g 6= 0R. Then, if f + g and fg are
nonzero, we have:
i) deg(f + g) ≤ max{deg(f), deg(g)}. Give an example when we have =
and an example when we have <.
ii) deg(fg) ≤ deg(f) + deg(g). Give an example when we have = and an
example when we have <.

Exercise 2.6.10 i) Show that f ∈ R[X] is a zero divisor if and only if
there exists a ∈ R, a 6= 0R such that af = 0R.
ii) Find the zero divisors of degree 2 in Z6[X].
iii) If R is a domain, then R[X] is a domain.

Exercise 2.6.11 An element a ∈ R is called nilpotent if there exists n ∈ N
such that an = 0R.
i) Show that the set of nilpotent elements in R is an ideal, called the nil-
radical of R, and denoted by N (R).
ii) Find the nilpotent elements in Z12.
iii) Show that f ∈ R[X] is nilpotent if and only if all its coefficients are
nilpotent.
iv) Find the nilpotents of degree 1 in Z12[X].

Exercise 2.6.12 i) Show that if u is a unit and x is nilpotent, then u+ x
is a unit.
ii) Show that f ∈ R[X] is a unit if and if only the constant term a0 is a
unit in R and the other coefficients are nilpotent.
iii) Find the units of degree 1 in Z12[X].
iv) If R is a domain, the units in R[X] are the units in R.
v) If F is a field, the units in F [X] are the nonzero constants.

Like the factor set, the factor group, the factor ring, and the ring of frac-
tions, the polynomial ring also satisfies a universal property.
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Theorem 2.6.13 Let R be a commutative ring, R[X] the polynomial ring,
and ϕ : R −→ R[X] the canonical injection. Then for any commutative
ring A, any ring morphism ψ : R −→ A, and any x ∈ A, there exists a
unique ring morphism θ : R[X] −→ A such that θ(X) = x and θϕ = ψ, i.e.
such that the diagram

R

J
J
J
J
J
Ĵ

R[X]

θ

A
?

-

ψ

ϕ

is commutative.

Exercise 2.6.14 Prove Theorem 2.6.13.

(Hint: If f ∈ R[X], f =

n∑
i=0

aiX
i =

n∑
i=0

ϕ(ai)X
i, put θ(f) =

n∑
i=0

ψ(ai)x
i.)

The universal property may be used to produce new examples of rings. If
we take R = Z, A = C, ψ : Z −→ C the inclusion, and x = i, we denote
Im(θ) by Z[i], and call it the ring of Gauss integers. Using the fact that
i2 = −1, we have

Z[i] = {a+ bi | a, b ∈ Z}.
Now take R = Z, A = C, ψ : Z −→ C the inclusion, and x = i

√
3. We

denote Im(θ) by Z[i
√

3]. Using the fact that (i
√

3)2 = −3, we have

Z[i
√

3] = {a+ bi
√

3 | a, b ∈ Z}.

If we take R = Z, A = R, ψ : Z −→ R the inclusion, and x =
√

2, we
denote Im(θ) by Z[

√
2]. Using the fact that (

√
2)2 = 2, we have

Z[
√

2] = {a+ b
√

2 | a, b ∈ Z}.

Exercise 2.6.15 Show that Z[i], Z[i
√

3], and Z[
√

2] are domains, and that
their fields of fractions are (in order):

Q(i) = {a+ bi | a, b ∈ Q},

Q(i
√

3) = {a+ bi
√

3 | a, b ∈ Q},
and

Q(
√

2) = {a+ b
√

2 | a, b ∈ Q}.
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The following result is a partial version for rings of Proposition 1.1.14 and
Proposition 1.5.9:

Proposition 2.6.16 Let f : R −→ R′ be a morphism of commutative
rings. Then the following assertions hold:
i) f is injective if and only if given any commutative ring A, and ring mor-
phisms g, h : A −→ R such that fg = fh, it follows that g = h.
ii) If f is surjective, then given any commutative ring A, and ring mor-
phisms g, h : R′ −→ A such that gf = hf , it follows that g = h.

Proof: i) If f is injective, the condition holds by Proposition 1.1.14 or
Proposition 1.5.9. Conversely, assume that the condition holds and x1, x2 ∈
R are distinct elements such that f(x1) = f(x2). We take A = R[X], and
use Theorem 2.6.13 to find ring morphisms g, h : R[X] −→ R such that
g(X) = x1 and h(X) = x2. Then g 6= h, but fg = fh, a contradiction.
ii) If f is surjective, the condition holds by Proposition 1.1.14 or Proposition
1.5.9.

Remark 2.6.17 The converse of Proposition 2.6.16 ii) is false, because the
inclusion f : Z −→ Q satisfies the condition, but is not surjective. Indeed,
if A is a commutative ring, and g, h : Q −→ A such that gf = hf , let
a

b
∈ Q. Then

g
(a
b

)
= g

(
a

1
· 1

b

)
= g

(
a

1

(
b

1

)−1
)

= g
(a

1

)
g

((
b

1

)−1
)

= gf(a)gf(b)−1

= hf(a)hf(b)−1

= h
(a

1

)
h

((
b

1

)−1
)

= h

(
a

1

(
b

1

)−1
)

= h

(
a

1
· 1

b

)
= h

(a
b

)
,
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so g = h.

Another application of the universal property is the definition of a poly-
nomial function. If a ∈ R, by the universal property there exists a ring
morphism θ : R[X] −→ R such that θ(X) = a. If f ∈ R[X], we will denote
θ(f) by f(a) (when we do this we say that we specialize X to a). In this
way, the polynomial f defines a function f̃ : R −→ R, f̃(x) = f(x) for
x ∈ R. If f = a0 + a1X + a2X

2 + . . . anX
n, we have that

f̃(x) = f(x) = a0 + a1x+ a2x
2 + . . . anx

n.

Note that in this notation, x is a variable, it can be any element of R.
For polynomial functions, unlike polynomials, it is no longer true that if
f̃ = 0R (the constant function 0R) then all coefficients are also equal to
zero. An example is the polynomial function associated to the polynomial
f = X2 + X ∈ Z2[X]. The associated function is f̃ : Z2 −→ Z2, f̃(x) =
x2 +x for x ∈ Z2. Then f̃(0) = 02 +0 = 0, and f̃(1) = 12 +1 = 1+1 = 0, so
f̃ = 0, even though f 6= 0. As we will see later (look after Exercise 3.3.9),
this cannot happen if R is an infinite domain. Note that in general f is a
function from N to R, while f̃ is a function from R to R (or from A to A,
where A is a ring to which we have a ring morphism from R). Sometimes
the polynomial functions are called simply polynomials. For example, the
“polynomials” studied in high school are in fact polynomial functions.

Exercise 2.6.18 Let I be an ideal of R. We denote by IR[X] the ideal of
R[X] generated by the set I:

IR[X] = {a1f1 + . . .+ akfk | k ≥ 1, ai ∈ I, fi ∈ R[X], 1 ≤ i ≤ k}.

i) Show that IR[X] is an ideal of R[X].
ii) Show that R[X]/(IR[X]) ' (R/I)[X].
iii) If P is a prime ideal of R, show that PR[X] is a prime ideal of R[X].

Exercise 2.6.19 Let R be a commutative ring, h ∈ R not a zero divisor,
and S = {1, h, h2, . . .}. Then

S−1R ' R[X]/((hX − 1R)R[X]),

where (hX − 1R)R[X] denotes the principal ideal of R[X] generated by
hX − 1R:

(hX − 1R)R[X] = {(hX − 1R)f | f ∈ R[X]}.

Definition 2.6.20 If F is a field, the field of fractions of the domain F [X]
is denoted by F (X) and is called the field of rational fractions in one inde-
terminate with coefficients in F .
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Exercise 2.6.21 Show that the field of fractions of the domain Z[X] is
Q(X).
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Solutions to the Exercises on Section 2.6

Exercise 2.6.3 Check that the canonical injection

ϕ : R −→ R[[X]], ϕ(a) = (a, 0R, . . .)

is an injective ring morphism.
Solution: We have ϕ(a+ b) = (a+ b, 0R, . . .) = (a, 0R, . . .) + (b, 0R, . . .) =
ϕ(a) + ϕ(b), and ϕ(ab) = (ab, 0R, . . .) = (a, 0R, . . .)(b, 0R, . . .) = ϕ(a)ϕ(b).
It is also clear that ϕ(1R) = (1R, 0R, . . .) = 1R[[X]], and Ker(ϕ) = {0R}, so
ϕ is injective.

Exercise 2.6.6 Check that R[X] is a subring of R[[X]].
Solution: Clearly (1R, 0R, . . .) ∈ R[X]. If f, g ∈ R[X], assume that the
coefficients of Xk in f and g are zero for k ≥ n. Then the coefficient of Xk

in f +g is zero for k ≥ n, and the coefficient of Xk in fg is zero for k ≥ 2n.

Exercise 2.6.7 Why are the coefficients of a polynomial unique?
Solution: A polynomial is a function defined on N with values in the ring
R. The coefficients of the polynomial are the values of the function.

Exercise 2.6.9 Let f, g ∈ R[X], f, g 6= 0R. Then, if f + g and fg are
nonzero, we have:
i) deg(f + g) ≤ max{deg(f), deg(g)}. Give an example when we have =
and an example when we have <.
ii) deg(fg) ≤ deg(f) + deg(g). Give an example when we have = and an
example when we have <.
Solution: Let f = a0 +a1X+ . . .+anX

n, and g = b0 +b1X+ . . .+bmX
m,

where an, bm are nonzero.
i) The coefficient of Xk in f+g is equal to ak+bk, so if k > max{n,m} it is
zero. If f = X, g = 1 ∈ R[X], then f+g = X+1 has degree 1 = max{1, 0}.
If f = −X + 1, g = X ∈ Z2[X], then f + g = 1 has degree 0 < max{1, 1}.
ii) The coefficient of Xk in fg is equal to

∑
i+j=k

aibj , so if k > n + m it

is zero. If f = X, g = 1 ∈ R[X], then fg = X has degree 1 = 1 + 0. If
f = 2X + 1, g = 2X ∈ Z4[X], then fg = 2X has degree 1 < 1 + 1.

Exercise 2.6.10 i) Show that f ∈ R[X] is a zero divisor if and only if
there exists a ∈ R, a 6= 0R such that af = 0R.
ii) Find the zero divisors of degree 2 in Z6[X].
iii) If R is a domain, then R[X] is a domain.
Solution: i) (Scott) Let f = a0 +a1X+. . .+anX

n. Assume that fg = 0R,
g 6= 0R, deg(g) = m and m is the least possible. If g = b0 + b1X + . . . +
bmX

m, then anbm = 0R, and since f(ang) = 0R it follows that ang = 0R
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by the minimality of m. We now write 0R = fg = anX
ng + an−1X

n−1g +
. . . + a1Xg + a0g, and since ang = 0R, we get an−1bm = 0R, and so again
an−1g = 0R by the minimality of m. We continue until we get aig = 0R for
i = 0, . . . , n, which means bmf = 0R, i.e. m = 0. The converse implication
is obvious.
ii) If f = aX2 + bX + c ∈ Z6, a 6= 0, is a zero divisor, by i), there is a
d 6= 0 in Z6 such that ad = bd = cd = 0. If d = 2 or d = 4, we have that
a = 3, b is 0 or 3, and c is 0 or 3, so in this case we have 1 · 2 · 2 = 4
polynomials: 3X2,3X2 + 3, 3X2 + 3X, and 3X2 + 3X+ 3. If d = 3 we have
that a is 2 or 4, b is 0 or 2 or 4, and c is 0 or 2 or 4, so in this case we have
2 ·3 ·3 = 18 polynomials: 2X2, 2X2 +2, 2X2 +4, 2X2 +2X, 2X2 +2X+2,
2X2 + 2X + 4, 2X2 + 4X, 2X2 + 4X + 2, 2X2 + 4X + 4, 4X2, 4X2 + 2,
4X2 +4, 4X2 +2X, 4X2 +2X+2, 4X2 +2X+4, 4X2 +4X, 4X2 +4X+2,
and 4X2 + 4X + 4.
iii) This is easy, it does not require the use of i): if f and g are nonzero
polynomials, an 6= 0R and bm 6= 0R are their respective leading coefficients,
then anbm 6= 0R is the leading coefficient of fg.

Exercise 2.6.11 An element a ∈ R is called nilpotent if there exists n ∈ N
such that an = 0R.
i) Show that the set of nilpotent elements in R is an ideal, called the nil-
radical of R, and denoted by N (R).
ii) Find the nilpotent elements in Z12.
iii) Show that f ∈ R[X] is nilpotent if and only if all its coefficients are
nilpotent.
iv) Find the nilpotents of degree 1 in Z12[X].
Solution: i) It is clear that 0R is nilpotent, and if an = 0R, then (ax)n =
anxn = 0R for any x ∈ R. If an = 0R and bm = 0R, then by Exercise 2.1.2
iv) we have that (a+ b)k = 0R for any k > n+m.
ii) It is easy to see that if a ∈ Z12 is nilpotent, then a has to be divisible
by both 2 and 3, so 6 and 0 are the only nilpotent elements in Z12.
iii) Let f = a0 + a1X + . . . + anX

n. Assume that ai ∈ N (R) ⊆ N (R[X])

for 0 ≤ i ≤ n. Then aiX
i ∈ N (R[X]), so f =

n∑
i=0

aiX
i ∈ N (R[X]). Con-

versely, assume f ∈ N (R[X]), fk = 0R. Then the leading coefficient of fk

is akn = 0R. So an ∈ N (R) ⊆ N (R[X]), and therefore anX
n ∈ N (R[X]).

Thus f − anXn ∈ N (R[X]), and we can continue until we get a0 ∈ N (R).
iv) By iii), a nilpotent polynomial of degree 1 in Z12[X] is of the form
aX + b, where a, b are nilpotent and a 6= 0. By ii) we get that a = 6 and
b = 0 or b = 6. In conclusion, there are two nilpotent polynomials of degree
1 in Z12[X]: 6X and 6X + 6.
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Exercise 2.6.12 i) Show that if u is a unit and x is nilpotent, then u+ x
is a unit.
ii) Show that f ∈ R[X] is a unit if and only if the constant term a0 is a
unit in R and the other coefficients are nilpotent.
iii) Find the units of degree 1 in Z12[X].
iv) If R is a domain, the units in R[X] are the units in R.
v) If F is a field, the units in F [X] are the nonzero constants.
Solution: i) Since u+x = u(1+u−1x) and u−1x is nilpotent, we can assume
u = 1. If xn = 0, then 1 = 1− (−x)n = (1 + x)(1− x+ . . .+ (−x)n−1) so
1 + x is a unit.
ii) Let f = a0 +a1X+ . . .+anX

n. Assume that a0 ∈ U(R) and ai ∈ N (R)
for 1 ≤ i ≤ n. We have that aiX

i ∈ N (R[X]) and a0 ∈ U(R) ⊆ U(R[X]),
so by i) f ∈ U(R[X]). Conversely, let g = b0 + b1X+ . . .+ bmX

m, fg = 1R.
We have a0b0 = 1R, so a0 ∈ U(R). Then anbm = 0R and anbm−1 +
an1

bm = 0R. Multiplying the second equality by an and using the first,
we get a2

nbm−1 = 0R. We continue until we get am+1
n b0 = 0R, and since

b0 is a unit we get that an is nilpotent. Now anX
n is also nilpotent, so

a0 + a1X + . . . + an−1X
n−1 = f − anXn is a unit by i). We continue as

before until we get that an−1, . . . , a1 are nilpotent.
iii) By ii), a unit of degree 1 is of the form aX + b, where b ∈ U12 =
{1, 5, 7, 11} and a 6= 0 is nilpotent, i.e. a = 6. In conclusion, there are four
units of degree one in Z12[X]: 6X + 1, 6X + 5, 6X + 7, and 6X + 11.
iv) A domain does not have any nilpotent elements different from zero.
v) The units in a field are all nonzero elements.

Exercise 2.6.14 Prove Theorem 2.6.13.

(Hint: If f ∈ R[X], f =

n∑
i=0

aiX
i =

n∑
i=0

ϕ(ai)X
i, put θ(f) =

n∑
i=0

ψ(ai)x
i.)

Solution: We check that the map θ defined in the hint is a ring mor-
phism that takes X to x and satisfies θϕ = ψ. First, θ(ϕ(a)) = ψ(a)
for a ∈ R, so θϕ = ψ and in particular θ(1R) = 1A. If g ∈ R[X],

g =

n∑
i=0

biX
i =

n∑
i=0

ϕ(bi)X
i (here n is actually the maximum of deg(f) and

deg(g), and we complete with zero coefficients the polynomial of smaller
degree), then

θ(f + g) =

n∑
i=0

ψ(ai + bi)x
i =

n∑
i=0

(ψ(ai) + ψ(bi))x
i = θ(f) + θ(g),
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and

θ(fg) =

2n∑
i=0

ψ(
∑
j+k=i

ajbk)xi =

2n∑
i=0

∑
j+k=i

ψ(aj)ψ(bk)xi = θ(f)θ(g).

To prove uniqueness, let θ′ be a ring morphism that takes X to x and
satisfies θ′ϕ = ψ. Then

θ′(f) = θ′(

n∑
i=0

ϕ(ai)X
i) =

n∑
i=0

θ′ϕ(ai)θ
′(X)i =

n∑
i=0

ψ(ai)x
i = θ(f).

Exercise 2.6.15 Show that Z[i], Z[i
√

3], and Z[
√

2] are domains, and that
their fields of fractions are (in order):

Q(i) = {a+ bi | a, b ∈ Q},

Q(i
√

3) = {a+ bi
√

3 | a, b ∈ Q},

and

Q(
√

2) = {a+ b
√

2 | a, b ∈ Q}.

Solution: Z[i] and Z[i
√

3] are subrings of C, and Z[
√

2] is a subring of R,
so they are all domains (a subring of a field is a domain).
If a + bi ∈ Z[i], we denote by N(a + bi) = (a + bi)(a − bi) = a2 + b2. We
have a + bi = 0 ⇔ N(a + bi) = 0 ⇔ a = b = 0 (because if b 6= 0, then
i = ab−1 ∈ Q, a contradiction). If we denote by K the field of fractions of
Z[i], then we have

K =

{
a+ bi

c+ di

∣∣∣∣c+ di 6= 0

}
=

{
(a+ bi)(c− di)
(c+ di)(c− di)

∣∣∣∣c+ di 6= 0

}
=

{
(ac+ bd) + (bc− ad)i

c2 + d2

∣∣∣∣c+ di 6= 0

}
=

{
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

∣∣∣∣c2 + d2 6= 0

}
= {a+ bi | a, b ∈ Q} = Q(i)

If a + bi ∈ Z[i
√

3], we denote by N(a + bi
√

3) = (a + bi
√

3)(a − bi
√

3) =
a2 + 3b2. We have a+ bi

√
3 = 0⇔ N(a+ bi

√
3) = 0⇔ a = b = 0 (because
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if b 6= 0, then i
√

3 = ab−1 ∈ Q, a contradiction). If we denote by K the
field of fractions of Z[i

√
3], then we have

K =

{
a+ bi

√
3

c+ di
√

3

∣∣∣∣∣c+ di
√

3 6= 0

}

=

{
(a+ bi

√
3)(c− di

√
3)

(c+ di
√

3)(c− di
√

3)

∣∣∣∣∣c+ di
√

3 6= 0

}

=

{
(ac+ bd) + (bc− ad)i

√
3

c2 + 3d2

∣∣∣∣∣c+ di
√

3 6= 0

}

=

{
ac+ bd

c2 + 3d2
+

bc− ad
c2 + 3d2

i
√

3

∣∣∣∣c2 + 3d2 6= 0

}
= {a+ bi

√
3 | a, b ∈ Q} = Q(i

√
3)

If a + b
√

2 ∈ Z[
√

2], we denote by N(a + b
√

2) = (a + b
√

2)(a − b
√

2) =
a2 − 2b2. We have a + b

√
2 = 0 ⇔ N(a + b

√
2) = 0 ⇔ a = b = 0 (because

if b 6= 0, then
√

2 = −ab−1 ∈ Q, a contradiction). If we denote by K the
field of fractions of Z[

√
2], then we have

K =

{
a+ b

√
2

c+ d
√

2

∣∣∣∣∣c+ d
√

2 6= 0

}

=

{
(a+ b

√
2)(c− d

√
2)

(c+ d
√

2)(c− d
√

2)

∣∣∣∣∣c+ d
√

2 6= 0

}

=

{
(ac+ bd) + (bc− ad)

√
2

c2 − 2d2

∣∣∣∣∣c+ d
√

2 6= 0

}

=

{
ac+ bd

c2 − 2d2
+

bc− ad
c2 − 2d2

√
2

∣∣∣∣c2 − 2d2 6= 0

}
= {a+ b

√
2 | a, b ∈ Q} = Q(

√
2)

Exercise 2.6.18 Let I be an ideal of R. We denote by IR[X] the ideal of
R[X] generated by the set I:

IR[X] = {a1f1 + . . .+ akfk | k ≥ 1, ai ∈ I, fi ∈ R[X], 1 ≤ i ≤ k}.

i) Show that IR[X] is an ideal of R[X].
ii) Show that R[X]/(IR[X]) ' (R/I)[X].
iii) If P is a prime ideal of R, show that PR[X] is a prime ideal of R[X].
Solution: i) See Exercise 2.2.8.
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ii) We have that f ∈ IR[X]⇔ all coefficients of f are in I. Let θ : R[X] −→
(R/I)[X] be the ring morphism (from the universal property of polynomial

rings) that sends X to X. If f ∈ R[X], f =

n∑
i=0

aiX
i, θ(f) =

n∑
i=0

(ai + I)Xi.

It is clear that θ is surjective, and f ∈ Ker(θ) ⇔ f ∈ IR[X]. The result
follows from Corollary 2.3.9.
iii) P is prime ⇒ R/P is a domain ⇒ (R/P )[X] is a domain ⇒ PR[X] is
prime.

Exercise 2.6.19 Let R be a commutative ring, h ∈ R not a zero divisor,
and S = {1, h, h2, . . .}. Then

S−1R ' R[X]/((hX − 1R)R[X]),

where (hX − 1R)R[X] denotes the principal ideal of R[X] generated by
hX − 1R:

(hX − 1R)R[X] = {(hX − 1R)f | f ∈ R[X]}.

Solution: Let θ be the ring morphism (from the universal property of

polynomial rings) θ : R[X] −→ S−1R, θ(X) =
1R
h

. It is clear that θ is

surjective, since
a

hn
= θ(aXn). It is also clear that (Xh − 1R) ⊆ Ker(θ).

Let now f ∈ Ker(θ), f =

n∑
i=0

aiX
i. It follows that a0h

n + a1h
n−1 + . . . +

an−1h + an = 0R. Then fhn = fhn − (a0h
n + a1h

n−1 + . . . + an−1h +

an) = (Xh− 1R)g, where g =

n−1∑
i=0

biX
i ∈ R[X]. We identify coefficients in

fhn = (Xh − 1R)g starting with the free term, and we get a0h
n = −b0,

i.e. b0 = −hna0. Then a1h
n = −a0h

n+1 − b1, so b1 = hnc1 for some
c1 ∈ R. We continue and find that bi = hnci for 0 ≤ i ≤ n − 1, i.e.
g = hne. We get hn(f − (Xh − 1R)e) = 0R. Since h is not a zero divisor
in R, it follows that hn is not a zero divisor in R, hence in R[X], and so
f = (Xh − 1R)e ∈ (Xh − 1R). We proved that Ker(θ) = (Xh − 1R), and
the assertion follows from Corollary 2.3.9.

Exercise 2.6.21 Show that the field of fractions of the domain Z[X] is
Q(X).
Solution: The field of fractions of Z[X] is clearly contained in Q(X). To

check the reverse inclusion, take
f

g
, where f, g ∈ Q[X], g 6= 0, and write
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f

g
=
mf

mg
, where m is a common multiple of all denominators of coefficients

of f and g.
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2.7 Symmetric polynomials

Recall that all rings in sight are commutative. We start this section by
considering polynomials in more than one indeterminate. It should be clear
(after thinking about it for a moment), that the letter we used to denote
the indeterminate does not matter. In other words, if R is a commutative
ring, then the polynomial ring in one indeterminate with coefficients in R
can be denoted by R[X] or R[Y ], which actually represent the same object:
the set of functions of finite support from N to R, which becomes a ring
with the operations defined in Definition 2.6.5. Alternatively, we can show
that R[X] and R[Y ] are isomorphic using Theorem 2.6.13: the isomorphism
is the unique ring morphism from R[X] to R[Y ] which acts as the identity
on R and sends X to Y . If we start now with the commutative ring R, form
the polynomial ring R[X] in one indeterminate with coefficients in R, then
form the polynomial ring in one indeterminate with coefficients in R[X],
R[X][Y ], is it clear that this is the same thing (or at least isomorphic to)
R[Y ][X]? If this is clear, then we will denote this ring by R[X,Y ] and we
will call it the ring of polynomials in two indeterminates with coefficients
in R. If this is not clear, we can define recurrently the ring of polynomials
in n indeterminates with coefficients in R by using induction and the next
result:

Proposition 2.7.1 If R ' S as rings, then R[X] ' S[X] as rings.

Exercise 2.7.2 Prove Proposition 2.7.1.

Definition 2.7.3 We can now use induction and Proposition 2.7.1 in or-
der to define the polynomial ring in n indeterminates with coefficients in R
as:

R[X1, X2, . . . , Xn] = R[X1, X2, . . . , Xn−1][Xn],

for n > 1. We denote by ϕ : R −→ R[X1, X2, . . . , Xn] the composition of
the n canonical injections, and we also call it the canonical injection.

The ring of polynomials in n indeterminates with coefficients in R satisfies
the following universal property, which can be proved using induction on n
and Theorem 2.6.13:

Theorem 2.7.4 Let R be a commutative ring, R[X1, X2, . . . , Xn] the poly-
nomial ring in n indeterminates with coefficients in R, and ϕ : R −→
R[X1, X2, . . . , Xn] the canonical injection. Then for any commutative ring
A, any ring morphism ψ : R −→ A, and elements xi ∈ A, 1 ≤ i ≤ n,
there exists a unique ring morphism θ : R[X1, X2, . . . , Xn] −→ A such that
θ(Xi) = xi, 1 ≤ i ≤ n, and θϕ = ψ, i.e. such that the diagram
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R

J
J
J
J
J
Ĵ

R[X1, X2, . . . , Xn]

θ

A
?

-

ψ

ϕ

is commutative.

Definition 2.7.5 We call aXk1
1 Xk2

2 . . . Xkn
n ∈ R[X1, X2, . . . , Xn] a mono-

mial, and the natural number k1 + k2 + . . .+ kn its degree.

It can be shown that a polynomial f ∈ R[X1, X2, . . . , Xn] can be written
uniquely as a sum of monomials. The maximum degree of these monomials
is called the degree of f and is denoted by deg(f).

Definition 2.7.6 A polynomial f ∈ R[X1, X2, . . . , Xn] is called homoge-
neous if all monomials in the decomposition of f as a sum of monomials
have the same degree (which has to be deg(f)).

We now define symmetric polynomials.

Exercise 2.7.7 If R is a ring, the set

Aut(R) = {f : R −→ R | f is a ring isomorphism}

is a group under the composition of functions.

Definition 2.7.8 We say that the group G acts as automorphisms on the
ring R if there exists a group morphism G −→ Aut(R), which is called an
action of G on R. If this is the case, the image of g ∈ G through the action
will send the element a ∈ R to ag ∈ R, and we denote by

RG = {a ∈ R | ag = a, ∀g ∈ G}.

Exercise 2.7.9 If the group G acts on the ring R as automorphisms, RG

is a subring of R. (We call it the ring of invariants).

We can use Theorem 2.7.4 to define an action of the symmetric group Sn
on the polynomial ring R[X1, X2, . . . , Xn]. We do this as follows: after
we fix σ ∈ Sn, we take in Theorem 2.7.4 A = R[X1, X2, . . . , Xn], f = ϕ,
and xi = Xσ(i) for 1 ≤ i ≤ n. We obtain a θσ that defines the action by
fσ = θσ(f).
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Definition 2.7.10 The elements of R[X1, X2, . . . , Xn]Sn are called sym-
metric polynomials.

The following symmetric polynomials are called the fundamental symmetric
polynomials:

s1 = X1 +X2 + . . .+Xn

s2 = X1X2 +X1X3 + . . .+Xn−1Xn

s3 = X1X2X3 +X1X2X4 + . . .+Xn−2Xn−1Xn

...

sn−1 = X1X2 . . . Xn−1 +X1X2 . . . Xn−2Xn + . . . X2X3 . . . Xn

sn = X1X2 . . . Xn

We note that the fundamental symmetric polynomials are homogeneous,
and deg(sk) = k, 1 ≤ k ≤ n.

We prove now the fundamental theorem of symmetric polynomials:

Theorem 2.7.11 Every symmetric polynomial f ∈ R[X1, X2, . . . , Xn]Sn

can be written uniquely as a polynomial of the fundamental symmetric
polynomials, i.e. there exists a unique g ∈ R[X1, X2, . . . , Xn] such that
f = g(s1, s2, . . . , sn).

Proof: Note that g(s1, s2, . . . , sn) = θ(g), where θ : R[X1, X2, . . . , Xn] −→
R[X1, X2, . . . , Xn] is the unique ring morphism (obtained from Theorem
2.7.4) that is the identity on R and sends Xk to sk, 1 ≤ k ≤ n. In terms of
θ, the two assertions of the theorem are:
i) θ is injective.
ii) Im(θ) = R[X1, X2, . . . , Xn]Sn .
We define the lexicographical order on Nn as follows: we say that

(k1, k2, . . . , kn) > (l1, l2, . . . , ln)

if ki > li for the first i for which they differ.

We first prove i). Let f ∈ Ker(θ), f 6= 0. It follows that f is a finite sum
of monomials, of which at least one is not 0. To each of these monomials,
which are of the form aXk1

1 Xk2
2 . . . Xkn

n , we associate the element

(k1 + k2 + . . .+ kn, k2 + k3 + . . .+ kn, . . . , kn−1 + kn, kn) ∈ Nn,

which we also use to denote the greatest such element in the lexicograph-
ical order. Then, in the polynomial θ(f) = f(s1, s2, . . . , sn), the nonzero
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monomial aXk1+k2+...+kn
1 Xk2+k3+...+kn

2 . . . Xkn
n has the greatest associated

n-tuple in the lexicographical order and so it will not cancel with any other
monomial. In other words, θ(f) 6= 0, and we proved i).

Now we prove ii). It is enough to assume that f is a homogeneous symmetric
polynomial, as its homogeneous components also have to be symmetric.
After proving ii) for the homogeneous components of f we can take the
sum of the g-s as the final g for f . We write f as a sum of monomials of
the form aXk1

1 Xk2
2 . . . Xkn

n , and we pick the monomial with the property
that (k1, k2, . . . , kn) ∈ Nn is the greatest in the lexicographical order. It is
clear that we have that k1 ≥ k2 ≥ . . . ≥ kn, because f is symmetric, and if

ki < ki+1, then the monomial aXk1
1 Xk2

2 . . . X
ki+1

i Xk1
i+1 . . . X

kn
n has

(k1, k2, . . . , ki+1, ki, . . . , kn) > (k1, k2, . . . , ki, ki+1, . . . , kn).

Then we consider the polynomial f − ask1−k21 sk2−k32 . . . sknn . This is also a
symmetric polynomial, of the same degree as f (if it’s not 0), and in it the
monomial with the greatest n-tuple in the lexicographical order cancelled.
We repeat the procedure, which will end after a finite number of steps,
and we get that our g is the sum of the monomials aXk1−k2

1 Xk2−k3
2 . . . Xkn

n

considered in each step.

The proof of Theorem 2.7.11 provides an algorithm that we can use to write
a symmetric polynomial as a polynomial of the fundamental symmetric
polynomials. We show how this works by writing f = X4

1 +X4
2 +X2

1X2 +
X1X

2
2 as a polynomial g of the fundamental symmetric polynomials s1 =

X1 +X2 and s2 = X1X2.

We have that f is a sum of two homogeneous polynomials, f = f1 + f2,
where f1 = X4

1 +X4
2 , and f2 = X2

1X2 +X1X
2
2 .

We first write f1, which is homogeneous of degree 4, as a polynomial of s1

and s2. The greatest pair in the lexicographical order in N2 is (4, 0). We
write all pairs (k1, k2) with k1 ≥ k2 and k1 + k2 = 4. They are:

(4, 0) > (3, 1) > (2, 2).

Then there exist integers A,B such that

f1 − s4
1 −As3−1

1 s1
2 −Bs2−2

1 s2
2 = 0.

In order to find A,B we plug in values for X1 and X2, and solve the linear
system with two unknowns and two equations:

X1 X2 s1 s2 f1 f1 − s4
1 −As2

1s2 −Bs2
2 = 0

1 1 2 1 2 −14− 4A−B = 0
2 1 3 2 17 −64− 18A− 4B = 0
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We solve the system and find A = −4 and B = 2. Therefore, we have that

f1 = g1(s1, s2) = s4
1 − 4s2

1s2 + 2s2
2,

so g1 = X4
1 − 4X2

1X2 + 2X2
2 .

We now write f2, which is homogeneous of degree 3, as a polynomial of s1

and s2. The greatest pair in the lexicographical order in N2 is (2, 1). Since
there are no other pairs (k1, k2) with k1 ≥ k2 and k1 + k2 = 3 such that
(2, 1) > (k1, k2), it follows that f2 = g2(s1, s2) = s1s2, and g2 = X1X2.

In conclusion, f = g(s1, s2) = s4
1 − 4s2

1s2 + 2s2
2 + s1s2, so g = g1 + g2X

4
1 −

4X2
1X2 + 2X2

2 +X1X2.

Exercise 2.7.12 Write each of the following polynomials as a polynomial
of the fundamental symmetric polynomials.

i) (X2
1 +X2

2 )(X2
1 +X2

3 )(X2
2 +X2

3 )
ii) X2

1X2 +X1X
2
2 +X2

1X3 +X1X
2
3 +X2

2X3 +X2X
2
3

iii) (X1 +X2 +X3)(X2
1 +X2

2 +X2
3 )

iv) X4
1 +X4

2 +X4
3 − 4(X2

1X2X3 +X1X
2
2X3 +X1X2X

2
3 )
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Solutions to the Exercises on Section 2.7

Exercise 2.7.2 Prove Proposition 2.7.1.
Solution: Suppose f : R −→ S is a ring isomorphism, and denote by
ϕ : R −→ R[X] and ϕ′ : S −→ S[X] the canonical injections. We let θ
denote the ring morphism sending X to X obtained by applying Theorem
2.6.13 to the following diagram:

R

J
J
J
J
J
Ĵ

R[X]

θ

S[X]
?

-

ϕ′ ◦ f

ϕ

We have that θ ◦ ϕ = ϕ′ ◦ f . Now we let θ′ denote the ring morphism
sending X to X obtained by applying Theorem 2.6.13 to the following
diagram:

S

J
J
J
J
J
Ĵ

S[X]

θ′

R[X]
?

-

ϕ ◦ f−1

ϕ′

We have that θ′ ◦ ϕ′ = ϕ ◦ f−1, and therefore

θ′ ◦ θ ◦ ϕ = θ′ ◦ ϕ′ ◦ f
= ϕ ◦ f−1 ◦ f
= ϕ,

so IdR[X] = θ′ ◦ θ by the uniqueness of the morphism in Theorem 2.6.13
applied to the following diagram.

R

J
J
J
J
J
Ĵ

R[X]

IdR[X] = θ′ ◦ θ

R[X]
?

-

ϕ

ϕ

The fact that IdR[X] = θ ◦ θ′ is proved similarly.
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Exercise 2.7.7 If R is a ring, the set

Aut(R) = {f : R R|f is a ring isomorphism}

is a group under the composition of functions.
Solution: The composition of two ring isomorphisms is a ring isomor-
phism, composition of functions is associative, IdR is a ring isomorphism,
and the inverse of a ring isomorphism is also a ring isomorphism. Note that
the group Aut(R) is not necessarily abelian if R is commutative.

Exercise 2.7.9 If the group G acts on the ring R as automorphisms, RG

is a subring of R. (We call it the ring of invariants).
Solution: It is clear that 1R ∈ RG, because every ring morphism sends
the identity to the identity. Then, if a, b ∈ RG, we have that (a − b)g =
ag − bg = a− b, and (ab)g = agbg = ab.

Exercise 2.7.12 Write each of the following polynomials as a polynomial
of the fundamental symmetric polynomials.

i) (X2
1 +X2

2 )(X2
1 +X2

3 )(X2
2 +X2

3 )
ii) X2

1X2 +X1X
2
2 +X2

1X3 +X1X
2
3 +X2

2X3 +X2X
2
3

iii) (X1 +X2 +X3)(X2
1 +X2

2 +X2
3 )

iv) X4
1 +X4

2 +X4
3 − 4(X2

1X2X3 +X1X
2
2X3 +X1X2X

2
3 )

Solution: We only give a detailed solution for i), then give the answers
for ii), iii), and iv).

i)We have to write f = (X2
1 + X2

2 )(X2
1 + X2

3 )(X2
2 + X2

3 ), which is homo-
geneous of degree 6, as a polynomial of s1, s2, and s3. The greatest triple
in the lexicographical order in N3 is (4, 2, 0). We write all pairs (k1, k2, k3)
with k1 ≥ k2 ≥ k3 and k1 + k2 + k3 = 6. They are:

(4, 2, 0) > (4, 1, 1) > (3, 3, 0) > (3, 2, 1) > (2, 2, 2).

Then there exist integers A,B,C,D such that

f − s2
1s

2
2 −As3

1s3 −Bs3
2 − Cs1s2s3 −Ds2

3 = 0. (2.4)

In order to find A,B,C,D we plug in values for X1, X2, and X3, and
solve the linear system with four unknowns and four equations:

X1 X2 X3 s1 s2 s3 f (2.4)
1 1 0 2 1 0 2 −2−B = 0
2 −1 −1 0 −3 2 50 50 + 27B − 4D = 0
1 −2 −2 −3 0 4 200 200 + 108A− 16D = 0
1 −1 −1 −1 −1 1 8 7 +A+B − C −D = 0
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We solve the system and find A = −2, B = −2, C = 4, and D = −1.
Therefore, we have that

f = g1(s1, s2) = s2
1s

2
2 − 2s3

1s3 − 2s3
2 + 4s1s2s3 − s2

3.

ii) s1s2 − 3s3

iii) s3
1 − 2s1s2

iv) s4
1 − 4s2

1s2 + 2s2
2
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Chapter 3

Arithmetic in rings

3.1 Divisibility

From now on we assume that all rings are domains. The following definition
is inspired by Definition 1.2.2:

Definition 3.1.1 Given a domain R, and a, b ∈ R, we say that a divides b
(or a is a factor of b, or b is a multiple of a, or b is divisible by a) if there
exists c ∈ R such that b = ac. If a | b and b | a, we say that a and b are
associated in divisibility, and we write a ∼d b.

Compare the following exercise to Exercise 1.2.3:

Exercise 3.1.2 Prove the following:
i) 1R | a for all a ∈ R.
ii) a | 0R for all a ∈ R.
iii) If a | b and b | c, then a | c.
iv) If a | b and c | d, then ac | bd.
v) If a | b and a | c, then a | ub+ vc for all u, v ∈ R.
vi) a | 1R if and only if a ∈ U(R).
vii) If a ∼d b, then a = ub for some u ∈ U(R).

Definition 3.1.3 Given a domain R, and a, b ∈ R, we say that d ∈ R is a
greatest common divisor of a and b (we write d = (a, b)) if the following
two conditions are satisfied:
i) d | a and d | b.
ii) if c | a and c | b, then c | d.

It is clear that (a, 0R) = a for all a ∈ R, in particular (0R, 0R) = 0R.

127
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Exercise 3.1.4 If d1 = (a, b) and d2 = (a, b), then d1 ∼d d2, i.e. d1 = ud2

for some u ∈ U(R).

The following definition is inspired by Definition 1.7.15:

Definition 3.1.5 If R is a domain and a, b ∈ R, we say that m is a least
common multiple of a and b (and we write m = [a, b]) if the following
conditions hold:
i) a | m and b | m.
ii) If a | n and b | n, then m | n.

It is clear that [a, 0R] = 0R for all a ∈ R, in particular [0R, 0R] = 0R.

Exercise 3.1.6 If m1 = [a, b] and m2 = [a, b], then m1 ∼d m2, i.e. m1 =
um2 for some u ∈ U(R).

Compare the following to ii) and iii) of Exercise 1.7.19.

Exercise 3.1.7 i) If the ideal generated by a and b is principal, generated
by d, then d = (a, b).
ii) If the intersection of the principal ideals generated by a and b is principal,
generated by m, then m = [a, b].

The next result shows that the existence of a least common multiple implies
the existence of a greatest common divisor, and that if both a least common
multiple and a greatest common divisor exist, they are connected as we
expect them to be (see Exercise 1.7.16):

Proposition 3.1.8 If R is a domain, a, b ∈ R,and [a, b] exists, then (a, b)
also exists, and we have ab = (a, b)[a, b]. (Note that since the greatest
common divisor and the least common multiple are not unique, this equality
simply means that there exist a greatest common divisor and a least common
multiple of a and b whose product is ab.)

Proof: We can assume that both a and b are nonzero. Let m = [a, b].
Since ab is a common multiple of a and b, it follows that m | ab, so there
exists a d ∈ R such that dm = ab.

We show that d = (a, b). We have that m = a′a, and so da′a = ab, so d | b
because a 6= 0R. Similarly d | a.

Now let c | a and c | b. We have that a = ca1 and b = db1. Since ca1b1 is a
common multiple of a and b, it follows that m | ca1b1, and so ca1b1 = mu
for some u ∈ R. Therefore we get that dca1b1 = dmu = abu = ca1cb1u,
and since ca1b1 6= 0R, we get that d = cu, i.e. we proved that d = (a, b).
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We now show that two elements having a greatest common divisor do not
necessarily have a least common multiple. We will produce two different
examples of such pairs, in the two domains described in the following:

Exercise 3.1.9 i) The set

Z +X2Z[X] = {a0 + a2X
2 + a3X

3 + . . .+ anX
n | n ≥ 2, ai ∈ Z}

is a subring of the polynomial ring Z[X], and so it is a domain with the
usual addition and multiplication of polynomials.
ii) The set

Z[i
√

5] = {a+ bi
√

5 | a, b ∈ Z}

is a subring of C, and so it is a domain.
iii) The function N : Z[i

√
5] −→ N, defined by N(a+ bi

√
5) = a2 + 5b2, has

the property N(xy) = N(x)N(y) for all x, y ∈ Z[i
√

5].
iv) U(Z[i

√
5]) = {−1, 1}.

Proposition 3.1.10 It is possible that two elements have a greatest com-
mon divisor, but their least common multiple does not exist.

Proof: Consider first the elements X2 and X3 in Z + X2Z[X], which
have a greatest common divisor, namely 1 = (X2, X3), because they are
only divisible by ±1 and themselves. If they had a least common multiple,
by Proposition 3.1.8 we must have X2X3 = X5 = [X2, X3]. But X6 =
X4X2 = X3X3 is a common multiple, and X5 - X6. So [X2, X3] does not
exist. Note that this example shows that Corollary 1.2.8 is not true if we
replace Z with an arbitrary domain: it is clear that no linear combination
of X2 and X3 will be equal to 1.

Consider now the elements 3 and 1 + i
√

5 ∈ Z[i
√

5]. Since no x ∈ Z[i
√

5]
can have either N(x) = 2 or N(x) = 3, it follows that 1 = (3, 1 + i

√
5). If

[3, 1 + i
√

5] exists, it has to be 3(1 + i
√

5) by Proposition 3.1.8, so N(3(1 +
i
√

5)) = N(3)N(1 + i
√

5) = 54. But 6 = 3 · 2 = (1 + i
√

5)(1 − i
√

5) is a
common multiple, and 6 - 3(1 + i

√
5) because N(6) = 36 - 54.

Proposition 3.1.11 If R is a domain, and a, b, c ∈ R, c 6= 0R, have the
property that (ac, bc) exists, then (a, b) also exists and (ac, bc) = (a, b)c.

Proof: Let d = (ac, bc). Since c is a common divisor of ac and bc, it follows
that c | d, or d = cd′ for some d′ ∈ R. We show that d′ = (a, b). Since
d′c | ac, d′c | bc, and c 6= 0R, it follows that d′ | a and d′ | b. Now if e | a
and e | b, it follows that ec mod ac and ec | bc, so ec | d = d′c, therefore
e | d′.
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Exercise 3.1.12 Assume that a and b are not both 0 and d = (a, b). Let
a = da′ and b = db′. Prove that 1R = (a′, b′).

The next result shows that the greatest common divisor of two elements
might not exist, so Theorem 1.2.7 does not remain true if we try to replace
Z by an arbitrary domain.

Proposition 3.1.13 It is possible that two elements have a greatest com-
mon divisor, but their products with the same element of the domain R do
not have a greatest common divisor.

Proof: As seen in the proof of Proposition 3.1.10, we have that 1 =
(X2, X3) in Z + X2Z[X]. If we multiply both of them by X3, and we
assume that (X5, X6) exists, it should be X3 by Proposition 3.1.11. How-
ever, X2 is a common divisor of X5 = X2X3 and X6 = x2X4, but X2 - X3.
So X5 and X6 do not have a greatest common divisor.

Again, we also give an example in Z[i
√

5]. We have seen in the proof of
Proposition 3.1.10 that 1 = (3, 1 + i

√
5). If we multiply both of them by

1− i
√

5, and we assume that (3(1− i
√

5), 6) exists, it should be 1− i
√

5 by
Proposition 3.1.11. However, 3 is a common divisor of 3(1 − i

√
5) and 6,

but 3 - 1− i
√

5, because N(3) = 9 - 6 = N(1− i
√

5). So 3(1− i
√

5) and 6
do not have a greatest common divisor.

Definition 3.1.14 A domain R is called a GCD-domain if every two
elements in R have a greatest common divisor.

Exercise 3.1.15 Give two examples of GCD-domains, and two examples
of domains which are not GCD-domains.

Proposition 3.1.10 says that “locally”, the existence of a greatest common
divisor does not imply the existence of a least common multiple. Here’s
what happens “globally”:

Exercise 3.1.16 The following assertions are equivalent:
i) R is a GCD-domain.
ii) Every two elements in R have a least common multiple.

Exercise 3.1.17 Is the Euclid Lemma (see Theorem 1.2.15) true in any
domain? Prove that the Euclid Lemma holds in a GCD-domain.

Exercise 3.1.18 (See Exercise 1.2.16.) If 1R = (a, b) and 1R = (a, c),
then is it true that 1R = (a, bc) in any domain R? What if R is a GCD-
domain?

Exercise 3.1.19 (See Exercise 1.2.17.) If a | c, b | c, and 1R = (a, b),
then is it true that ab | c in any domain R? What if R is a GCD-domain?
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Solutions to the Exercises on Section 3.1

Exercise 3.1.2 Prove the following:
i) 1R | a for all a ∈ R.
ii) a | 0R for all a ∈ R.
iii) If a | b and b | c, then a | c.
iv) If a | b and c | d, then ac | bd.
v) If a | b and a | c, then a | ub+ vc for all u, v ∈ R.
vi) a | 1R if and only if a ∈ U(R).
vii) If a | b and b | a, then a = ub for some u ∈ U(R).
Solution: i) a = 1R · a.
ii) 0R = a · 0R.
iii) We have that b = ad and c = be = ade.
iv) We have that b = ae and d = cf , so bd = acef .
v) We have b = ad and c = ae, so ub+ vc = uad+ vae = a(ud+ ve).
vi) We have 1R = ab if and only if a ∈ U(R).
vii) If both a and b are 0R, the statement is clear. If one of them is not
0R, the other one has to be different from 0R as well. In that case we have
b = au and a = bv = auv, so 1R = uv because R is a domain and a 6= 0R.

Exercise 3.1.4 If d1 = (a, b) and d2 = (a, b), then d1 ∼d d2, i.e. d1 = ud2

for some u ∈ U(R).
Solution: Since d1 = (a, b), d2 | a, and d2 | b, it follows that d2 | d1.
Similarly, d1 | d2, and we use Exercise 3.1.2 vii).

Exercise 3.1.6 If m1 = [a, b] and m2 = [a, b], then m1 ∼d m2, i.e. m1 =
um2 for some u ∈ U(R).
Solution: Since m1 = [a, b], a | m2, and b | m2, it follows that m1 | m2.
Similarly, m2 | m1, and we use Exercise 3.1.2 vii).

Exercise 3.1.7 i) If the ideal generated by a and b is principal, generated
by d, then d = (a, b).
ii) If the intersection of the principal ideals generated by a and b is principal,
generated by m, then m = [a, b].
Solution: i) Since a, b ∈ dR, d is a common divisor for a and b. If c | a
and c | b, then c | d, which is a linear combination of a and b.
ii) Since m ∈ aR ∩ bR, m is a common multiple of a and b. If n is another
common multiple, n ∈ aR ∩ bR = mR, so m | n.

Exercise 3.1.9 i) The set

Z +X2Z[X] = {a0 + a2X
2 + a3X

3 + . . .+ anX
n | n ≥ 2, ai ∈ Z}

is a subring of the polynomial ring Z[X], and so it is a domain with the
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usual addition and multiplication of polynomials.
ii) The set

Z[i
√

5] = {a+ bi
√

5 | a, b ∈ Z}

is a subring of C, and so it is a domain.
iii) The function N : Z[i

√
5] −→ N, defined by N(a+ bi

√
5) = a2 + 5b2, has

the property N(xy) = N(x)N(y) for all x, y ∈ Z[i
√

5].
iv) U(Z[i

√
5]) = {−1, 1}.

Solution: i) is clear.
ii) Take R = Z, A = C, ψ : Z −→ C the inclusion, and x = i

√
5 in Theorem

2.6.13. We see that Im(θ) = Z[i
√

5] using the fact that (i
√

5)2 = −5.
iii) If x = a + bi

√
5 and y = c + di

√
5, we have N(xy) = xyxy = xxyy =

N(x)N(y).
iv) The only integer solutions of the equation a2 + 5b2 = 1 are a = ±1 and
b = 0.

Exercise 3.1.12 Assume that a and b are not both 0 and d = (a, b). Let
a = da′ and b = db′. Prove that 1R = (a′, b′).
Solution: Use Proposition 3.1.11.

Exercise 3.1.15 Give two examples of GCD-domains, and two examples
of domains which are not GCD-domains.
Solution: Z is a GCD-domain by Theorem 1.2.7. Every field is a GCD-
domain because the greatest common divisor of two elements is 0 if both
elements are 0, and 1 if not.

The domains Z + X2Z[X] and Z[i
√

5] in Exercise 3.1.9 are not GCD-
domains by Proposition 3.1.13.

Exercise 3.1.16 The following assertions are equivalent:
i) R is a GCD-domain.
ii) Every two elements in R have a least common multiple.
Solution: ii) ⇒ i) follows from Proposition 3.1.8.
i) ⇒ ii). Let a, b ∈ R and assume that they are not 0. We let d = (a, b),
and since a | ab it follows that d | ab, or ab = dm for some m ∈ R. We show
that m = [a, b]. We have that a = da′ and b = db′. Then da′b = dm, so
b | m. Similarly we get that a | m. Assume now that a | n and b | n. Then
ab | nb and ab | na, so md = ab | (na, nb) = n(a, b) = nd, and therefore
m | n. (Note that this proof is different from the one in Exercise 1.7.16,
which does not work in this case.)

Exercise 3.1.17 Is the Euclid Lemma (see Theorem 1.2.15) true in any
domain? Prove that the Euclid Lemma holds in a GCD-domain.
Solution: No, take a = X2, b = c = X3 in Z + X2Z[X]. Then a | bc,
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1R = (a, b), but a - c. If R is a GCD-domain, let a | bc and 1R = (a, b).
Then, since a | ac, we have that a | (ac, bc) = (a, b)c = c.

Exercise 3.1.18 (See Exercise 1.2.16.) If 1R = (a, b) and 1R = (a, c),
then is it true that 1R = (a, bc) in any domain R? What if R is a GCD-
domain?
Solution: No, take a = X2 and b = c = X3 in Z + X2Z[X]. Then
1R = (a, b) = (a, c) but 1R 6= (a, bc). If R is a GCD-domain, let d | a
and d | bc. Then (d, b) = 1R, and by the Euclid Lemma we get that d | c.
Therefore d | 1R and we are done.

Exercise 3.1.19 (See Exercise 1.2.17.) If a | c, b | c, and 1R = (a, b), then
is it true that ab | c in any domain R? What if R is a GCD-domain?
Solution: No, a = X2, b = X3, and c = X6 in Z + X2Z[X]. Then a | c,
b | c, and 1R = (a, b), but ab - c. If R is a GCD-domain, let a | c, b | c, and
1R = (a, b). Then ab | bc and ab | ac, so ab | (ac, bc) = (a, b)c = c.
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3.2 Prime and irreducible elements

We continue to assume that all rings are domains. The following definition
generalizes Definition 1.2.19.

Definition 3.2.1 Let R be a domain. Then an element p 6= 0R, p /∈ U(R),
is said to be prime if from p | ab it follows that p | a or p | b.

Examples of prime elements in Z are therefore the prime numbers. In the
ring Z+X2Z[X] (see Exercise 3.1.9), the elementX2 is not prime, because it
divides X3X3 = X6 = X2X4 but it does not divide X3. In the ring Z[i

√
5],

the element 2 is not prime, since it divides 2 · 3 = 6 = (1 + i
√

5)(1− i
√

5),
but it does not divide either of 1 + i

√
5 and 1 − i

√
5, because N(2) = 4 -

6 = N(1 + i
√

5) = N(1− i
√

5).

Exercise 3.2.2 If p is prime, and p | a1a2 . . . an, then there exists i, 1 ≤
i ≤ n such that p | ai.

Proposition 3.2.3 The following assertions are equivalent for p 6= 0R,
p /∈ U(R):
i) p is prime.
ii) The principal ideal generated by p, pR, is a prime ideal.

Proof: We have that pR 6= R, and pR s prime if and only if ab ∈ pR
implies a ∈ pR or b ∈ pR, i.e. p | ab implies p | a or p | b.

Combining Proposition 3.2.3 with Corollary 2.4.6 we get

Corollary 3.2.4 If p 6= 0R, p /∈ U(R), then p is prime if and only if R/pR
is a domain.

Exercise 3.2.5 If R is a domain, then X is a prime element in the poly-
nomial ring R[X].

Proposition 3.2.6 Let p ∈ R be a prime element. Then p is a prime
element in the polynomial ring R[X].

Proof: We clearly have that p 6= 0R and p /∈ U(R[X]) = U(R) (see
Exercise 2.6.12 iv)). By Proposition 3.2.3 we have that pR is a prime ideal,
and so pR[X] is a prime ideal by Exercise 2.6.18 iii), which shows that p is
prime in R[X], again by Proposition 3.2.3.

We are now going to give a direct proof, using the definition of prime
elements. Assume that p | fg, where f, g ∈ R[X],

f = a0 + a1X + a2X
2 + . . .+ anX

n, g = b0 + b1X + b2X
2 + . . .+ bmX

m.
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If p - f and p - g, let k and l be the smallest with the property that p - ak
and p - bl. But then p does not divide the coefficient of Xk+l in fg, which
is ∑

i+j=k+l;i 6=k;j 6=l

aibj + akbl,

because in each of the terms of the sum one of the factors is divisible by p
and p - akbl. In conclusion p - fg, which is a contradiction.

Exercise 3.2.7 Let p be a prime element in R, and S a multiplicative set
on R such that pR ∩ S = ∅. Then p

1R
is a prime element in S−1R.

Exercise 3.2.8 Let R and T be domains, f : R −→ T a ring morphism,
and p ∈ R, q ∈ T such that f(p) = q.
i) If p is prime, is q prime?
ii) If q is prime, is p prime?

The following definition generalizes condition iii) in Exercise 1.2.20 (usually
taken as a definition for prime numbers).

Definition 3.2.9 Let R be a domain. Then an element q 6= 0R, q /∈ U(R),
is said to be irreducible if from d | q it follows that d ∼d 1R or d ∼d q.

The connection between prime and irreducible is given by the following

Proposition 3.2.10 Any prime element is irreducible, but there are irre-
ducible elements that are not prime.

Proof: Assume that p ∈ R is prime, and let d | p. It follows that p = ds,
so p | ds. Since p is prime, it follows that p | d or p | s. If p | d we have
d ∼d p. If p | s, write s = pu, and observe that p = dpu. Since p 6= 0R, we
get 1R = du, or d ∼d 1R, which ends the proof.

Now X2 ∈ Z+X2Z[X] is irreducible, but not prime, and 2 ∈ Z[i
√

5] is also
irreducible but not prime (see examples after Definition 3.2.1).

Proposition 3.2.11 In a GCD-domain, the notions of prime and irre-
ducible coincide.

Proof: Let q ∈ R be irreducible. We have to show that q is prime, so we
assume that q | ab. If q | a, we are done. If q - a, then we must have that
1R = (q, a) because q is irreducible, so we can apply Euclid Lemma (see
Exercise 3.1.17) to get that q | b.

Proposition 3.2.12 Let q ∈ R be irreducible. Then q is irreducible in the
polynomial ring R[X].
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Proof: Since R is a domain, the units in R[X] are precisely the units in R
by Exercise 2.6.12 iv). Therefore, q 6= 0R and q /∈ U(R[X]). Since R is a
domain, the divisors of q in R[X] have to be polynomials of degree 0, i.e.
nonzero elements of R, so these are the same as the divisors of q in R and
we are done.

Exercise 3.2.13 Let p be an irreducible element in R, and S a multiplica-
tive set on R such that pR∩S = ∅. Is p

1R
an irreducible element in S−1R?

Exercise 3.2.14 Let R and T be domains, f : R −→ T a ring morphism,
and p ∈ R, q ∈ T such that f(p) = q.
i) If p is irreducible, is q irreducible?
ii) If q is irreducible, is p irreducible?

The following exercise should be compared to Exercise 3.1.9

Exercise 3.2.15 i) The set

Z[i] = {a+ bi | a, b ∈ Z}

is a subring of C, and so it is a domain (its elements are called Gaussian
integers).
ii) The function N : Z[i] −→ N, defined by N(a + bi) = a2 + b2, has the
property N(xy) = N(x)N(y) for all x, y ∈ Z[i].
iii) U(Z[i]) = {−1, 1, i,−i}.

The following exercises look at prime and irreducible elements in Z[i]. We
will see soon, in Corollary 3.3.16, that these are in fact the same.

Exercise 3.2.16 Let x = a+ bi ∈ Z[i], N(x) = 2. Then
i) x is irreducible.
ii) x ∈ {1 + i,−1− i, 1− i,−1 + i}.
iii) x ∼d 1 + i.
iv) x | y if and only if N(y) is even.
v) x is prime.

Exercise 3.2.17 Let x = a+bi ∈ Z[i], N(x) = p, where p is an odd prime.
Then
i) x is irreducible.
ii) p ≡ 1 (mod 4).

Exercise 3.2.18 If π ∈ Z[i] is prime, then one of the following assertions
hold:
i) π ∼d 1 + i,
ii) π ∼d p, where p ∈ Z is a prime congruent to 3 (mod 4),
iii) N(π) = q, q ∈ Z is a prime congruent to 1 (mod 4).
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If we can prove that any π satisfying ii) and iii) from Exercise 3.2.18 is
prime, then we found all primes in Z[i]. We already know that an element
satisfying iii) is irreducible (see Exercise 3.2.17), and the following exercise
shows that an element satisfying ii) is irreducible, so everything will follow
from Corollary 3.3.16.

Exercise 3.2.19 Any p ∈ Z, a prime congruent to 3 (mod 4), is an irre-
ducible element in Z[i]. Prove that there are infinitely many such primes.

Exercise 3.2.20 If x, y ∈ Z[i], N(x) = N(y), does it follow that x ∼d y?
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Solutions to the Exercises on Section 3.2

Exercise 3.2.2 If p is prime, and p | a1a2 . . . an, then there exists i, 1 ≤
i ≤ n such that p | ai.
Solution: Same as the solution to Exercise 1.2.21.

Exercise 3.2.5 If R is a domain, then X is a prime element in the poly-
nomial ring R[X].
Solution: R[X]/XR[X] ' R.

Exercise 3.2.7 Let p be a prime element in R, and S a multiplicative set
on R such that pR ∩ S = ∅. Then p

1R
is a prime element in S−1R.

Solution: We will omit the index R when writing 0 and 1. We first see
that p

1 6=
0
1 because p 6= 0, and p

1 is not a unit, because if p
1 ·

a
s = 1

1 , then
pa = s ∈ pR ∩ S, a contradiction.

Now, if p
1 |

a
s ·

b
t , it follows that ab

st = p
1 ·

c
r , so pcst = abr, and since p

can’t divide r, it follows that p | a or p | b. If say p | a, then a = pu, so
a
s = p

1 ·
u
s , i.e. p

1 |
a
s , which ends the proof that p

1 is prime in S−1R.

Exercise 3.2.8 Let R and T be domains, f : R −→ T a ring morphism,
and p ∈ R, q ∈ T such that f(p) = q.
i) If p is prime, is q prime?
ii) If q is prime, is p prime?
Solution: i) No, take R = Z, T = Z[i] = {a+bi | a, b ∈ Z}, f the inclusion,
and p = q = 2. We have that 2 is prime in Z, but 2 = (1 + i)(1− i) ∈ Z[i].
ii) No, take R = Z, S = {2k | k ∈ N}, T = S−1Z, f the canonical injection,
p = 6, q = 6

1 . Then q is prime: if 6
1 ·

a
2k = b

2m · c2n , then 3 | b or 3 | c, which

means that 6
1 |

b
2m or 6

1 |
c

2n .

Exercise 3.2.13 Let p be an irreducible element in R, and S a multiplica-
tive set on R such that pR∩S = ∅. Is p

1R
an irreducible element in S−1R?

Solution: No, let R = Z[i
√

5], p = 3, S = {2k | k ∈ N}. Then 3 is
irreducible, because there are no elements of norm 3, but

3

1
=

1 + i
√

5

1
· 1− i

√
5

2
.

We show that 1+i
√

5
1 is not a unit. If 1+i

√
5

1 · a+bi
√

5
2k = 1

1 , then 2k =

a− 5b+ (a+ b)i
√

5, so a = −b, and 2k = 6a, a contradiction.

We show that 3
1 - 1+i

√
5

1 . If 1+i
√

5
1 = 3

1 ·
a+bi

√
5

2k , then 2k(1 + i
√

5) =

3(a+ bi
√

5), and it follows that N(2k(1 + i
√

5)) = 22k · 6 is divisible by 9,
a contradiction.

Exercise 3.2.14 Let R and T be domains, f : R −→ T a ring morphism,
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and p ∈ R, q ∈ T such that f(p) = q.
i) If p is irreducible, is q irreducible?
ii) If q is irreducible, is p irreducible?
Solution: No to both, see the solution to Exercise 3.2.8.

Exercise 3.2.15 i) The set

Z[i] = {a+ bi | a, b ∈ Z}

is a subring of C, and so it is a domain (its elements are called Gaussian
integers).
ii) The function N : Z[i] −→ N, defined by N(a + bi) = a2 + b2, has the
property N(xy) = N(x)N(y) for all x, y ∈ Z[i].
iii) U(Z[i]) = {−1, 1, i,−i}.
Solution: i) Take R = Z, A = C, ψ : Z −→ C the inclusion, and x = i in
Theorem 2.6.13. We see that Im(θ) = Z[i] using the fact that i2 = −1.
ii) See Exercise 3.1.9, iii).
iii) The only integer solutions of the equation a2 + b2 = 1 are a = ±1 and
b = 0, or a = 0 and b = ±1.

Exercise 3.2.16 Let x = a+ bi ∈ Z[i], N(x) = 2. Then
i) x is irreducible.
ii) x ∈ {1 + i,−1− i, 1− i,−1 + i}.
iii) x ∼d 1 + i.
iv) x | y if and only if N(y) is even.
v) x is prime.
Solution: i) If x = yz, then 2 = N(y)N(z), so either N(y) = 1 or N(z) =
1.
ii) The solutions of a2 + b2 = 2 are a = ±1 and b = ±1, so x ∈ {1 + i,−1−
i, 1− i,−1 + i}.
iii) −1− i = (−1)(1 + i), 1− i = (−i)(1 + i), −1 + i = i(1 + i).
iv) If x | y, thenN(x) = 2 | N(y). Conversely, if y = c+di, N(y) = c2+d2 =
2k, it follows that c and d are both odd or both even, so both c + d and
c− d are even. Then, if we put c+ di = (1 + i)(u+ vi) = u− v + (u+ v)i,
we can solve for u and v: u = c+d

2 ∈ Z, and v = d−c
2 ∈ Z.

v) This will follow from Corollary 3.3.16, but we give a direct proof. If
x | yz, then N(y)N(z) is even, so one of them has to be even, and we can
use iv).

Exercise 3.2.17 Let x = a+ bi ∈ Z[i], N(x) = p, where p is an odd prime.
Then
i) x is irreducible.
ii) p ≡ 1 (mod 4).
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Solution: i) Same as Exercise 3.2.16 i).
ii) We have that p has to be congruent to 1 or 3 (mod 4). But a2 + b2 can
only be congruent to 0,1, or 2 (mod4).

Exercise 3.2.18 If π ∈ Z[i] is prime, then one of the following assertions
hold:
i) π ∼d 1 + i,
ii) π ∼d p, where p ∈ Z is a prime congruent to 3 (mod 4),
iii) N(π) = q, q ∈ Z is a prime congruent to 1 (mod 4).
Solution: N(π) 6= 1, so N(π) = ππ can be written as a product of integer
primes by Theorem 1.2.23:

ππ = p1p2 . . . pk.

If k = 1, i) or iii) hold by Exercises 3.2.16 and 3.2.17.
If k ≥ 2, then π divides one of these primes, say π | p1, or p1 = πx. Then

N(p1) = p2
1 = N(π)N(x) = p1p2 . . . pkN(x),

so in this case we see that k = 2, p1 = p2 = p, and N(x) = 1, i.e. π ∼d p.
We clearly have that p1 6= 2, because 2 = (1+i)(1−i) is not prime. In order
to finish the proof we have to show that p is not congruent to 1 (mod 4).
Indeed, if this was the case, then we have an even number of congruences

p− 1 ≡ −1 (mod p)

p− 2 ≡ −2 (mod p)

. . .
p+ 1

2
≡ −p− 1

2
(mod p)

so if we denote a = p−1
2 !, and we use Wilson’s Theorem (see Exercise

2.3.17), we get that (p−1)! ≡ a2 ≡ −1 (mod p), i.e. p | a2+1 = (a+i)(a−i),
and since clearly p does not divide either of a + i and a − i, we get a
contradiction. Therefore, p is congruent to 3 (mod 4).

Exercise 3.2.19 Any p ∈ Z, a prime congruent to 3 (mod 4), is an irre-
ducible element in Z[i]. Prove that there are infinitely many such primes.
Solution: If p = xy, where x, y ∈ Z. Then p2 = N(x)N(y), and the only
way to avoid that one of N(x) and N(y) is 1 is to have both of them equal
to p. But that is not possible by Exercise 3.2.17 ii).

For the second part, assume that there are only finitely many primes
of the form 4k + 3, call them p1, p2, . . . , pk. The number 4p1p2 · · · pk − 1
has to be divisible by one of p1, p2, . . . , pk, because otherwise it would have
remainder 1 modulo 4. But this is clearly false, so the proof is complete.
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Exercise 3.2.20 If x, y ∈ Z[i], N(x) = N(y), does it follow that x ∼d y?
Solution: No, take x = 2 + i and y = 2 − i. By Exercise 3.2.15 iii), the
associates of x are {2 + i,−2− i,−1 + 2i, 1− 2i} 63 y.
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3.3 Euclidean domains

We continue to assume that all rings are domains. The following definition
is inspired by Theorem 1.2.1:

Definition 3.3.1 A domain R is called Euclidean if there exists a function
ϕ : R \ {0} −→ N for which the Division Algorithm holds, i.e. if a, b ∈ R
and b 6= 0, then there exist q, r ∈ R such that a = bq + r and r = 0 or
ϕ(r) < ϕ(b). The elements q qnd r are called a quotient and a remainder
for a divided by b.

By Theorem 1.2.1, Z is Euclidean, the function ϕ : Z \ {0} −→ N is defined
by ϕ(n) = |n|. We noticed in the proof of Theorem 1.2.1 that there are
generally two pairs of quotients and remainders for a division in Z.

Exercise 3.3.2 If we ask the remainder r in Theorem 1.2.1 to satisfy r ≥
0, then the quotient and remainder, the q and the r from the statement of
the theorem are unique.

Exercise 3.3.3 If K is a field, show that K is Euclidian.

The following result shows that if K is a field, then the polynomial ring
K[X] and the formal series ring K[[X]] are Euclidian, with functions ϕ :
K[X] \ {0} −→ N defined by ϕ(f) = deg(f), and ψ : K[[X]] \ {0} −→ N
defined by ψ(f) = ord(f) = the smallest power of X appearing in f :

Theorem 3.3.4 i) Let K be a field, and f, g ∈ K[X], g 6= 0. There exist
q, r ∈ K[X] such that f = qg + r, where r = 0 or deg(r) < deg(g).
ii) Let K be a field, and f, g ∈ K[[X]], g 6= 0. There exist q, r ∈ K[[X]]
such that f = qg + r, where r = 0 or ord(r) < ord(g).

Proof: i) The proof is similar to the one of Theorem 1.2.1. If g | f , then
f = qg for some q ∈ K[X], and we take r = 0. If g - f (note that this
implies that f 6= 0), we let W = {deg(f − eg) | e ∈ K[X]}. By the well-
ordering principle, we let r = f − qg such that deg(r) is a least element
of W . We want to show that deg(r) < deg(g). If deg(r) = deg(f − qg) =
n ≥ m = deg(g), we write r = f − qg = aXn + an−1X

n−1 + . . . and
g = bXm + bm−1X

m−1 + . . .. Then f − qg − ab−1Xn−mg has degree less
than deg(r), a contradiction.
ii) The proof is identical to the proof of i), except we write r = f − qg =
aXn + an+1X

n+1 + . . . and g = bXm + bm+1X
m+1 + . . ., and we replace

degree by order everywhere.
We remark that the proofs of i) and ii) above are exactly the long divi-
sion algorithms for polynomials and power series as you have seen them in
beginning algebra and calculus.
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Remark 3.3.5 We remark that the conclusion of Theorem 3.3.4 remains
true for polynomials with coefficients in an arbitrary domain if the leading
coefficient of g is a unit.

Exercise 3.3.6 Show that q and r from the statement of Theorem 3.3.4
are unique.

Corollary 3.3.7 (Bézout’s Little Theorem) Let R be a domain, and
a ∈ R. For any f ∈ R[X], the remainder of f when divided by X−a is f(a)
(the value of the polynomial function defined by f at a ∈ R). Consequently,
X − a | f if and only if f(a) = 0 (we say that a is a root of f).

Proof: By Theorem 3.3.4 and Remark 3.3.5, we have that f = (X−a)q+r,
where r ∈ R. After specializing X at a we get that f(a) = r.

Exercise 3.3.8 (Rational Root Theorem) If a
b ∈ Q, (a, b) = 1, is a

root of

f = anX
n + an−1X

n−1 + . . .+ a1X + a0 ∈ Z[X],

then a | a0 and b | an.

Exercise 3.3.9 If R is a domain and f ∈ R[X] is a non-zero polynomial,
then f has at most n roots, where n = deg(f). Is this true if R is not a
domain?

The previous exercise shows that if R is an infinite domain, we cannot
have two different polynomials defining the same polynomial function. In-
deed, the difference of the two polynomials would then have infinitely many
roots, which is not possible, the number of roots is bounded by the degree.
This is the reason why we can get away with identifying polynomials with
polynomial functions in high school mathematics.

Exercise 3.3.10 Let p ∈ Z be prime. Use the polynomial (X − 1) · · · (X −
p + 1) − Xp−1 + 1 ∈ Zp[X] to give another proof for Wilson’s Theorem:
(p− 1)! ≡ −1 (mod p) (see Exercise 2.3.17).

You might find other definitions for Euclidean domains in the literature.
One of the most commonly used definitions requires that the function ϕ in
Definition 3.3.1 additionally satisfies the condition

If a and b are non-zero, and a | b then ϕ(a) ≤ ϕ(b). (3.1)

We will see in the next section (Proposition 3.4.6) that these two definitions
are equivalent.
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Another definition requires the function ϕ in Definition 3.3.1 to be multi-
plicative, i.e. ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R \ {0}. It is clear that if ϕ is
multiplicative, then it satisfies condition (3.1). Looking at our examples of
Euclidean domains, we see that the functions we considered for Z, a field
K, and Z[i] (see Theorem 3.3.11 below) are all multiplicative. The only
one that are not are ϕ(f) = deg(f), where K is a field and f ∈ K[X] \ {0}
and ψ(f) = ord(f), where K is a field and f ∈ K[[X]] \ {0}. However,

they can be replaced by ϕ′(f) = 2deg(f) and ψ′(f) = 2ord(f), which are
multiplicative. For a very long time it has been an open question whether
any Euclidean domain has a multiplicative function. An example of an
Euclidean domain for which this is not true was given in [11].

We now show that the ring of Gaussian integers, Z[i], is an Euclidean
domain. Recall from Exercise 2.6.15 that its field of fractions is Q(i) =
{a+ bi | a, b ∈ Q}.

Theorem 3.3.11 i) Z[i] is Euclidean with respect to N : Z[i] −→ N, N(a+
bi) = a2 + b2, if and only if ∀z ∈ Q(i) ∃q ∈ Z[i] such that N(z − q) < 1.
ii) Z[i] is Euclidean with respect to N : Z[i] −→ N, N(a+ bi) = a2 + b2.

Proof: i) Assume that Z[i] is Euclidean, and let z = α
β ∈ Q(i), α, β ∈ Z[i],

β 6= 0. Then there exist q, r ∈ Z[i] such that α = βq + r and N(r) < N(β)
(this is because N(r) = 0 iff r = 0).Then we have

N(z−q) = N

(
α

β
− q
)

= N

(
βq + r

β
− q
)

= N

(
r

β

)
=
N(r)

N(β)
< 1. (3.2)

Conversely, let α, β ∈ Z[i], β 6= 0. Let z = α
β and q ∈ Z[i] be such that

N(z − q) < 1, and let r = α− βq. Then (3.2) holds and we are done.
ii) If α, β ∈ Z[i], β 6= 0, then α

β ∈ Q(i) is inside one of the squares of

the lattice determined in the plane by Z[i]. Any vertex of this square
that is within a unit distance from α

β is a possible quotient according to

i). In Figure 3.1, each of the nine regions displays the number of possible
quotients when α

β is in that region. For each quotient q we find a remainder
by putting r = α−βq. We see that there are at least two and at most four
possibilities, depending on the region that contains α

β .

Remark 3.3.12 We have seen that for integers we have in general two
pairs of quotients and remainders, but if we ask the reminder to be non-
negative, then the quotient and remainder are unique. The quotient and
remainder are also unique for polynomials with coefficients in a field, but
in the case of Gaussian integers there is no way choose the quotient and
remainder in order to make them unique.
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Figure 3.1: Number of quotient and remainder pairs in Z[i]

Theorem 3.3.13 An Euclidean domain is a GCD-domain.

Proof: The proof is identical to the proof of Theorem 1.2.7. Given elements
a and b in an Euclidean domain R with function ϕ, we need to show that
a greatest common divisor of a and b exists. If one of a and b is 0, then
the other one is their greatest common divisor. So we assume that both
of a and b are not 0, and we consider the set W = {ϕ(ma + nb) | m,n ∈
R,ma + nb 6= 0}. W 6= ∅ because we can pick m = 1 and n = 0. By the
well-ordering principle W has a least element ϕ(d) = ϕ(ua + vb), and we
show that d = (a, b). We prove first that d | a. Indeed, if d does not divide
a we use the division algorithm to find q and r such that a = dq+ r, where
ϕ(r) < ϕ(d). Now since r = a−dq = a− (ua+vb) = (1−u)a+(−v)b ∈W ,
this contradicts the fact that ϕ(d) is the least element in W . The proof of
the fact that d | b is identical. Finally, if c | a and c | b, then a = ce and
b = cf . It follows that d = ua+ vb = uce+ vcf = c(ue+ vf), so c | d and
the proof is complete.

Exercise 3.3.14 Find all possible quotients and remainders when dividing
1 + 2i by 3 + 4i in Z[i].

From the proof of Theorem 3.3.13 we immediately obtain the following

Corollary 3.3.15 In an Euclidean domain, the greatest common divisors
of two elements is a linear combination of them (i.e. if d = (a, b), ∃u, v ∈ R
such that d = au+ bv).

Corollary 3.3.16 In an Euclidean ring, an element is prime if and only
if it is irreducible.
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Proof: Proposition 3.2.11.

The proof of the next result is identical to the one of Proposition 1.2.10,
and since even the notation is the same, we will omit it.

Proposition 3.3.17 (The Euclidean Algorithm in Euclidean Do-
mains)
In an Euclidean domain R with function ϕ we have the following:
i) If a = bq + r, then (a, b) = (b, r).
ii) If a, b are nonzero, consider the following chain of divisions:
a = q0b+ r0, where r0 = 0 or ϕ(r0) < ϕ(b),
b = q1r0 + r1, where r1 = 0 or ϕ(r1) < ϕ(r0),
r0 = q2r1 + r2, where r2 = 0 or ϕ(r2) < ϕ(r1),
. . .
rn = qn+2rn+1 + rn+2, where rn+2 = 0 or ϕ(rn+2) < ϕ(rn+1),
. . .
Then {ϕ(rn)} is a strictly decreasing chain of nonnegative integers, so one
of the r’s has to be 0. The last nonzero remainder in this chain is a greatest
common divisor for a and b.

Remark 3.3.18 If we find d = (a, b) using the Euclidean algorithm, we
can use back substitution to write d as a linear combination of a and b.

Exercise 3.3.19 Use the Euclidean algorithm to find (4−3i, 2+ i) in Z[i],
then write it as a linear combination of 4− 3i and 2 + i.

Exercise 3.3.20 Use the Euclidean algorithm to find (X5 + X4 + 2X +
2, X2 + 3X + 2) in Q[X], then write it as a linear combination of X5 +
X4 + 2X + 2 and X2 + 3X + 2.

Remark 3.3.21 The greatest common divisor of two elements is generally
not unique, any element associated in divisibility with it will also be a great-
est common divisor. In Z we can make the greatest common divisor unique
by requiring it to be positive. We can make the greatest common divisor
of two polynomials with coefficients in a field unique if we require it to be
monic (i.e. to have leading coefficient 1). For Gaussian integers we have
no option for making the greatest common divisor unique.
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Solutions to the Exercises on Section 3.3

Exercise 3.3.2 If we ask the remainder r in Theorem 1.2.1 to satisfy r ≥ 0,
then the quotient and remainder, the q and the r from the statement of the
theorem are unique.
Solution: Assume that a = bq1 + r1 = bq2 + r2, where 0 ≤ r1, r2 < b.
Then b(q1− q2) = r2− r1, i.e. b | r2− r1. Since |r2− r1 |< b, it follows that
r1 = r2, so bq1 = bq2, and since b 6= 0 we get that q1 = q2.

Exercise 3.3.3 If K is a field, show that K is Euclidian.
Solution: Define ϕ : K \ {0} −→ N by ϕ(a) = 1 for all a ∈ K \ {0}. Then
for all a, b ∈ K, b 6= 0, we get q = ab−1 and r = 0.

Exercise 3.3.6 Show that q and r from the statement of Theorem 3.3.4
are unique.
Solution: Assume f = q1g + r1 = q2g + r2. If r1 6= r2, then g(q1 − q2) =
r2− r1, and deg(g) < deg(r2− r1), a contradiction. It follows that r1 = r2,
so q1 = q2 as well, because K[X] is a domain and g 6= 0. For the formal
series case, just replace degree by order.

Exercise 3.3.8 If a
b ∈ Q, (a, b) = 1, is a root of

f = anX
n + an−1X

n−1 + . . .+ a1X + a0 ∈ Z[X],

then a | a0 and b | an.
Solution: Write

an

(a
b

)n
+ an−1

(a
b

)n−1

+ . . .+ a1

(a
b

)
+ a0 = 0,

so after multiplying both sides by bn we get

ana
n + an−1a

n−1b+ . . .+ a1ab
n−1 + a0b

n = 0.

Therefore

a(ana
n−1 + an−1a

n−2b+ . . .+ a1b
n−1) = −a0b

n,

so by Euclid’s Lemma (Theorem 1.2.15) we get that a | a0. Then

b(an−1a
n−1 + . . .+ a1ab

n−2 + a0b
n−1) = −anan,

so b | an.

Exercise 3.3.9 If R is a domain and f ∈ R[X] is a non-zero polynomial,
then f has at most n roots, where n = deg(f). Is this true if R is not a
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domain?
Solution: Induction on n. If n = 0, then 0 6= f ∈ R, so f has no roots.
If n ≥ 1 and f has a root a, then f = (X − a)g, where deg(g) = n − 1 by
Corollary 3.3.7. By the induction hypothesis g has at most n− 1 roots, so
f has at most n− 1 + 1 = n roots.

The assertion is false if R is not a domain, the polynomial 2X ∈ Z4[X]
has degree one and two roots, 0 and 2.

Exercise 3.3.10 Let p ∈ Z be prime. Use the polynomial f = (X −
1) · · · (X − p + 1) − Xp−1 + 1 ∈ Zp[X] to give another proof for Wilson’s
Theorem: (p− 1)! ≡ −1 (mod p) (see Exercise 2.3.17).
Solution: Assume p > 2. By Fermat’s Little Theorem (Exercise 2.3.16
viii)), f has roots 1, 2, . . . , p − 1. Since it has degree at most p − 2, by
Exercise 3.3.9 it follows that f = 0. Specializing X at 0 gives (p−1)! ≡ −1
(mod p).

Exercise 3.3.14 Find all possible quotients and remainders when dividing
1 + 2i by 3 + 4i in Z[i].
Solution: Since N(3+4i) = 25 > 5 = N(1+2i), we can choose q1 = 0 and
r1 = 1 + 2i. We now find the other quotients and remainders. We compute

z =
1 + 2i

3 + 4i
=

(1 + 2i)(3− 4i)

25
=

11 + 2i

25
=

11

25
+

2

25
i.

We see that z is inside the square with vertices 0, 1, i, and 1 + i. We
compute

N(z − 1) =

(
11

25
− 1

)2

+

(
2

25

)2

=
196

625
+

4

625
=

200

625
< 1,

N(z − i) =

(
11

25

)2

+

(
2

25
− 1

)2

=
121

625
+

529

625
=

650

625
> 1,

N(z − (1 + i)) =

(
11

25
− 1

)2

+

(
2

25
− 1

)2

=
196

625
+

529

625
=

725

625
> 1.

There is only one other possible quotient, q2 = 1, and remainder r2 =
1 + 2i− (3 + 4i) = −2− 2i.

Exercise 3.3.19 Use the Euclidean algorithm to find (4 + 3i, 2 + i) in Z[i],
then write it as a linear combination of 4 + 3i and 2 + i.
Solution: We compute

z1 =
4 + 3i

2 + i
=

(4 + 3i)(2− i)
5

=
11 + 2i

5
=

11

5
+

2

5
i.



3.3. EUCLIDEAN DOMAINS 149

We have that z1 is inside the square with vertices 2, 3, 3 + i, and 2 + i. We
only need one quotient and one remainder, and we see that N(z1 − 2) =
1
25 + 4

25 = 5
25 < 1, so we write

4 + 3i = (2 + i) · 2 + i.

Since i is a unit, we have that 1 = (4 + 3i, 2 + i), and since i = 4 + 3i +
(−2)(2 + i), we get that

1 = (−i)(4 + 3i) + (2i)(2 + i).

Exercise 3.3.20 Use the Euclidean algorithm to find (X5 + X4 + 2X +
2, X2 + 3X + 2) in Q[X], then write it as a linear combination of X5 +
X4 + 2X + 2 and X2 + 3X + 2.
Solution: We first divide X5 +X4 + 2X + 2 by X2 + 3X + 2:

X3 − 2X2 + 4X − 8

X2 + 3X + 2
)

X5 +X4 + 2X + 2
−X5 − 3X4 − 2X3

− 2X4 − 2X3

2X4 + 6X3 + 4X2

4X3 + 4X2 + 2X
− 4X3 − 12X2 − 8X

− 8X2 − 6X + 2
8X2 + 24X + 16

18X + 18

so we have

X5 +X4 + 2X + 2 = (X2 + 3X + 2)(X3 − 2X2 + 4X − 8) + 18(X + 1),

Then we divide X2 + 3X + 2 by 18X + 18:

1
18X + 1

9

18X + 18
)

X2 + 3X + 2
−X2 −X

2X + 2
− 2X − 2

0

Since 18 is a unit, we have that X + 1 = (X5 +X4 + 2X + 2, X2 + 3X + 2),
and

X+1 =
1

18
(X5 +X4 +2X+2)+(− 1

18
X3 +

1

9
X2− 2

9
X+

4

9
)(X2 +3X+2).
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3.4 Principal Ideal Domains

Recall from Definition 2.2.9 that a domain R is said to be a principal ideal
domain (PID for short) if every ideal of R is principal, i.e. is generated by
one element.

Exercise 3.4.1 Show that
i) a field is a PID.
ii) Z is a PID.
iii) Z[X] is not a PID by proving that the ideal generated by 2 and X is
not principal.

We now extend Exercise 2.2.10 (whose proof is actually the proof of Propo-
sition 1.5.7) to Euclidean domains.

Theorem 3.4.2 Any Euclidean domain is a PID.

Proof: Let R be a Euclidean domain with function ϕ, and let I be an ideal
of R. If I = {0}, I is generated by 0. If I 6= {0}, let

W = {ϕ(a) | a ∈ I, a 6= 0}.

By the well-ordering principle, let b ∈ I, b 6= 0, such that ϕ(b) is the least
element in W . We show that I = bR. It is clear that bR ⊆ I, because
b ∈ I. If a ∈ I, let q, r ∈ R such that a = bq + r, and r = 0 or ϕ(r) < ϕ(b).
Since r = a − bq ∈ I, the latter would contradict the fact that ϕ(b) is the
least element of W , so we get that r = 0 and the proof is complete.

Exercise 3.4.3 Show that
i) Z[i] and K[X], where K is a field, are PIDs.
ii) If R is a domain, then R[X] is a PID if and only if R is a field.

Exercise 3.4.4 Show that a PID is a GCD-domain.

Exercise 3.4.5 Is Z[i
√

5] a PID?

We can now prove the equivalence of the two definitions for Euclidean
domains promised at the end of the previous section.

Proposition 3.4.6 Let R be an Euclidian ring with function ϕ : R \
{0} −→ N, and define ϕ′ : R \ {0} −→ N by

ϕ′(a) = inf{ϕ(b) | b ∼d a}.

Then R is an Euclidean ring with ϕ′, and ϕ′ also satisfies (3.1).



3.4. PRINCIPAL IDEAL DOMAINS 151

Proof: We show first that R is Euclidean with ϕ′. Let a, b ∈ R, b 6= 0, and
let b′ ∼d b be such that ϕ′(b) = ϕ(b′). Then let q, r ∈ R such that a = b′q+r
and r = 0 or ϕ(r) < ϕ(b′). We have that b′ = bu for some u ∈ U(R), so
a = buq + r. Then, if r 6= 0, we have ϕ′(r) ≤ ϕ(r) < ϕ(b′) = ϕ′(b).
We now prove that ϕ′ satisfies (3.1). Let a | b be non-zero elements in
R, which means that b ∈ aR. By the proof of Theorem 3.4.2, it follows
that aR = cR, where c has the property that φ′(c) is the smallest of all
φ′(x), x ∈ aR. In particular, φ′(c) ≤ φ′(b). On the other hand, a ∼d c, so
φ′(c) = φ′(a), and the proof is complete.

Theorem 3.4.7 Let R be a PID, a ∈ R, a 6= 0, a /∈ U(R). Then a can be
written as a finite product of prime elements.

Proof: Since PIDs are GCD-domains, any irreducible is prime, so we
show that a is a finite product of irreducibles. If a is not a product of
irreducibles, we can write a = a1a

′, where a1, a
′ /∈ U(R), and a1 is not

a product of irreducibles. Then a1 = a2a
′′, where a2, a

′′ /∈ U(R), and a2

is not a product of irreducibles. We keep going and we get the following
strictly ascending chain of principal ideals of R:

a1R ⊂ a2R ⊂ a3R ⊂ . . . .

But I = ∪i≥1aiR is an ideal of R (because every element in I has to belong
to one of the ideals in the chain, and therefore any two elements in I belong
to one of the ideals in the chain), so I = aR for some a. Now a has to belong
to some anR, so the chain has to stabilize after that, a contradiction.

Proposition 3.4.8 Let R be a PID but not a field. Then M is a maximal
ideal of R if and only iff it is generated by an irreducible element.

Proof: Let M = qR be an ideal of R, and assume that d | q. Then
M = qR ⊆ dR ⊆ R. Since qR = dR if and only if d ∼d q and dR = R if
and only if d ∈ U(R), the assertion follows.

Exercise 3.4.9 Use Proposition 3.4.8 to give another proof of the fact that
in a PID any irreducible is prime.

Exercise 3.4.10 Let

Z

[
1 + i

√
19

2

]
=

{
a+ b

1 + i
√

19

2

∣∣∣∣∣a, b ∈ Z

}
.

Prove that:
i) Z

[
1+i
√

19
2

]
is a subring of C, and therefore it is a domain.
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ii) N : Z
[

1+i
√

19
2

]
−→ N, defined by N

(
a+ b 1+i

√
19

2

)
= a2 + ab + 5b2 is

multiplicative.

iii) The field of fractions of Z
[

1+i
√

19
2

]
is

Q[i
√

19] = {a+ bi
√

19 | a, b ∈ Q}.

iv) U
(
Z
[

1+i
√

19
2

])
= {1,−1}.

Proposition 3.4.11 R = Z
[

1+i
√

19
2

]
is a PID but is not Euclidean.

Proof: Assume first that R is Euclidean with function ϕ, and let b /∈
{0,±1} such that ϕ(b) is the smallest (such a b exists by the well-ordering
principle). Then for any a we have that a = bq+ r, where r ∈ {0,±1}, and
so R/bR is isomorphic to Z2 or Z3. Now(

1 + i
√

19

2

)2

− 1 + i
√

19

2
=

1 + i
√

19

2
· −1 + i

√
19

2
= −5,

so if we put α = 1+i
√

19
2 , we have that α2 − α + 5 = 0, and if we denote

by α the coset of α in R/bR, we have that α2 − α + 5 = 0. However, no
elements in Z2 or Z3 satisfy this, and therefore R is not Euclidean.

We now show that R is a PID using R.A. Wilson’s proof from [43].
Let I be a non-zero ideal of R, and let b ∈ I, b 6= 0, such that N(b) is
the smallest possible (such a b exists by the well-ordering principle). We
will show that I = bR. If this is not true, we choose a ∈ I \ bR and we
try to contradict the minimality of N(b) by finding u, v ∈ R such that
0 < N(ua− vb) < N(b), or 0 < N

(
uab − v

)
< 1.

Since we can add any element of R to a
b (and thus replace a by a plus

something in bR), we can assume that the imaginary part of a
b = x+ iy is

between ±
√

19
4 by adding to it integer multiples of i

√
19
2 .

Now if −
√

3
2 < y <

√
3

2 , then N
(
a
b − k

)
< 1, where k is the closest

integer to x. Note that a− kb 6= 0 because a /∈ I.

Now we assume that
√

3
2 < y <

√
19
4 , hence the imaginary part of 2ab −

1+i
√

19
2 lies between

√
3−

√
19
2 and 0. But 3

√
3 >
√

19, so
√

3
2 >

√
19
2 −

√
3 >

0, and we have that N(2ab −
1+i
√

19
2 − l) < 1, where l is the closest integer

to 2x− 1
2 .

The only way this will not work is if 2ab −
1+i
√

19
2 − l = 0, which means

that 2ab ∈ R. Remembering that |y| ≤
√

19
4 , this means that we can assume
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that y =
√

19
4 . After adding integers to a

b we can assume that a
b = ±1+i

√
19

4 ,

so if we take u = ∓1+i
√

19
2 and v = −2 we have that

0 < N
(
u
a

b
− v
)

= N

(
(i
√

19 + 1)(i
√

19− 1)

8
+ 2

)
=

1

4
< 1,

and the proof is complete.
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Solutions to the Exercises on Section 3.4

Exercise 3.4.1 Show that
i) a field is a PID.
ii) Z is a PID.
iii) Z[X] is not a PID by showing that the ideal generated by 2 and X is
not principal.
Solution: i) The only ideals are {0} and the field itself.
ii) This is Exercise 2.2.10.
iii) Assume that 2Z[X] + XZ[X] = dZ[X] for some d ∈ Z[X]. Since 2 ∈
dZ[X] it follows that deg(d) = 0, and since X ∈ dZ[X] it follows that
d = ±1, so we get 1 = 2f +Xg for some f, g ∈ Z[X]. If we specialize X to
0, we see that 2 | 1 in Z, a contradiction.

Exercise 3.4.3 Show that
i) Z[i] and K[X], where K is a field, are PIDs.
ii) If R is a domain, then R[X] is a PID if and only if R is a field.
Solution: i) Follows from Theorems 3.3.4, 3.3.11, and 3.4.2.
ii) If R is a field, the assertion follows from i). If a is non-zero and a non-
unit, then as in the solution to Exercise 3.4.1 iii) we get that 1 = af +Xg,
so the constant term of the right hand side is 1. This is a contradiction,
because the constant term of the right hand side is 0 or a.

Exercise 3.4.4 Show that a PID is a GCD-domain.
Solution: See Exercise 3.1.7

Exercise 3.4.5 Is Z[i
√

5] a PID?
Solution: No, see the proof of Proposition 3.1.13, which shows that Z[i

√
5]

is not a GCD-domain.

Exercise 3.4.9 Use Proposition 3.4.8 to give another proof of the fact that
in a PID any irreducible is prime.
Solution: Let q be an irreducible. By Proposition 3.4.8, qR is maximal,
so it is prime. Then q is prime by Proposition 3.2.3.

Exercise 3.4.10 Let

Z

[
1 + i

√
19

2

]
=

{
a+ b

1 + i
√

19

2

∣∣∣∣∣a, b ∈ Z

}
.

Prove that:
i) Z

[
1+i
√

19
2

]
is a subring of C, and therefore it is a domain.

ii) N : Z
[

1+i
√

19
2

]
−→ N, defined by N

(
a+ b 1+i

√
19

2

)
= a2 + ab + 5b2 is
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multiplicative.

iii) The field of fractions of Z
[

1+i
√

19
2

]
is

Q[i
√

19] = {a+ bi
√

19 | a, b ∈ Q}.

iv) U
(
Z
[

1+i
√

19
2

])
= {1,−1}.

Solution: i) The only thing we need to check is closure under multiplica-
tion, the rest are obvious. We compute(
a+ b

1 + i
√

19

2

)(
c+ d

1 + i
√

19

2

)
= ac− 5bd+ (bc+ ad+ bd)

1 + i
√

19

2

ii) We have(
a+ b

1 + i
√

19

2

)(
a+ b

1 + i
√

19

2

)
= a2 + ab+ 5b2.

iii) We denote by K the field of fractions of Z
[

1+i
√

19
2

]
. We have

a+ b 1+i
√

19
2

c+ d 1+i
√

19
2

=
2ac+ 10bd+ bc+ ad

2(c2 + cd+ 5d2
+

bc− ad
2(c2 + ad+ 5d2)

i
√

19,

so K ⊆ Q[i
√

19]. Conversely,

a

b
+
c

d
i
√

19 =
bc− 2ad+ 2bc 1+i

√
19

2

2bd
,

so Q[i
√

19] ⊆ K as well.

iv) If u = a + b 1+i
√

19
2 is a unit, by ii) we have that a2 + ab + 5b2 =

(a+ b
2 )2 + 19

4 b
2 = 1. It follows that b = 0 and a = ±1.
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3.5 Unique Factorization Domains

In this section we study domains in which the analog of the Fundamental
Theorem of Arithmetic (see Theorem 1.2.23) holds. We note first that the
uniqueness part is true in any domain:

Exercise 3.5.1 Let R be a domain, and assume that p1, p2, . . . , pn, and
q1, q2, . . . qm are prime elements of R such that

p1p2 · · · pn = q1q2 · · · qm.

Then n = m and each of the pi is associated in divisiblity to one of the qj.

Definition 3.5.2 A domain R is called a Unique Factorization Domain
(UFD for short), if any non-zero element which is not a unit can be writtem
as a finite product of prime elements.

Exercise 3.5.3 A PID is a UFD.

Exercise 3.5.4 In a UFD, any irreducible is prime.

If R is an UFD, and we pick one representative in each class of elements
associated in divisibility with a prime, we obtain a family of primes {pi}i∈I
such that any a ∈ R, a 6= 0 can be written as

a = u
∏
i∈I

pkii , (3.3)

where u ∈ U(R) and only a finite number of ki ∈ N are non-zero. This
decomposition is then unique, i.e. if we also have that

a = v
∏
i∈I

pni
i ,

with the same properties as (3.3), then u = v and ki = ni ∀i ∈ I.

Exercise 3.5.5 Let R be a UFD. If a, b ∈ R \ {0} have factorizations as
in (3.3)

a = u
∏
i∈I

pmi
i , b = v

∏
i∈I

pni
i .

Show that:
i) If d =

∏
i∈I p

ki
i , where ki = min{mi, ni}, then d = (a, b).

ii) If m =
∏
i∈I p

li
i , where li = max{mi, ni}, then m = [a, b].

iii) R is a GCD-domain.
iv) If a, b1, b2, . . . , bn ∈ R satisfy 1 = (a, bi) for 1 ≤ i ≤ n, then 1 =
(a, b1b2 · · · bn).
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The following result lists several characterizations of UFDs.

Theorem 3.5.6 The following assertions are equivalent for a domain R:
i) R is a UFD.
ii) Every non-zero non-unit element of R can be written as a finite product
of irreducibles, and any irreducible is prime.
iii) Every non-zero non-unit element of R can be written as a finite product
of irreducibles, and the factorization is unique modulo the order of factors
and association in divisibility.
iv) R is a GCD-domain and every non-zero non-unit element of R can be
written as a finite product of irreducibles.

Proof: i) ⇔ ii) follows from Exercise 3.5.4.
i) ⇔ iv) follows from Exercise 3.5.5.
ii) ⇒ iii) is clear.
iii) ⇒ ii). Assume that iii) holds, let q be an irreducible, and assume that
q | ab, i.e. ab = qq′. By the uniqueness of the factorization we get that q | a
or q | b, i.e. q is prime and the proof is complete.

Definition 3.5.7 If R is a UFD and f ∈ R[X], the content of f , denoted
by c(f), is the greatest common divisor of all coefficients of f . We say that
f is primitive if c(f) = 1 (this means that there is no prime element in R
that divides all coefficients of f). It is clear that if f ∈ R[X], then we can
write f = c(f)f1, where f1 ∈ R[X] is primitive.

Exercise 3.5.8 Let R be a UFD, and f, g ∈ R[X]. Then:
i) If c(f) = c(g) = 1, then c(fg) = 1 (i.e. the product of primitive polyno-
mials is primitive).
ii) In general, c(fg) ∼d c(f)c(g).
iii) If a ∈ R, a 6= 0, g is primitive, and g | af , then g | f .
iv) If both f and g are primitive and af = bg, a, b ∈ R \ {0}, then f ∼d g.

From Exercise 2.6.12 v) we get that if F is a field, then f ∈ F [X] is
irreducible if and only if we cannot write f = gh, where deg(g), deg(h) <
deg(f).

Exercise 3.5.9 Let F be a field, and f ∈ F [X]. Prove the following as-
sertions:
i) If deg(f) = 1, then f is irreducible.
ii) If deg(f) is 2 or 3, then f is irreducible if and only if f has no roots.
iii) F [X]/(X − a)F [X] ' F .
iv) If a, b ∈ F , a 6= b, then 1 = (X − a,X − b).

Proposition 3.5.10 Let R be a UFD and K its field of fractions. The
following assertions are equivalent for f ∈ R[X] with deg(f) ≥ 1:
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i) f is irreducible in R[X].
ii) f is primitive and irreducible in K[X].

Proof: i)⇒ ii). It is clear that f is primitive. If f = gh, with g, h ∈ K[X],
deg(g), deg(h) < deg(f), we can multiply both sides by a, which is the
product of all denominators of coefficients of g and h, and get af = g1h1,
g1, h1 ∈ R[X], deg(g1), deg(h1) < deg(f). Then af = c(g1)g2h1, and by
Exercise 3.5.8 iii) we get that g2 | f , a contradiction.
ii) ⇒ i) is clear.

Proposition 3.5.11 If R is a UFD, then any irreducible polynomial in
R[X] is prime.

Proof: If deg(f) = 0, then f is irreducible in R, hence prime in R, and so
it is prime in R[X] by Proposition 3.2.6. If deg(f) ≥ 1, then f is primitive.
Assume that f | gh in R[X]. Since f is irreducible in K[X] by Proposition
3.5.10 (K is the ring of fractions of R), then it is prime, so let us assume
that g = ff1 for some f1 ∈ K[X]. If we let a ∈ R, a 6= 0, be such that
af1 ∈ R[X], then we get that f | ag in R[X], so f | g in R[X] by Exercise
3.5.8 iii).

Theorem 3.5.12 (Gauss) If R is a UFD, then R[X] is a UFD.

Proof: We use Theorem 3.5.6 ii). By Proposition 3.5.11, it is enough
to show that any non-zero non-unit f ∈ R[X] can be written as a finite
product of irreducibles. We use induction on deg(f). If deg(f) = 0, then
f ∈ R is a finite product of primes in R, which are primes in R[X], and
therefore irreducible. If deg(f) ≥ 1 we can write f = c(f)f1, where f1 is
primitive, so we can assume that f is primitive. If f is not irreducible,
then f = gh, where deg(g), deg(h) < deg(f). By the induction hypothesis,
booth g and h are finite products of irreducibles, and therefore so is f .

Corollary 3.5.13 If R is a UFD, then R[X1, X2, . . . , Xn] is a UFD for
n ≥ 1.

We end this section with some irreducibility criteria for polynomials with
integer coefficients. If p ∈ Z is a prime number and f ∈ Z[X], we will
denote by f ∈ Zp[X] the image of f via the ring morphism from Z[X]
to Zp[X] that sends X to X and each integer to its coset modulo p (see
Theorem 2.6.13).

Theorem 3.5.14 (Schönemann’s Criterion) Let f = gn + ph, where
g, h ∈ Z[X], p ∈ Z is prime, g ∈ Zp[X] is irreducible, and g - h in Zp[X].
Then f is irreducible in Q[X].
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Proof: Assume that f = f1f2, where deg(f1), deg(f2) < deg(f), and
f1, f2 ∈ Q[X]. We can assume that f1, f2 ∈ Z[X], because we can write f =
a
b f
′f ′′, where 1 = (a, b) and f ′, f ′′ ∈ Z[X] are primitive. Then bc(f) = a, so

a
b ∈ Z. Now gn = f = f1f2, and since g is irreducible we get that f1 = gk

and f2 = gn−k, where k, n−k ≥ 1. Then f1 = gk+ph1, and f2 = gn−k+ph2,
so f = gn+ph = (gk +ph1)(gn−k +ph2) = gn+ph1g

n−k +ph2g
k +p2h1h2.

It follows that h = h1g
n−k + h2g

k + ph1h2, so g | h, a contradiction.

Corollary 3.5.15 (Eisenstein’s Criterion) Let

f = anX
n + an−1X

n−1 + . . .+ a1X + a0 ∈ Z[X],

and p ∈ Z a prime such that p - an, p | a0, p | a1, . . . p | an−1, and p2 - a0.
Then f is irreducible in Q[X].

Proof: We can multiply f by an integer such that an = an, where a ≡ 1
(mod p). Then we can write f = (aX)n + pg, aX = X is irreducible in
Zp[X], and X - g in Zp[X] because p2 - a0. The assertion then follows from
Theorem 3.5.14.

Exercise 3.5.16 Let p ∈ Z be a prime. Use Eisenstein’s Criterion to
show that f(X) = Xp−1 + Xp−2 + . . . + X + 1 is irreducible in Q[X]
(since it is primitive it will also be irreducible in Z[X]). Can you also
use Schönemann’s Criterion?

Exercise 3.5.17 Show that for each n ≥ 1 there exists an irreducible poly-
nomial of degree n in Z[X].

Proposition 3.5.18 (The Reduction Criterion) Let f ∈ Z[X]. If f is
irreducible in Zp[X] and deg(f) = deg(f), then f is irreducible in Q[X].

Proof: If f = gh, where deg(g), deg(h) < deg(f), then f = gh, and since
deg(g) ≤ deg(g) and deg(h) ≤ deg(h), we have deg(g), deg(h) < deg(f) =
deg(f), a contradiction.

An application of Proposition 3.5.18 is the following

Proposition 3.5.19 If p is a prime number, and p - a, then the Artin-
Schreier polynomial Xp −X + a ∈ Z[X] is irreducible.

Proof: We use Proposition 3.5.18 and prove that Xp −X + a ∈ Zp[X] is
irreducible. If it is not, let f | Xp−X + a, f irreducible, and 1 ≤ deg(f) ≤
p− 1.

We have the following possibilities:
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Case 1. f(X) 6= f(X+a). In this case we have that f(X+ ia) 6= f(X+ ja)
for all 0 ≤ i 6= j ≤ p− 1. Indeed, if f(X + ia) = f(X + ja) for some i 6= j,
it follows, after replacing X by X − ia, that f(X) = f(X + ka), where
1 = (k, p), so hk+ np = 1. We then get that f(X) = f(X + hka) = f(X +
a−npa) = f(X+a), a contradiction. We now writeXp−X+a = f(X)g(X),
and we get that for i ∈ {0, 1, . . . , p− 1}:

Xp −X + a = (X + ia)p −X − ia+ a = f(X + ia)g(X + ia),

where we used Fermat’s Little Theorem (Exercise 2.3.16 viii)). It follows
that Xp−X+a is divisible by p different polynomials, so each of them has
degree one. Since Xp −X + a has no roots in Zp, this is a contradiction.

Case 2. f(X) = f(X + a). In this case we have f(X) = f(X + ia) for all
0 ≤ i ≤ p−1. Let g(X) = f(X)−f(0), which has degree at most p−1. We
have that g(0) = f(0)−f(0) = 0, and g(ia) = f(ia)−f(0) = f(0)−f(0) = 0
for all 0 ≤ i ≤ p − 1. Then g has p roots, so g = 0, which means that
f(X) = f(0), which contradicts 1 ≤ deg(f) ≤ p− 1.

Exercise 3.5.20 For a domain R, the following assertions are equivalent:
i) R is a UFD.
ii) Any non-zero prime ideal of R contains a prime element.

Proposition 3.5.21 (Nagata) Let R be a domain with the property that
every ascending chain of principal ideals of R:

a1R ⊆ a2R ⊆ a3R ⊆ . . .

stabilizes. If S is a multiplicative subset whose elements are products of
primes, and S−1R is UFD, then R is UFD.

Proof: Assume that the elements in S are products of prime elements from
{pi}i∈I . Let P 6= {0} be a prime ideal of R. If P ∩ S 6= ∅, then P contains
a prime. Assume this is not true. We therefore have that P ∩ S = ∅, and
by Exercise 2.5.13 i) we get that S−1P = {ps | p ∈ P, s ∈ S} is a prime ideal
of S−1R. It follows that S−1P contains a prime p

s in S−1R, and therefore
p
1 ∈ S

−1P and p
1 is prime in S−1R. Let p | ab. It follows that p

1 |
a
1 or

p
1 |

b
1 . If p

1 |
a
1 , then ap1p2 · · · pk = pc. If none of the pi divides p, then

all pi | c and so p | a. If pi | p, then p = aipi. If some pj | pi, we have
ai = ai+1pj , and so on. We get the ascending chain of principal ideals of
R:

pR ⊆ ai ⊆ ai+1R ⊆ ai+2R ⊆ . . . ,

which stabilizes at ajR. Then we can replace p by aj , since
aj
1 ∈ S

−1R is
still prime, and we are done.
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Exercise 3.5.22 Let p be a prime element in the domain R, and S =
{1, p, p2, p3, . . .}. If S−1R is UFD, then R is UFD.
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Solutions to the Exercises on Section 3.5

Exercise 3.5.1 Let R be a domain, and assume that p1, p2, . . . , pn, and
q1, q2, . . . qm are prime elements of R such that

p1p2 · · · pn = q1q2 · · · qm.

Then n = m and each of the pi is associated in divisiblity to one of the qj.
Solution: This is identical to the proof of uniqueness in Theorem 1.2.23.
Assume that n > m and look for a contradiction. We have that p1 |
q1q2 · · · qm, so we can assume that p1 | q1. Since q1 is prime, it is irreducible,
so p1 ∼d q1. Then, since R is a domain, we can cancel p1 from both sides,
and continue until we cancel p1 through pm. But then pm+1 divides a unit
and it therefore has to be a unit, a contradiction.

Exercise 3.5.3 A PID is a UFD.
Solution: This follows from Theorem 3.4.7.

Exercise 3.5.4 In a UFD, any irreducible is prime.
Solution: Let q ∈ R be an irreducible. Since q 6= 0 and q /∈ U(R), q has
to be divisible by a prime, so it has to be associated in divisibility with it.

Exercise 3.5.5 Let R be a UFD. If a, b ∈ R \ {0} have factorizations as in
(3.3)

a = u
∏
i∈I

pmi
i , b = v

∏
i∈I

pni
i .

Show that:
i) If d =

∏
i∈I p

ki
i , where ki = min{mi, ni}, then d = (a, b).

ii) If m =
∏
i∈I p

li
i , where li = max{mi, ni}, then m = [a, b].

iii) R is a GCD-domain.
iv) If a, b1, b2, . . . , bn ∈ R satisfy 1 = (a, bi) for 1 ≤ i ≤ n, then 1 =
(a, b1b2 · · · bn).
Solution: i) As in the solution to Exercise 3.5.1, we get that

∏
i∈I p

ri
i |∏

i∈I p
ti
i if and only if ri ≤ ti, ∀i ∈ I.

ii) [a, b] = ab/(a, b).
iii) If one of a or b is 0, then (a, b) is the other one.
iv) By iii) we can use induction and Exercise 3.1.18, but we can also prove
this by showing that no prime p can divide a and b1b2 · · · bn. Indeed, such a
prime would have to divide a bi, and so it would have to divide (a, bi) = 1,
a contradiction.

Exercise 3.5.8 Let R be a UFD, and f, g ∈ R[X]. Then:
i) If c(f) = c(g) = 1, then c(fg) = 1 (i.e. the product of primitive polyno-
mials is primitive).
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ii) In general, c(fg) ∼d c(f)c(g).
iii) If a ∈ R, a 6= 0, g is primitive, and g | af , then g | f .
iv) If both f and g are primitive and af = bg, a, b ∈ R \ {0}, then f ∼d g.
Solution: i) follows from Proposition 3.2.6: if p ∈ R is a prime element
and p | fg, then p | f of p | g.
ii) We write f = c(f)f1 and g = c(g)g1, where f1, g1 are primitive. Then
fg = c(f)c(g)f1g1, and so c(fg) ∼d c(f)c(g)c(f1g1) ∼d c(f)c(g), by i).
iii) There is an h ∈ R[X] such that af = hg. Then by ii) we get that
ac(f) = c(h), so we can write h = ac(f)h′, and so af = ac(f)h′g, and after
canceling the a we get that g | f .
iv) follows from iii).

Exercise 3.5.9 Let F be a field, and f ∈ F [X]. Prove the following asser-
tions:
i) If deg(f) = 1, then f is irreducible.
ii) If deg(f) is 2 or 3, then f is irreducible if and only if f has no roots.
iii) F [X]/(X − a)F [X] ' F .
iv) If a, b ∈ F , a 6= b, then 1 = (X − a,X − b).
Solution: i) 1 cannot be written as the sum of two positive integers.
ii) If 2 or 3 is written as the sum of two positive integers, one of them has
to be 1. If f is divisible by the degree 1 polynomial aX − b, then ba−1 is a
root of f by Corollary 3.3.7.
iii) Let φ : F [X] −→ F be the ring morphism from Theorem 2.6.13 send-
ing X to a. By Corollary 3.3.7, Ker(ϕ) = (X − a)F [X], and we can use
Corollary 2.3.9.
iv) The Euclidean algorithm for X − a and X − b has one step: X − a =
(X − b) · 1 + (b− a).

Exercise 3.5.16 Let p ∈ Z be a prime. Use Eisenstein’s Criterion to
show that f(X) = Xp−1 + Xp−2 + . . . + X + 1 is irreducible in Q[X]
(since it is primitive it will also be irreducible in Z[X]). Can you also
use Schönemann’s Criterion?
Solution: It is clear that f(X) is irreducible if and only if f(X+1) is irre-

ducible. But f(X)) = Xp−1
X−1 , so f(X + 1) =

(X + 1)p − 1

X
=

p∑
k=1

(
p

k

)
Xk,

and since p |
(
p
k

)
for k = 1, . . . , p − 1, the leading coefficient is 1, and the

free term is p, we can use Theorem 3.5.14.

In order to apply Schönemann’s Criterion, observe that p | (X − 1)p −
Xp + 1, so (X − 1)p − (Xp − 1) = −p(X − 1)g for some g ∈ Z[X]. Then
f(X) = Xp−1

X−1 = (X − 1)p−1 + pg, from where we can see that p - 1 = g(1),
i.e. X − 1 - g in Zp[X].
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Exercise 3.5.17 Show that for each n ≥ 1 there exists an irreducible poly-
nomial of degree n in Z[X].
Solution: Apply Theorem 3.5.14 to the primitive polynomial Xn − 2 for
p = 2.

Exercise 3.5.20 For a domain R, the following assertions are equivalent:
i) R is a UFD.
ii) Any non-zero prime ideal of R contains a prime element.
Solution: i) ⇒ ii). Let P be a non-zero prime ideal, and 0 6= x ∈ P . By
Definition 3.5.2, x is a product of primes, so P will have to contain one of
them.
ii) ⇒ i). Let

S = {p1p2 · · · pk | pi are prime elements in R}.

As in the solution to Exercise 3.5.1, S is saturated: if ab = p1p2 · · · pk, then,
after renaming the primes, a = up1p2 · · · pi and b = vpi+1pi+2 · · · pk, where
uv = 1. If a 6= 0 and a /∈ U(R), such that a /∈ S, then aR ∩ S = ∅ because
S is saturated. But by Proposition 2.5.16, a belongs to a prime P disjoint
from S, and this is a contradiction (the hypothesis ensures that no primes
are disjoint from S).

Exercise 3.5.22 Let p be a prime element in the domain R, and S =
{1, p, p2, p3, . . .}. If S−1R is UFD, then R is UFD.
Solution: Let P be a non-zero prime ideal of R. We can assume P ∩S = ∅,
so S−1P contains a prime element q

1 ∈ S
−1R. We can assume p - q. If q | ab,

then q
1 |

a
1 ·

b
1 , so let’s say q

1 |
a
1 . This means that apk = qc for some k and

c, and since p - q we get that pk | c, so q | a and we are done.
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3.6 Roots of polynomials

We start this section with a warm-up: finding relations between the roots
of a polynomial and its coefficients. They extend the well-known formulas
for the sum and the product of the roots of a quadratic equation.

Proposition 3.6.1 (Vieta’s Formulas) Let R be a domain, and f =
anX

n + an−1X
n−1 + . . . + a1X + a0 ∈ R[X] a polynomial of degree n. If

x1, x2, . . . , xn are roots of f in a domain T that contains R as a subring,
then

f = an(X − x1)(X − x2) · · · (X − xn)

and

an

 ∑
1≤i1<i2<...ik≤n

xi1xi2 · · ·xik

 = (−1)kan−k, k ∈ {1, 2, . . . n}

Proof: The first equality is obtained by applying Bézout’s Theorem (Corol-
lary 3.3.7) n times, to get f = g(X − x1)(X − x2) · · · (X − xn) for some
g ∈ T [X]. It follows that deg(g) = 0, and g = an by identifying the coef-
ficients of Xn on the left and the right. The other n equalities follow by
identifying the other n pairs of coefficients.

Exercise 3.6.2 If x1, x2, x3 are the roots of X3 − 3X2 + 1 ∈ Z[X], find
x4

1 + x4
2 + x4

3 − 4(x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3).

Finding roots of polynomials, i.e. solving polynomial equations, is a very
old sport. The following result shows that in this sport you can easily score
if you enlarge the goal.

Proposition 3.6.3 Let K be a field and f ∈ K[X], deg(f) = n ≥ 1. Then
there exists a field L that contains K as a subfield (such an L is called a
field extension of K) such that f has n (not necessarily distinct) roots in
L.

Proof: Induction on n. If n = 1, it is clear that f has a root in K, so
in this case we can take L = K. We now assume that n > 1 and the
assertion is true for polynomials of degree at most n − 1. Since K[X] is a
UFD, we let f1 be irreducible in K[X] such that f = f1f2. Since K[X] is
a PID, the ideal generated by f1 is maximal, so L1 = K[X]/(f1K[X]) is
a field. Since the composition of the canonical injection K −→ K[X] with
the canonical surjection K[X] −→ K[X]/(f1K[X]) is injective (what is its
kernel?), we can identify K with its image through it, and assume that L1

is an extension of K. If we denote the coset of X modulo f1K[X] by X,
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it is clear that x1 = X is a root of f1, and hence a root of f . By Bézout’s
Theorem (Corollary 3.3.7), we can write f = (X − x1)g, where g ∈ L1[X]
and deg(g) = n− 1. By the induction hypothesis there exists an extension
L of L1 which contains n − 1 roots for g, and if we add x1 to this set, we
find n roots of f in L.

We use Proposition 3.6.3 to extend R to C as described in the introduction.

Corollary 3.6.4 Consider the polynomial X2 + 1 ∈ R[X]. Then:
i) There exists L an extension of R such that X2 + 1 has both roots in L.
ii) L ' C.

Proof: i) Since X2 + 1 is irreducible in R[X] (it has no roots in R),
L = R[X]/(X2 +1)R[X] is a field that we may assume is an extension of R.
X2 +1 has both roots in L, they are X and −X (where X denotes again the
coset of X modulo (X2 + 1)R[X]). By the division algorithm, the elements
of L = R[X]/(X2 +1)R[X] can be written as (X2 + 1)q + a+ bX = a+bX,
where q ∈ R[X] and a, b ∈ R.
ii) The map from L to C sending a+ bX to a+ bi is an isomorphism.

Note that Corollary 3.6.4 gives the description of the complex number i
announced in the introduction: i is “the coset of the indeterminate in the
factor ring of the polynomial ring in one indeterminate X with real coef-
ficients factored through the principal ideal generated by the polynomial
X2 + 1”, and therefore C can be constructed as C ' R[X]/(X2 + 1) =
R[X]/(X2 + 1)R[X]. Next, as it was also mentioned in the introduction,
we see that we cannot extend C to a larger field by adding solutions to
polynomial equations with complex coefficients. This is the next result,
which says that C is algebraically closed. All known proofs of this result
use results from outside algebra. The proof presented here, essentially due
to Lagrange, keeps those to a minimum. A very spectacular proof uses
Liouville’s Theorem from complex analysis. If you did not take a complex
analysis class yet, it might be an excellent idea to do that next. If this
is not possible, an acceptable alternative could be reading George Cain’s
book [10].

Theorem 3.6.5 (The Fundamental Theorem of Algebra) Any poly-
nomial f ∈ C[X], deg(f) ≥ 1, has a root in C.

Proof: First, assume that f ∈ R[X] and n = deg(f) = 2km, where m is
odd. We prove by induction on k that f has a root in C.
If k = 0, then, if we also denote by f the real polynomial function defined
by f , we have that lim

x→∞
f(x)f(−x) = −∞ since n is odd, so f has a real
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zero because it has the intermediate value property. We also note that a
quadratic polynomial with complex coefficients has two complex roots, by
the fact that each complex number has a square root and the quadratic
formula.
We assume now that k > 0 and the assertion is true for the maximum
power of 2 dividing n = deg(f) less than or equal to k − 1. By Proposi-
tion 3.6.3 there exists a field L, an extension of C, such that f has roots
x1, x2, . . . , xn ∈ L. For a ∈ R, consider the elements

uaij = xixj + a(xi + xj) ∈ L,

and the polynomial

ga =
∏

1≤i<j≤n

(X − uaij) ∈ L[X],

which has degree n(n+1)
2 , which is divisible by 2k−1 but not by 2k. The

coefficients of ga are symmetric polynomials of the uaij , and therefore also
symmetric polynomials of x1, x2, . . . , xn, so by Theorem 2.7.11 and Propo-
sition 3.6.1 ga ∈ R[X]. By the induction hypothesis, ga has a complex
root, and this is true for all a ∈ R. Since R is infinite and the set of pairs
1 ≤ i < j ≤ n is finite, there exist a, b ∈ R, a 6= b, and i, j, 1 ≤ i < j ≤ n,
such that uaij , u

b
ij ∈ C. But then

uaij − ubij = (a− b)(xi + xj) ∈ C,

and so xi + xj ∈ C, and therefore xixj ∈ C as well. It follows that xi and
xj are the roots of a quadratic polynomial with complex coefficients, and
therefore they are complex numbers.
Assume now that f ∈ C[X], f = a0 + a1X + . . .+ anX

n, and let f be the
polynomial whose coefficients are the complex conjugates of the coefficients
of f :

f = a0 + a1X + . . .+ anX
n.

Then each coefficient of ff is equal to its complex conjugate, i.e. ff ∈
R[X], so it has a complex root z. But then f(z)f(z) = f(z)f(z) = 0, and
so either z is a root of f , or z is a root of f , i.e. z is a root of f , and the
proof is complete.

We have seen in Exercise 3.5.17 that in Q[X] there are irreducible polyno-
mials of any degree ≥ 1.

Exercise 3.6.6 i) Prove that an irreducible polynomial in C[X] has degree
1.
ii) Prove that an irreducible polynomial in R[X] has degree 1 or degree 2
and no real roots.
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We will now prove a theorem that you used in Mrs. Turner’s 3rd grade
calculus class: the Partial Fractions Decomposition Theorem. Remember
that Mrs. Turner told you that even though you are using this theorem in
calculus, the proof actually uses arithmetic in polynomial rings.

Theorem 3.6.7 Let f, g ∈ R[X], deg(f) < deg(g) and (f, g) = 1. If g
factors as a product of irreducible polynomials like this:

g = (X − a1)k1 · · · (X − am)km ·

·(X2 + b1X + c1)l1 · · · (X2 + bnX + cn)ln ,

then there exist real numbers Aij , B
i
j , C

i
j such that

f

g
=

A1
1

X − a1
+ · · ·+

A1
k1

(X − a1)k1
+ · · ·+

+
Bn1X + Cn1

X2 + bnX + cn
+ · · ·+

BnlnX + Cnln
(X2 + bnX + cn)ln

.

Proof: We start with a rational fraction
f

g1g2
, where f, g1, g2 ∈ R[X] are

pairwise relatively prime and deg(f) < deg(g1g2). We will find f1, f2 ∈
R[X] such that deg(f1) < deg(g1), deg(f1) < deg(g1), and

f

g1g2
=
f1

g1
+
f2

g2
.

Since (g1, g2) = 1, there exist h1, h2 ∈ R[X] such that

f = h1g1 + h2g2 (3.4)

Using the division algorithm in R[X] we can write

h2 = qg1 + f1, where deg(f1) < deg(g1). (3.5)

Using (3.5) in (3.4), distributing g2, factoring out g1, and denoting f2 =
h1 + qg2, we get

f = f1g2 + f2g1,

and so
f

g1g2
=
f1

g1
+
f2

g2
.

The only thing left to prove is that deg(f2) < deg(g2). We assume that
deg(f2) ≥ deg(g2), and look for a contradiction. Then we have

deg(f2g1) ≥ deg(g1g2) > deg(f1g2),
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and so
deg(f) = deg(f2g1) ≥ deg(g1g2),

wich contradicts the hypotesis.

Now we use what we just proved for g1 = pk, p ∈ R[X] irreducible (and
therefore of degree 1 or 2 by Exercise 3.6.6 ii)), and g = g1g2 such that
p - g2. We get

f

pkg2
=
f1

pk
+
f2

g2
,

where deg(f1) < k deg(p), and deg(f2) < deg(g2). We now use repeatedly
the divison algorithm to get

f1

pk
=

q1p+ r1

pk

=
r1

pk
+

q1

pk−1

=
r1

pk
+
q2p+ r2

pk−1

=
r1

pk
+

r2

pk−1
+

q2

pk−2

· · ·
=

r1

pk
+

r2

pk−1
+ . . .+

rk−2

p3
+
qk−2

p2

=
r1

pk
+

r2

pk−1
+ . . .+

rk−2

p3
+
rk−1

p2
+
qk−1

p
.

If deg(p) = 1, then r1, r2, . . . , rk−1, qk−1 ∈ R, and if deg(p) = 2, then
r1, r2, . . . , rk−1, qk−1 ∈ R[X] all have degree at most one. We continue

working on
f2

g2
in a similar way until we exhaust all powers of irreducibles

that divide g.

If you were wondering when you will learn what “algebraically closed”
means, the wait is over.

Definition 3.6.8 If K is a field, an element α in a field extension of K is
said to be algebraic over K if α is the root of a polynomial in K[X]. If any
algebraic element over K is in K, we say that K is algebraically closed. A
complex number which is algebraic over Q is called an algebraic number.

Exercise 3.6.9 Which of the fields Q, R, and C are algebraically closed?

Theorem 3.6.10 (Zariski’s Lemma over C) If M is a maximal ideal
of the polynomial ring C[X1, X2, . . . , Xn], then

C = C[X1, X2, . . . , Xn]/M.
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Proof: (Kaplansky) If C ( C[X1, X2, . . . , Xn]/M , then

∃t ∈ C[X1, X2, . . . , Xn]/M

transcendental over C, because C is algebraically closed. The family{
1

t− α

}
α∈C

is linearly independent, because the top of any non-trivial linear combina-
tion equal to 0 produces a polynomial with complex coefficients which has
t as a root. This contradicts the fact that C[X1, X2, . . . , Xn]/M is spanned
by the cosets of the monomials, which is a countable set.

Exercise 3.6.11 i) Show that if K is a field and a1, a2, . . . , an ∈ K,
then the ideal generated by X1 − a1, X2 − a2, . . . , Xn − an is maximal in
K[X1, X2, . . . , Xn].
ii) (Weak form of Hilbert’s Nullstellensatz over C) If M is a maximal ideal
of C[X1, X2, . . . , Xn], then M is generated by X1−a1, X2−a2, . . . , Xn−an,
for some a1, a2, . . . , an ∈ C.

Exercise 3.6.12 Let K be a field, and α an algebraic element over K.
Then α is a root for a unique monic polynomial Irr(α,K), which divides
any polynomial in K[X] that has α as a root. ggα,K) is called the minimal
polynomial of α over K. The degree of α is deg(Irr(α,K)). (Hint: start
by choosing a polynomial with the lowest degree among all polynomials in
K[X] that have α as a root.)

Definition 3.6.13 Let R be a domain. An element of a domain that con-
tains R as a subring is called integral over R if it is the root of a monic
polynomial in R[X]. If any element in the field of fractions of R which is
integral over R is in R, then R is said to be integrally closed. An algebraic
number that is integral over Z is called an algebraic integer. Since the word
“algebraic” in “algebraic integer” is sometimes omitted, the elements of Z
are also called rational integers in order to avoid confusion.

Real numbers that are not algebraic numbers are called transcendental. It
may be proved that e and π are transcendental. The number i is obviously
an algebraic integer.

Exercise 3.6.14 Prove that Z is integrally closed.

Exercise 3.6.15 i) Give an example of an algebraic integer that is not a
rational integer.
ii) Give an example of an algebraic number that is not an algebraic integer.
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Exercise 3.6.16 If α is an algebraic integer, then Irr(α,K) ∈ Z[X].

Theorem 3.6.17 Let R be a domain, K its field of fractions, and n ∈ N,
n ≥ 1. Assume that α, θ1, θ2, . . . , θn, are elements in an extension of K such
that θ1, θ2, . . . , θn are not all zero and the following equalities are satisfied:

αθi = ai1θ1 + ai2θ2 + . . .+ ainθn, i = 1, 2, . . . , n, (3.6)

where the n2 coefficients aij ∈ K. Then α is algebraic over K. Moreover,
if aij ∈ R for all 1 ≤ i, j ≤ n, then α is integral over R.

Proof: We use a result from linear algebra (see e.g. [37]): since the
homogeneous system (3.6) has a non-trivial solution, its determinant has
to be zero: ∣∣∣∣∣∣∣∣

α− a11 −a12 · · · −a1n

−a21 α− a22 · · · −a2n

· · · · · · · · · · · ·
−an1 −an2 · · · α− ann

∣∣∣∣∣∣∣∣ = 0

After expanding the determinant we get αn+bn−1α
n−1 + · · ·+b1α+b0 = 0,

where the bk are sums of products of the elements −aij . Hence bk ∈ K,
and bk ∈ R if aij ∈ R.

Corollary 3.6.18 Let R be a domain, and K its field of fractions. If α and
β are algebraic over K, then α+ β and αβ are algebraic over K. If α and
β are integral over R, then α + β and αβ are integral over R. Therefore,
the elements algebraic over K in a field extension L of K form a field,
called the algebraic closure of K in L, and the elements integral over R in
a domain T that contains R as a subring form a ring, called the integral
closure of R in T .

Proof: Assume that α and β satisfy

αm + am−1α
m−1 + · · ·+ a1α+ a0 = 0,

βr + br−1β
r−1 + · · ·+ b1β + b0 = 0,

where ai, bj ∈ K. Let n = mr, and define θ1, θ2, . . . , θn as the elements

1, α, α2, · · · , αm−1,
β, αβ, α2β, · · · , αm−1β,
· · · · · · · · · · · · · · ·
βr−1, αβr−1, α2βr−1, · · · , αm−1βr−1,

in any order. Thus θ1, θ2, . . . , θn are the elements αsβt, where 0 ≤ s ≤ m−1
and 0 ≤ t ≤ r − 1. Hence, for any i we have

αθi = αs+1βt =

{
some θk if s+ 1 ≤ m− 1
(−am−1α

m−1 − · · · − a1α− a0)βt if s+ 1 = m
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Therefore we can find hi1, hi2, . . . , hin ∈ K such that

αθi = hi1θ1 + hi2θ2 + . . .+ hinθn.

Similarly, we find ki1, ki2, . . . , kin ∈ K such that

βθi = ki1θ1 + ki2θ2 + . . .+ kinθn,

and so

(α+ β)θi = (hi1 + ki1)θ1 + (hi2 + ki2)θ2 + . . .+ (hin + kin)θn,

which are of the form (3.6), and so α+ β is algebraic over K. Moreover, if
α and β are integral over R, then ai, bi, hij , kij ∈ R, and α + β is integral
over R.
Now we have

(αβ)θi = α(
∑
j

kijθj)

=
∑
j

kijαθj

=
∑
j

kij
∑
l

hjlθl

=
∑
l

(
∑
j

kijhjl)θl,

and we can apply again Theorem 3.6.17 to conclude that αβ is algebraic
over K, and that it is integral over R if α and β are.
The only other things left that are worth proving are the following:
If α is algebraic over K, α 6= 0, and Irr(α,K) = Xm + am−1X

m−1 + · · ·+
a1X + a0, then a0 6= 0 and

a0(α−1)m + a1(α−1)m−1 + · · ·+ am−1α
−1 + 1 = 0,

so α−1 is algebraic over K (note that if α is integral over R, α−1 is not
integral over R if a0 /∈ U(R)).
If α satisfies

αm + am−1α
m−1 + · · ·+ a1α+ a0 = 0,

then −α satisfies

αm − am−1α
m−1 + · · ·+ (−1)m−1a1α+ (−1)ma0 = 0.
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Corollary 3.6.19 The algebraic numbers form a field, and the algebraic
integers form a ring. We will denote the ring of algebraic integers by A.

Exercise 3.6.20 Let d ∈ Z \ {0,±1} be square-free, i.e. p - d ∀p ∈ Z a
prime number. Then

Q(
√
d) = {a+ b

√
d | a, b ∈ Q}

is a field.

Definition 3.6.21 Q(
√
d), as in Exercise 3.6.20, is called a quadratic

field. The ring of algebraic integers in a quadratic field will be called a
ring of quadratic integers.

Exercise 3.6.22 Let Q(
√
d) be a quadratic field, and denote by A the ring

of algebraic integers in Q(
√
d) (see Corollary 3.6.18). If z = a + b

√
d ∈

Q(
√
d), we denote by

Tr(z) = z + z = 2a, and N(z) = zz = a2 − b2d.

Prove that:
i) A = {z = a+ b

√
d ∈ Q(

√
d) | Tr(z), N(z) ∈ Z}.

ii) z ∈ A ⇔ u = 2a ∈ Z, v = 2b ∈ Z, u2 − v2d ≡ 0 (mod 4).
iii) If z1 = a1 + b1

√
d, z2 = a2 + b2

√
d ∈ A, then 2(a1a2 + b1b2d) ∈ Z.

Theorem 3.6.23 Let Q(
√
d) be a quadratic field, and A its ring of inte-

gers. Then

A =

{
Z[
√
d] = {a+ b

√
d | a, b ∈ Z} if d ≡ 2, 3(mod 4)

Z
[

1+
√
d

2

]
= {a+ b 1+

√
d

2 | a, b ∈ Z} if d ≡ 1(mod 4)

Proof: If z = a+ b
√
d ∈ A and d ≡ 2(mod 4) we have

u even odd even odd
v even even odd odd

u2 − 2v2 ≡ 0 ≡ 1 ≡ 2 ≡ 3 (mod 4)

and if d ≡ 2(mod 4), we have

u even odd even odd
v even even odd odd

u2 + v2 ≡ 0 ≡ 1 ≡ 1 ≡ 2 (mod 4)

so if d ≡ 2, 3 (mod 4) u = 2a and v = 2b are both even, so both a and b
are in Z.
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If d ≡ 1(mod 4), we have

u even odd even odd
v even even odd odd

u2 − v2 ≡ 0 ≡ 1 ≡ 3 ≡ 0 (mod 4)

so in this case

A =
{u

2
+
v

2
d
∣∣∣ u, v ∈ Z have the same parity

}
.

We need to show that

A = Z

[
1 +
√
d

2

]
.

For ⊇, a+ b 1+
√
d

2 = 2a+b
2 + b

2

√
d.

For ⊆ we have, if u = 2a and v = 2b, that a+ b
√
d = a− b+ 2b 1+

√
d

2 .
If u = 2a+ 1 and v = 2b+ 1, then

2a+ 1

2
+

2b+ 1

2

√
d =

=
2a+ 1 + (2b+ 1)

√
d

2
=

2a+ 1− 2b− 1 + (2b+ 1)(1 +
√
d)

2
=

= a− b+ (2b+ 1)
1 +
√
d

2
,

and the proof is complete.

Exercise 3.6.24 i) Let R ⊆ T ⊆ T ′, where R, T , and T ′ are domains.
Then:
i) If γ ∈ T ′ is a root of

Xn + bn−1X
n−1 + . . .+ b1X + b0 ∈ T [X],

and bi are integral over R, for each i = 0, 1, . . . , n − 1, then γ is integral
over R.
ii) If K is the field containing the field of fractions of R, and T is the
integral closure of R in K, then T is integrally closed. In particular, a ring
of quadratic integers and the ring of algebraic integers are integrally closed.

The quadratic field Q(
√
d) is called real if d > 0, and imaginary if d <

0. One of the most important questions about quadratic fields was to
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determine for which values of d the ring of integers A is a PID. For
imaginary quadratic fields, Gauss found in 1801 that this is true if

d = −1,−2,−3,−7,−11,−19,−43,−67,−163,

and conjectured that there are only finitely many such values of d. Heil-
bronn and Linfoot proved in 1934 that there are no more than 10 negative
values of d for which this happens, alnd thus gave an affirmative answer to
Gauss’s conjecture. Then a theorem of Baker, Heegner, and Stark (which
had various proofs, from the early 1950s to the late 1960s) established that
the nine values found by Gauss are in fact the only ones.
For the same question in the case of real quadratic fields almost nothing
is known. Gauss conjectured that there are infinitely many real quadratic
fields for which the ring of integers is a PID.

For us, Theorem 3.6.23 gives new information about two rings that we stud-
ied. We showed in Proposition 3.1.10 that Z[i

√
5] is not a GCD-domain,

and therefore it is not a UFD. We now know that Z[i
√

5] is not inte-
grally closed, because the ring of integers of the quadratic field Q(i

√
5) is

Z
[

1+i
√

5
2

]
) Z[i

√
5]. In order to show that Z[i

√
5] is not a UFD we can

use the following:

Exercise 3.6.25 If R is a UFD or a GCD-domain, then R is integrally
closed.

We proved in Proposition 3.4.11 that Z
[

1+i
√

19
2

]
is a PID. Now we see

from Theorem 3.6.23 that this is a ring of quadratic integers. It is actually
one of the rings on Gauss’s list of nine PIDs.

We close this section with the generalization of Theorem 3.6.10 to arbitrary
fields:

Theorem 3.6.26 (Zariski’s Lemma) If K is a field, and

R = K[α1, α2, . . . , αn]

is also a field, then R is an algebraic extension of K.

Proof: (Azarang) Use induction on n. If n = 1, this is easy: K[α1] is a
field, so there exists a polynomial P ∈ K[X] such that P (α1) = α−1

1 , so α1

is algebraic over K because it is the root of the polynomial XP (X)− 1.

If n > 1, we assume that α1 is transcendental over K and look for a
contradiction. By the induction kypothesis we have that the extension

K(α1) ⊆ R = K(α1)[α2, . . . , αn]
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is algebraic, so the ring extension

D = K[α1]

[
1

P2(α1)
, . . . ,

1

P2(α1)

]
⊆ R

is integral (here, for 2 ≤ i ≤ n, Pi(α1) is the numerator of the leading
coefficient of Irr(αi,K(α1))). Now it is easy to see that if the field R is
an integral extension of the domain D, then D has to be a field as well.
Indeed, if 0 6= x ∈ D, then the inverse of x in R is integral over D:

(x−1)n + dn−1(x−1)n−1 + . . .+ d1x
−1 + d0 = 0,

and, after multiplying bothe sides by xn−1, we get

x−1 = −dn−1 − . . .− d1x
n−2 − d0x

n−1 ∈ D.

Now choose an irreducible polynomial f(α1) that does not divide Pi(α1)
for any 2 ≤ i ≤ n, and write f(α1)−1 as an element of

D = K[α1]

[
1

P2(α1)
, . . . ,

1

P2(α1)

]
to obtain a contradiction (note that this is the same proof as the one show-
ing that Q is not finitely generated as an abelian group, or as a Z-algebra).

With exactly the same proof as the one of Exercise 3.6.11, ii), we can now
prove

Corollary 3.6.27 (Weak form of Hilbert’s Nullstellensatz) If K is an alge-
braically closed field, and M is a maximal ideal of K[X1, X2, . . . , Xn], then
M is generated by X1−a1, X2−a2, . . . , Xn−an, for some a1, a2, . . . , an ∈ K.
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Solutions to the Exercises on Section 3.6

Exercise 3.6.2 If x1, x2, x3 are the roots of X3 − 3X2 + 1 ∈ Z[X], find
x4

1 + x4
2 + x4

3 − 4(x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3).

Solution: The expressions on the left of the n Vieta’s Formulas in Propo-
sition 3.6.1 are obtained by specializing the indeterminates X1, X2, . . . Xn

at x1, x2, . . . , xn in the fundamental symmetric polynomials s1, s2, . . . sn.
We will use the same notation for them:

s1 = x1 + x2 + x3 = −(−3),

s2 = x1x2 + x1x3 + x2x3 = 0,

s3 = x1x2x3 = −1.

Then we write, as in Exercise 2.7.12 iv), x4
1 +x4

2 +x4
3−4(x2

1x2x3 +x1x
2
2x3 +

x1x2x
2
3) = s4

1 − 4s2
1s2 + 2s2

2 = 81.

Exercise 3.6.6 i) Prove that an irreducible polynomial in C[X] has degree
1.
ii) Prove that an irreducible polynomial in R[X] has degree 1 or degree 2
and no real roots.
Solution: i) If f ∈ C[X] is irreducible, then deg(f) ≥ 1, so by Theorem
3.6.5 f has a root z ∈ C. By Corollary 3.3.7 f = (X − z)g, and since f is
irreducible we get that deg(g) = 0, so deg(f) = 1.
ii) By the proof of Theorem 3.6.5, f has a complex root z. If z ∈ R, then
f has deg(f) = 1 as in the solution for i). If z /∈ R, then the complex
conjugate z is also a root of f and z 6= z. Then f = (X−z)(X−z)g, where
(X − z)(X − z), g ∈ R[X], and, as above, we get that deg(g) = 0 and so
deg(f) = 2.

Exercise 3.6.9 Which of the fields Q, R, and C are algebraically closed?
Solution: We have that i is an algebraic number, it’s the root of X2 + 1 ∈
Q[X] ⊆ R[X], but i /∈ R, so Q and R are not algebraically closed. By
Theorem 3.6.5 and induction on the degree, any polynomial in C[X] of
degree at least 1 factors as a product of polynomials of degree 1, so all of
its roots are in C, i.e. C is algebraically closed.

Exercise 3.6.11 i) Show that if K is a field and a1, a2, . . . , an ∈ K,
then the ideal generated by X1 − a1, X2 − a2, . . . , Xn − an is maximal in
K[X1, X2, . . . , Xn].
ii) (Weak form of Hilbert’s Nullstellensatz over C) If M is a maximal ideal
of C[X1, X2, . . . , Xn], then M is generated by X1−a1, X2−a2, . . . , Xn−an,
for some a1, a2, . . . , an ∈ C.
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Solution: i) Let ϕ : K[X1, X2, . . . , Xn] −→ K be the ring morphism send-
ing Xi to ai, 1 ≤ i ≤ n, obtained from Theorem 2.7.4. Using Corollary
3.3.7, we can write any f ∈ K[X1, X2, . . . , Xn] as f = (X1 − a1)q1 + r1,
then r1 = (X2 − a2)q2 + r2, and so on until we get

f = (X1 − a1)q1 + (X2 − a2)q2 + . . .+ (Xn − an)qn + rn,

where ϕ(f) = rn ∈ K. From this we get that Ker(ϕ) is generated by
X1 − a1, X2 − a2, . . . , Xn − an, and ϕ : K[X1, X2, . . . , Xn]/Ker(ϕ) ' K,
because ϕ is surjective.

ii) By Theorem 3.6.10 we get that there exists an ai ∈ C such that Xi −
ai ∈ M , 1 ≤ i ≤ n, so M contains the ideal generated by X1 − a1, X2 −
a2, . . . , Xn − an, and so it has to be equal to it by i).

Exercise 3.6.12 Let K be a field, and α an algebraic element over K. Then
α is a root for a unique monic polynomial Irr(α,K), which divides any
polynomial in K[X] that has α as a root. Irr(α,K) is called the minimal
polynomial of α over K. The degree of α is deg(Irr(α,K)). (Hint: start
by choosing a polynomial with the lowest degree among all polynomials in
K[X] that have α as a root.)
Solution: By the well-ordering principle we choose a polynomial f with
minimal degree among all polynomials in K[X] that have α as a root. If
g ∈ K[X] and g(α) = 0, we write g = qf + r, where r = 0 or deg(r) <
deg(f). Since r(α) = 0, we have that r = 0, otherwise the minimality of
deg(f) would be contradicted. It follows that any polynomial that has α
as a root and has the same degree as f is associated in divisibility with
f , i.e. it is equal to af for some a ∈ K, a 6= 0. There is only one monic
polynomial associated in divisibility with f , and that is Irr(α,K).

Exercise 3.6.14 Prove that Z is integrally closed.
Solution: The claim is that any rational algebraic integer is a rational
integer. Let a

b ∈ Q, (a, b) = 1, be an algebraic integer. Then a
b satisfies(a

b

)n
+ an−1

(a
b

)n−1

+ . . .+ a1
a

b
+ a0 = 0,

where ai ∈ Z, 0 ≤ i ≤ n− 1. After chasing away denominators we get

an + ban−1a
n−1 + . . .+ bn−1a1a+ bna0 = 0,

so b | an, and therefore b = ±1.

Exercise 3.6.15 i) Give an example of an algebraic integer that is not a
rational integer.
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ii) Give an example of an algebraic number that is not an algebraic integer.
Solution: i)

√
2 is a root of X2 − 2 but it is not rational (see Exercise

1.2.26).
ii) 1

2 ∈ Q is the root of 2X − 1, but it is not an algebraic integer, because
1
2 /∈ Z.

Exercise 3.6.16 If α is an algebraic integer, then Irr(α,K) ∈ Z[X].
Solution: We know that f = Irr(α,K) ∈ Q[X], and f | g, where g ∈
Z[X] is monic, hence primitive. Let c be the smallest integer such that
cf ∈ Z[X]. Then cf has to be primitive, because if the prime p divides all
its coefficients, then it divides its leading term, which is c, so c

p ∈ Z has the

property that c
pf ∈ Z[X], which contradicts the minimality of c. Similarly,

if d is the smallest integer such that dh ∈ Z[X], then dh is primitive. It
follows by Exercise 3.5.8 ii) that (cd)g = (cf)(dh)h is primitive, so cd = ±1,
from which we get that both c and d are ±1, i.e. f, h ∈ Z[X].

Exercise 3.6.20 Let d ∈ Z \ {0,±1} be square-free, i.e. p - d ∀p ∈ Z a
prime number. Then

Q(
√
d) = {a+ b

√
d | a, b ∈ Q}

is a field.
Solution: We first remark that by Exercise 1.2.26 we have that

√
d /∈ Q,

and so 0 = a+b
√
d ∈ Q(

√
d) if and only if 0 = a−b

√
d if and only if a = b =

0. It is easy to check that Q(
√
d) is a subring of C. If 0 6= a+b

√
d ∈ Q(

√
d),

then, as remarked realier,

(a+ b
√
d)(a+ b

√
d) = a2 − b2d 6= 0,

and it is easy to check that the inverse of a+ b
√
d is

(a+ b
√
d)−1 =

a

a2 − b2d
− b

a2 − b2d
√
d.

Exercise 3.6.22 Let Q(
√
d) be a quadratic field, and denote by A the ring of

algebraic integers in Q(
√
d) (see Corollary 3.6.18). If z = a+b

√
d ∈ Q(

√
d),

we denote by

Tr(z) = z + z = 2a, and N(z) = zz = a2 − b2d.

Prove that:
i) A = {z = a+ b

√
d ∈ Q(

√
d) | Tr(z), N(z) ∈ Z}.

ii) z ∈ A ⇔ u = 2a ∈ Z, v = 2b ∈ Z, u2 − v2d ≡ 0 (mod 4).
iii) If z1 = a1 + b1

√
d, z2 = a2 + b2

√
d ∈ A, then 2(a1a2 + b1b2d) ∈ Z.
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Solution: i) ⊇. Let z ∈ Q(
√
d) such that Tr(z), N(z) ∈ Z. Then z is a

root of X2 − Tr(z)X +N(z) ∈ Z[X], so z is integral over Z, and therefore
an algebraic integer.
⊇. If z ∈ A, then z is an algebraic number. If z ∈ Q, then z ∈ Z by
Exercise 3.6.14, so clearly Tr(z) = 2z,N(z) = z2 ∈ Z. If z /∈ Q, then
Irr(z,Q) = (X− z)(X− z) = X2−Tr(z)X+N(z), and by Exercise 3.6.16
we get that Irr(z,Q) = X2−Tr(z)X+N(z) ∈ Z[X], i.e. Tr(z), N(z) ∈ Z.

ii) ⇒. If z ∈ A, then by i) N(z) = a2 − b2d ∈ Z, so 4a2 − 4b2d ∈ 4Z, i.e.
u2− v2d ≡ 0 (mod 4). Now also by i) Tr(z) = 2a = u ∈ Z, so dv2 ∈ Z. Let
v = m

n , (m,n) = 1. Then dm2 = n2k, and so if a prime p divides n, it has
to divide d, a contradiction. Thus v ∈ Z as well.
⇐. We have Tr(z) = 2a ∈ Z, and

N(z) = a2 − b2d =
(u

2

)2

−
(v

2

)2

d =
u2 − v2d

4
∈ Z,

so by i) z ∈ A.

iii) If a+ b
√
d ∈ A, and a ∈ Z, then b ∈ Z. If a /∈ Z, then b /∈ Z and 2 - d.

Indeed, if b ∈ Z, then a ∈ Z, a contradiction. So b /∈ Z. If d = 2k, then
(2a)2 − (2b)22k ∈ 4Z, so (2a)2 − (2b)22k = 4l, or (2a)2 = 4l + 2k(2b)2 =
2(2l + k(2b)2), i.e. 2 | (2a)2, hence 2 | 2a, which contradicts a /∈ Z.
Now if one of a1, a2 ∈ Z, this is clear. If none of them are integers, each
of a1, a2, b1, b2 can be written as an odd number over 2, and since d is odd
this is also clear.

Exercise 3.6.24 i) Let R ⊆ T ⊆ T ′, where R, T , and T ′ are domains.
Then:
i) If γ ∈ T ′ is a root of

Xn + bn−1X
n−1 + . . .+ b1X + b0 ∈ T [X],

and bi are integral over R, for each i = 0, 1, . . . , n − 1, then γ is integral
over R.
ii) If K is the field containing the field of fractions of R, and T is the
integral closure of R in K, then T is integrally closed. In particular, a ring
of quadratic integers and the ring of algebraic integers are integrally closed.
Solution: (C.D. Popescu) We know that for each i ∈ {0, 1, . . . , n − 1}, bi
is the root of a monic polynomial fi ∈ R[X], deg(fi) = ki. We denote for
i ∈ {0, 1, . . . , n− 1} by

αi,1 = bi, αi,2, . . . , αi,ki
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the roots of fi in some field extension of K (see Proposition 3.6.3). We
form the polynomial

f =
∏

1≤ji≤ki,0≤i≤n−1

(Xn + αn−1,jn−1X
n−1 + . . .+ α1,j1X + α0,j0),

which is a monic polynomial, has γ as a root, and its coefficients are sym-
metric polynomials in αi,1, αi,2, . . . , αi,ki for each i = 0, 1, . . . , n − 1. By
Vieta’s Formulas (Proposition 3.6.1), each fundamental symmetric poly-
nomial in αi,1, αi,2, . . . , αi,ki is in R, so after applying the Fundamental
Theorem of Symmetric Polynomials (Theorem 2.7.11) n times, we get that
f ∈ R[X].
ii) follows from i).

Exercise 3.6.25 If R is a UFD or a GCD-domain, then R is integrally
closed.
Solution: Assume first that R is a UFD. If

a

s
, (a, s) = 1, satisfies

an

sn
+ an−1

an−1

sn−1
+ · · ·+ a1

a

s
+ a0 = 0,

then
an + an−1sa

n−1 + · · ·+ a1s
n−1a+ a0s

n = 0,

and so s | an. Now if a prime p | s, it follows that p | a, a contradiction. So

s ∈ U(R), i.e.
a

s
∈ R.

In case R is a GCD-domain the proof is the same, with the exception that
at the end, instead of using prime elements we use the implication (a, s) = 1
implies (an, s) = 1, which follows from Exercise 3.1.18.
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3.7 Permanence of arithmetical properties

We start this section by putting together all the implications between the
arithmetic properties studied in this chapter.

Proposition 3.7.1 i) If R is Euclidean, then R is a PID.

ii) Z
[

1+i
√

19
2

]
is a PID but not Euclidean.

Proof: i) Theorem 3.4.2.
ii) Proposition 3.4.11.

Proposition 3.7.2 i) If R is a PID, then R is a UFD.
ii) Z[X] is a UFD but not a PID.

Proof: i) Exercise 3.5.3.
ii) Exercise 3.4.1 iii).

Proposition 3.7.3 i) If R is a UFD, then R is a GCD-domain.
ii) A is a GCD-domain but not a UFD.

Proof: i) Exercise 3.5.5 iii).
ii) The fact that A is a GCD-domain follows from [27, Theorem 102]. It is
not a UFD because

2 =
√

2
√

2 =
√

2
4
√

2
4
√

2 =
√

2
4
√

2
8
√

2
8
√

2 =
√

2
4
√

2
8
√

2
16
√

2
16
√

2 = . . .

and we can continue indefinitely.

Proposition 3.7.4 i) If R is a GCD-domain, then R is integrally closed.
ii) Z[i

√
5] is integrally closed but not a GCD-domain.

Proof: i) Exercise 3.6.25.
ii) Z[i

√
5] is integrally closed because it is a ring of integers (see Theorem

3.6.23 and Exercise 3.6.24 ii)), but it is not a GCD-domain by Exercise
3.1.15.

In the following table we list the answers the following questions: If the
domain R has property P, is it true that any subring T of R or a domain T
that contains R as a subring also has property P? If P is a prime ideal of
R, does the factor ring R/P also have property P? Here property P is one
of the following: Euclidean, PID, UFD, GCD-domain, integrally closed.

R T ⊆ R T ⊇ R R/P
Euclidean no 3.7.5 no 3.7.10 yes 3.7.15
PID no 3.7.6 no 3.7.11 yes 3.7.16
UFD no 3.7.7 no 3.7.12 no 3.7.17

GCD − domain no 3.7.8 no 3.7.13 no 3.7.18
integrally closed no 3.7.9 no 3.7.14 no 3.7.19
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Exercise 3.7.5 Find an example of an Euclidean ring R and a subring T
of R that is not Euclidean.

Exercise 3.7.6 Find an example of a PID R and a subring T of R that
is not a PID.

Exercise 3.7.7 Find an example of a UFD R and a subring T of R that
is not a UFD.

Exercise 3.7.8 Find an example of a GCD-domain R and a subring T of
R that is not a GCD-domain.

Exercise 3.7.9 Find an example of an integrally closed domain R and a
subring T of R that is not integrally closed.

Exercise 3.7.10 Find an example of an Euclidean ring R and a domain
T containing R as a subring that is not Euclidean.

Exercise 3.7.11 Find an example of a PID R and a domain T containing
R that is not a PID.

Exercise 3.7.12 Find an example of a UFD R and a domain T containing
R that is not a UFD.

Exercise 3.7.13 Find an example of a GCD-domain R and a domain T
containing R that is not a GCD-domain.

Exercise 3.7.14 Find an example of an integrally closed domain R and a
domain T containing R that is not integrally closed.

Exercise 3.7.15 If R is Euclidean and P is a prime ideal of R, prove that
R/P is Euclidean.

Exercise 3.7.16 If R is a PID and P is a prime ideal of R, prove that
R/P is a PID.

Exercise 3.7.17 Give an example of a UFD R, and P a prime ideal of
R, such that R/P is not a UFD.

Exercise 3.7.18 Give an example of a GCD-domain R, and P a prime
ideal of R, such that R/P is not a GCD-domain.

Exercise 3.7.19 Give an example of R which is integrally closed, and P
a prime ideal of R, such that R/P is not integrally closed.
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In the following table we list the answers the following questions: If the
domain R has property P, is it true that any ring of fractions of R, the
polynomial (and the formal power series) ring in one indeterminate over R
also has property P? Here property P is one of the following: Euclidean,
PID, UFD, GCD-domain, integrally closed.

R S−1R R[X] R[[X]]
Euclidean yes 3.7.20 no 3.4.1 no 3.7.30
PID yes 3.7.21 no 3.4.1 no 3.7.30
UFD yes 3.7.22 yes 3.5.12 no 3.7.31

GCD − domain yes 3.7.23 yes 3.7.25 no 3.7.32
integrally closed yes 3.7.24 yes 3.7.26 no 3.7.33

Exercise 3.7.20 If R is Euclidean and S is a multiplicative subset, then
S−1R is Euclidean.

Exercise 3.7.21 If R is a PID and S is a multiplicative subset, then
S−1R is a PID.

Exercise 3.7.22 If R is a UFD and S is a multiplicative subset, then
S−1R is a UFD.

Exercise 3.7.23 If R is a GCD-domain and S is a multiplicative subset,
then S−1R is a GCD-domain.

Exercise 3.7.24 If R is integrally closed and S is a multiplicative subset,
then S−1R is integrally closed.

Theorem 3.7.25 If R is a GCD-domain, then R[X] is a GD-domain.

Proof: See [18, p.176] or [19].

Theorem 3.7.26 If R is integrally closed, then R[X] is integrally closed.

Proof: See [8, V, § 1, Cor. 1 to Prop. 13, p. 312].

Remark 3.7.27 The notion of integrally closed can be defined for rings
that are not necessarily domains. In that case, Theorem 3.7.26 is no longer
true, see [34].

Theorem 3.7.28 If R is a PID, then R[[X]] is a UFD.

Proof: Denote by ϕ : R[[X]] −→ R the surjective ring morphism sending
a formal series to its free term. We will use Exercise 3.5.20 and prove that
any prime ideal P of R[[X]] contains a prime element. If X ∈ P we are
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done, because R[[X]]/XR[[X]] ' R is a domain. If X /∈ P , we denote by
P ∗ = ϕ(P ), which is an ideal in R. Since R is a PID, there exists a ∈ R
such that P ∗ = Ra. Let f ∈ P be such that a = ϕ(f). We will show
that f is a prime element in R[[X]] by proving that P = fR[[X]] and using
Proposition 3.2.3.
Since f ∈ P , it is clear that fR[[X]] ⊆ P . Conversely, let g = b0 + b1X +
b2X

2 + . . . ∈ P . Since b0 ∈ P ∗ = ϕ(P ), then b0 ∈ P ∗, so there exists
c0 ∈ R such that b0 = c0a. It follows that g − c0f = Xg1 ∈ P , and since
X /∈ P , it follows that g1 ∈ P . As before, there exists a c1 ∈ R such that
g1 − c1f = Xg2. It follows that

g = c0f +X(c1f +Xg2) = (c0 + c1X)f +X2g2.

Since g2 ∈ P , we choose c2 ∈ R such that g2 − c2f = Xg3, and so

g = (c0 + c1X + c2X
2)f +X3g3.

We continue and find elements co, c1, . . . , cn, . . . and if we let h = c0 +c1X+
c2X

2 + . . ., we get that g = hf , which ends the proof.

Corollary 3.7.29 If K is a field, then K[[X,Y ]] is a UFD.

Proof: We have that K[[X,Y ]] = K[[X]][[Y ]] and K[[X]] is a PID because
it is Euclidean by Theorem 3.3.4. Then we apply Theorem 3.7.28.

Remark 3.7.30 If K is a field, then K[[X,Y ]] is not a PID (and therefore
not Euclidean). Indeed, if K[[X,Y ]] is a PID, it follows that 1 is a linear
combination of X and Y , which is a contradiction (a linear combination of
X and Y has no free term).

Remark 3.7.31 If R is a UFD, it does not follow that R[[X]] is a UFD,
see [44].

Remark 3.7.32 If R is a GCD-domain, it does not follow that R[[X]] is
a GCD-domain, see [2].

Remark 3.7.33 If R is integrally closed, it does not follow that R[[X]] is
integrally closed, see [41] and [47].
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Solutions to the Exercises on Section 3.7

Exercise 3.7.5 Find an example of an Euclidean ring R and a subring T
of R that is not Euclidean.
Solution: Let R = Q(i

√
5), and T = Z[i

√
5]. R is Euclidean because it is

a field, and T is not Euclidean because it is not integrally closed.

Exercise 3.7.6 Find an example of a PID R and a subring T of R that
is not a PID.
Solution: Same example as in the solution to Exercise 3.7.5, just replace
“Euclidean” by “PID”.

Exercise 3.7.7 Find an example of a UFD R and a subring T of R that
is not a UFD.
Solution: Same example as in the solution to Exercise 3.7.5, just replace
“Euclidean” by “UFD”.

Exercise 3.7.8 Find an example of a GCD-domain R and a subring T of
R that is not a GCD-domain.
Solution: Same example as in the solution to Exercise 3.7.5, just replace
“Euclidean” by “GCD-domain”.

Exercise 3.7.9 Find an example of an integrally closed domain R and a
subring T of R that is not integrally closed.
Solution: Same example as in the solution to Exercise 3.7.5, just replace
the first “Euclidean” by “integrally closed”, then delete “is not Euclidean
because it”.

Exercise 3.7.10 Find an example of an Euclidean ring R and a domain
T containing R as a subring that is not Euclidean.
Solution: Let R = Z, and T = Z[i

√
5]. R is Euclidean, and T is not

Euclidean because it is not integrally closed.

Exercise 3.7.11 Find an example of a PID R and a domain T containing
R that is not a PID.
Solution: Same example as in the solution to Exercise 3.7.10, just replace
“Euclidean” by “PID”.

Exercise 3.7.12 Find an example of a UFD R and a domain T containing
R that is not a UFD.
Solution: Same example as in the solution to Exercise 3.7.10, just replace
“Euclidean” by “UFD”.

Exercise 3.7.13 Find an example of a GCD-domain R and a domain T
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containing R that is not a GCD-domain.
Solution: Same example as the one in the solution to Exercise 3.7.10, just
replace “Euclidean” by “GCD-domain”.

Exercise 3.7.14 Find an example of an integrally closed domain R and a
domain T containing R that is not integrally closed.
Solution: Same example as in the solution to Exercise 3.7.10, just replace
the first “Euclidean” by “integrally closed”, then delete “is not Euclidean
because it”.

Exercise 3.7.15 If R is Euclidean and P is a prime ideal of R, prove that
R/P is Euclidean.
Solution: If P = {0} this is clear. If P 6= {0}, since R is a PID we
have that P is generated by a prime element, which is irreducible, so P is
maximal, i.e. R/P is a field.

Exercise 3.7.16 If R is a PID and P is a prime ideal of R, prove that
R/P is a PID.
Solution: Same as the solution to Exercise 3.7.15.

Exercise 3.7.17 Give an example of a UFD R, and P a prime ideal of
R, such that R/P is not a UFD.
Solution: Let R = Z[X] and P the ideal generated by the irreducible
polynomial X2 + 5. Then R/P ' Z[i

√
5]. Indeed, let ϕ : Z[X] −→ Z[i

√
5]

be the ring morphism that sends X to i
√

5 obtained from Theorem 2.6.13.
Since ϕ is clearly surjective, we only have to show that Ker(ϕ) = P . One
way to see this is that if f ∈ Ker(ϕ), then Irr(i

√
5,Q) = X2 + 5 | f .

Another way is to notice that if f(i
√

5) = 0, then also f(−i
√

5) = 0, and
so f is divisible by (X − i

√
5)(X + i

√
5) = X2 + 5.

Exercise 3.7.18 Give an example of a GCD-domain R, and P a prime
ideal of R, such that R/P is not a GCD-domain.
Solution: Same as the solution to Exercise 3.7.17.

Exercise 3.7.19 Give an example of R which is integrally closed, and P a
prime ideal of R, such that R/P is not integrally closed.
Solution: Same as the solution to Exercise 3.7.17.

Exercise 3.7.20 If R is Euclidean and S is a multiplicative subset, then
S−1R is Euclidean.
Solution: S−1R is a domain, because it is a subring of the field of fractions
of the domain R. We denote by ϕ the Euclidean function on R \ {0}, and
we define

ψ : S−1R −→ N
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by

ψ
(a
s

)
= min

{
ϕ(a′)

∣∣∣∣as =
a′

s′

}
.

Let a
s ,

b
t ∈ S

−1R, b
t 6= 0, b

t = b′

t′ , ψ( bt ) = ϕ(b′). Since R is Euclidean, there
exist q, r ∈ R such that

a = qb′ + r, where r = 0 or ϕ(r) < ϕ(b′).

Then
a

s
=
qt′

s
· b
′

t′
+
r

s
,

and, if r 6= 0,

ψ
(r
s

)
≤ ϕ(r) < ϕ(b′) = ψ

(
b

t

)
.

Exercise 3.7.21 If R is a PID and S is a multiplicative subset, then S−1R
is a PID.
Solution: Let J be an ideal of S−1R. Then by (2.1) we have that

J = Jce =
{a
s

∣∣∣a ∈ Jc, s ∈ S} .
Now Jc = xR for some x ∈ Jc, and so x

1 is a generator for J , i.e. any
a
s ∈ J = Jce can be written as

a

s
=
xr

s
=
x

1
· r
s
.

Exercise 3.7.22 If R is a UFD and S is a multiplicative subset, then
S−1R is a UFD.
Solution: Let a

s be a non-zero non-unit in S−1R. Then

a = p1p2 · · · prpr+1 · · · pn,

where all pi are prime elements in R, p1, . . . , pr divide elements in S,
pr+1, . . . , pn do not divide elements in S, and r < n. Then

a

s
=
p1 · · · pr

s
· pr+1

1
· · · pn

1
,

where p1···pr
s ∈ U(S−1R), and pr+1

1 , . . . , pn1 are prime in S−1R by Exercise
3.2.7.

Exercise 3.7.23 If R is a GCD-domain and S is a multiplicative subset,
then S−1R is a GCD-domain.
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Solution: We can assume that S is saturated. If a
s ,

b
t ∈ S

−1R, and d =
(a, b), where a and b are relatively prime to all elements of S, we want to
show that d

1 = (as ,
b
t ) = (a1 ,

b
1 ). If c

1 |
a
1 , and c

1 |
b
1 , and c is relatively prime

to all elements of S, we want to prove that c
1 |

d
1 . We get a

1 = c
1 ·

e
r , and

b
1 = c

1 ·
f
v , for some e, f ∈ R and r, v ∈ S. It follows that c | arv and c | brv,

so c | (arv, brv) = drv. Since (c, rv) = 1, it follows that c | d, and therefore
c
1 |

d
1 .

Exercise 3.7.24 If R is integrally closed and S is a multiplicative subset,
then S−1R is integrally closed.
Solution: We denote by K the field of fractions of R and we note that
S−1R ⊆ K. If a

s ∈ K is integral over S−1R, we want to find a′ ∈ R and

t ∈ S such that a
s = a′

t . There exist ao
s0
, a1s1 , . . . ,

an−1

sn−1
∈ S−1R such that

(a
s

)n
+
an−1

sn−1

(a
s

)n−1

+ . . .+
a1

s1
· a
s

+
a0

s0
= 0. (3.7)

If we denote t = s0s1 · · · sn−1 ∈ S, we have, after multiplying (3.7) by tn,
that (

at

s

)n
+ a′n−1

(
at

s

)n−1

+ . . .+ a′1 ·
at

s
+ a′0 = 0,

for some a′0, a
′
1, . . . , a

′
n−1 ∈ R. Therefore at

s = a′

1 for some a′ ∈ R, so
a
s = a′

t ∈ S
−1R.
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Bézout’s Little Theorem, 143
Balinese candle-dance trick, 59
bijective function, 3
binary operation, 27
binary relation, 17

Cayley’s Theorem, 58
Chinese Remainder Theorem, 62
commutative ring, 65
congruence modulo a subgroup, 48
coset, 48
cyclic group, 40

dihedral group D3, 60
dihedral group D4, 60
dihedral group Dn, 60
Dirac belt trick, 59
divisibility in a ring, 127
Division Algorithm, 9
Division Algorithm for Polynomials

and Formal Series, 142
division ring, 71
domain, 66

Eisenstein’s Irreducibility Criterion,
159

equivalence class, 17
equivalence relation, 17
Euclid’s Lemma, 11
Euclidean Algorithm, 10
Euclidean Algorithm in Euclidean

Domains, 146
Euclidean domain, 142
Euler’s Theorem, 83, 86
even permutation, 58
existence of splitting fields, 165

factor group, 50
factor ring, 82
factor set, 18, 19
Fermat’s Little Theorem, 84, 86
field, 66
field of fractions, 96
field with four elements, 67
First Isomorphism Theorem for

Groups, 51
First Isomorphism Theorem for

Rings, 83
formal (power) series, 105
function, 2
fundamental symmetric

polynomials, 120
Fundamental Theorem of Algebra,

166
Fundamental Theorem of

Arithmetic, 12

190



INDEX 191

Fundamental Theorem of
Symmetric Polynomials,
120

GCD-domain, 130
greatest common divisor, 9
greatest common divisor in a ring,

127
group, 27
group morphism, 29
group of quaternions as a group of

symmetries of a tethered
rectangle, 60

Hilbert’s Nullstellensatz, 176
Hilbert’s Nullstellensatz over C,

170, 177
homogeneous polynomial, 119

ideal, 74
image of a group morphism, 40, 45
injective function, 3
integral closure, 171
integral element, 170
integrally closed domain, 170
irreducible element, 135

kernel of a group morphism, 40, 45
Klein Four Group, 59

Lagrange’s Theorem, 55
least common multiple, 57
least common multiple in a ring,

128

maximal ideal, 89
minimal polynomial, 170
multiplicative subset, 92

normal subgroup, 41

odd permutation, 58
order of a formal series, 142
order of a group, 55

order of an element in a group, 55

Partial Fractions Decomposition
Theorem, 168

partition, 18
polynomial, 105
polynomial ring, 105
prime element, 134
prime ideal, 88
prime number, 11
principal ideal, 76, 150
Principal Ideal Domain (PID), 76,

150

quadratic field, 173
quaternion group, 34
quaternions, 71

Rational Root Theorem, 143
Reduction Irreducibility Criterion,

159
reflexivity, 17
relatively prime, 11
ring, 65
ring morphism, 67
ring of formal (power) series, 105
ring of fractions, 94
ring of Gaussian integers, 136
ring of invariants, 119
ring of real quaternions, 71

saturated multiplicative subset, 97
Schönemann’s Irreducibility

Criterion, 158
Second Isomorphism Theorem for

Groups, 51
Second Isomorphism Theorem for

Rings, 83
signature of a permutation, 58
subgroup, 38
subgroup generated by a set, 40
subring, 74
surjective function, 3



192 INDEX

symmetric polynomials, 120
symmetry, 17

Third Isomorphism Theorem for
Groups, 51

total ring of fractions, 96
transcendental number, 170
transitivity, 17

Unique Factorization Domain
(UFD), 156

unit in a ring, 66
Universal Property of the Factor

Group, 50
Universal Property of the Factor

Ring, 82
Universal Property of the Factor

Set, 19
Universal Property of the

Polynomial Ring, 107
Universal Property of the Ring of

Fractions, 94

Vieta’s Formulas, 165

Wilson’s Theorem, 84, 87, 143, 148

Zariski’s Lemma, 175
Zariski’s Lemma over C, 169
zero divisor in a ring, 66
Zorn’s Lemma, 98



Bibliography

[1] T. Albu, I.D. Ion, Capitole de teoria algebrică a numerelor (in
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