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HOW TO USE THIS BOOK

a Introduction

First of all, welcome back to Calculus!

This book is an early draft of a companion question book for the CLP-4 text. Additional
questions are still under active development.

» How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As
you are working problems, resist the temptation to prematurely peek at the back! It’s
important to allow yourself to struggle for a time with the material. Even professional
mathematicians don’t always know right away how to solve a problem. The art is in
gathering your thoughts and figuring out a strategy to use what you know to find out
what you don't.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section.
Think about it for a while, and don’t be afraid to read back in the notes to look for a key
idea that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you're reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that one
particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few
days. That might have been enough time for you to internalize the necessary ideas, and
you might find it easily conquerable. Pat yourself on the back-sometimes math makes you
feel good! If you're still having troubles, read over the solution again, with an emphasis
on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope that it will
improve their problem-solving skills. In this class, you will learn lots of concepts, and
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be asked to apply them in a variety of situations. Often, this will involve answering one
really big problem by breaking it up into manageable chunks, solving those chunks, then
putting the pieces back together. When you see a particularly long question, remain calm
and look for a way to break it into pieces you can handle.

» Working with Friends

Study buddies are fantastic! If you don’t already have friends in your class, you can ask
your neighbours in lecture to form a group. Often, a question that you might bang your
head against for an hour can be easily cleared up by a friend who sees what you’ve missed.
Regular study times make sure you don’t procrastinate too much, and friends help you
maintain a positive attitude when you might otherwise succumb to frustration. Struggle
in mathematics is desirable, but suffering is not.

When working in a group, make sure you try out problems on your own before coming
together to discuss with others. Learning is a process, and getting answers to questions
that you haven’t considered on your own can rob you of the practice you need to master
skills and concepts, and the tenacity you need to develop to become a competent problem-
solver.

» Types of Questions

Q[1](#): In addition to original problems, this book contains problems pulled from quizzes
and exams given at UBC for Math 317 (Calculus 4). These problems are marked with a
star. The authors would like to acknowledge the contributions of the many people who
collaborated to produce these exams over the years.

The questions are organized into Stage 1, Stage 2, and Stage 3.

» Stage 1

The first category is meant to test and improve your understanding of basic underlying
concepts. These often do not involve much calculation. They range in difficulty from
very basic reviews of definitions to questions that require you to be thoughtful about the
concepts covered in the section.

» Stage 2

Questions in this category are for practicing skills. It's not enough to understand the philo-
sophical grounding of an idea: you have to be able to apply it in appropriate situations.
This takes practice!
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» Stage 3

The last questions in each section go a little farther than Stage 2. Often they will combine
more than one idea, incorporate review material, or ask you to apply your understanding
of a concept to a new situation.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to
practice is recognizing the level of difficulty a problem poses. Exams will have some easy
questions, some standard questions, and some harder questions.
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Chapter 1

CURVES

1.1a Derivatives, Velocity, Etc.

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1
Questions 1 through 5 provide practice with curve parametrization. Being comfortable with the algebra and
interpretation of these descriptions are essential ingredients in working effectively with parametrizations.

Q[1]: Find the specified parametrization of the first quadrant part of the circle
2

x% +y? = a2,
(@) In terms of the y coordinate.

(b) In terms of the angle between the tangent line and the positive x-axis.
(c) In terms of the arc length from (0, a).

Q[2]: Consider the following time-parametrized curve:

r(t) = (cos (%t> , (t~5)2>

List the three points (—1/+/2,0), (1,25), and (0,25) in chronological order.

QI[3]: At what points in the xy-plane does the curve (sint,?) cross itself? What is the
difference in t between the first time the curve crosses through a point, and the last?

Qr4]:



CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

A circle of radius a rolls along the x-axis in the positive direction, starting with its centre
at (a,a). In that position, we mark the topmost point on the circle P. As the circle moves,
P moves with it. Let 0 be the angle the circle has rolled — see the diagram below.

(a) Give the position of the centre of the circle as a function of 6.

—

P

(b) Give the position of P a function of 6.

o/

Q[5]: The curve C is defined to be the intersection of the ellipsoid
> 1, 2
x*— -y +3z7 =1
4
and the plane
x+y+z=0.

When y is very close to 0, and z is negative, find an expression giving z in terms of y.

Q[6]: A particle traces out a curve in space, so that its position at time ¢ is

r(t) =e i+ 2+ (t—1)3(t-3)%k

fort > 0.

Let the positive z axis point vertically upwards, as usual. When is the particle moving
upwards, and when is it moving downwards? Is it moving faster at time ¢t = 1 or at time
t =237

QI7]: Below is the graph of the parametrized function r(¢). Let s(f) be the arclength along
the curve from r(0) to r(t).




CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

Indicate on the graph s(t + h) — s(t) and r(t + h) — r(t). Are the quantities scalars or
vectors?

Q[8]: What is the relationship between velocity and speed in a vector-valued function of
time?

QI[9](+): Let r(t) be a vector valued function. Let r/, r’ , and " denote %, ‘;—izr and i—i;,
respectively. Express

%[(r xr')-1"]
interms of r, ¥, ¥’ , and r”. Select the correct answer.
(@ (¥xr")-r"

b) ('xt") r+(rxr)-r”

() (rxr)-r”

(d) 0

(e) None of the above.

Q[10]: Show that, if the position and velocity vectors of a moving particle are always
perpendicular, then the path of the particle lies on a sphere.

» Stage 2

Q[11](+): Find the speed of a particle with the given position function
r(t) =5V2ti+etj—e 'k

Select the correct answer:

@ [|v()] = (" +e™)

(b) |v(t)| =10+ 5et + 5e~t

(© |v(t)] =10+ €10t 4 ¢ 10f

@ |v(t)] =5( +e7™)




CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

© [v(t)] =5 +e7)
Q[12]: Find the velocity, speed and acceleration at time ¢ of the particle whose position is
r(t) = acosti+asintj+ctk
Describe the path of the particle.
Q[13](+):
(a) Let
r(t) = (tz, 3, %t3)

Find the unit tangent vector to this parametrized curve at t = 1, pointing in the
direction of increasing t.

(b) Find the arc length of the curve from (a) between the points (0,3,0) and (1,3, -3).
Q[14]: Using Lemma 1.1.3 in the CLP-4 text, find the arclength of r(t) = (t, \/g 2,1 > from
t=0tot =1
Q[15]: Find the length of the parametric curve

x = acostsint y = asin’t z = bt
betweent =0and t =T > 0.

QI[16]: A particle’s position at time ¢ is given by r(t) = (t + sint,cost)!. What is the
magnitude of the acceleration of the particle at time #?

. . 3 . . . . . 3
Q[17](+): A curve in R” is given by the vector equation r(t) = <2t cost,2tsint, §>
(a) Find the length of the curve betweent = 0 and ¢t = 2.

(b) Find the parametric equations of the tangent line to the curve at t = 7.

Q[18](x): Let r(t) = (3cost,3sint,4t) be the position vector of a particle as a function of
time t > 0.

(a) Find the velocity of the particle as a function of time ¢.

(b) Find the arclength of its path between t = 1 and t = 2.

Q[19]: The plane z = 2x + 3y intersects the cylinder x>+ y*> =9 in an ellipse.
(a) Find a parametrization of the ellipse.

(b) Express the circumference of this ellipse as an integral. You need not evaluate the
integral.

QI20](*): Consider the curve

1 1 N
r(t) = gcos3 t+ gsing tj+sin®tk

1 The particle traces out a cycloid — see Question 4

5



CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

(a) Compute the arc length of the curve fromt =0tot = 7.
(b) Compute the arc length of the curve fromt =0to t = 7.
Q[21](x): Letr(t) = (%t3, %tz, %t), t = 0. Compute s(t), the arclength of the curve at time .

Q[22](x): Find the arc length of the curve r(t) = (", ", t3m/2) for0 <a <t <b and
where m > 0. Express your result in terms of m, a, and b.

QI[23]: Let C be the part of the curve of intersection of the parabolic cylinder x = 3> and
the hyperbolic paraboloid 3z = 2xy with y > 0.

(a) Write a vector parametric equation for C using x as the parameter.
(b) Find the length of the part of C between the origin and the point (9, 3, 18).

(c) A particle moves along C in the direction for which x is increasing. If the particle
moves with constant speed 9, find its velocity vector when it is at the point (1,1, %)

(d) Find the acceleration vector of the particle of part (c) when it is at the point (1,1, %)

Q[24]: If a particle has constant mass m, position r, and is moving with velocity v, then
its angular momentum is L = m(r x v).

For a particle with mass m = 1 and position function r = (sint, cost,t), find ’?j—]; ‘

» Stage 3

Q[25](x): A particle moves along the curve C of intersection of the surfaces z2 = 12y and
18x = yz in the upward direction. When the particle is at (1, 3, 6) its velocity v and
acceleration a are given by

v=06i+12j+12k a=27i+30j+6k
(a) Write a vector parametric equation for C using u = £ as a parameter.
(b) Find the length of C from (0,0,0) to (1,3,6).

(c) If u = u(t) is the parameter value for the particle’s position at time f, find % when
the particle is at (1, 3, 6).

(d) Find % when the particle is at (1, 3, 6).
Q[26](+): A particle of mass m = 1 has position ry = % k and velocity vo = "72 iat time 0.

It moves under a force
F(t) = —3ti+sintj +2e* k.

(a) Determine the position r(t) of the particle depending on ¢.
(b) At what time after time ¢t = 0 does the particle cross the plane x = 0 for the first time?

(c) What is the velocity of the particle when it crosses the plane x = 0 in part (b)?




CURVES 1.2 REPARAMETRIZATION

Q[27](*): Let C be the curve of intersection of the surfaces y = x?and z = %x?’ . A particle
moves along C with constant speed such that % > 0. The particle is at (0,0,0) at time
t = 0andisat (3,9,18) at time = 7.

(a) Find the length of the part of C between (0,0,0) and (3,9, 18).
(b) Find the constant speed of the particle.

(c) Find the velocity of the particle when itis at (1,1, 3).

(d) Find the acceleration of the particle when itis at (1,1, %).

Q[28]: A camera mounted to a pole can swivel around in a full circle. It is tracking an
object whose position at time ¢ seconds is x(t) metres east of the pole, and y(t) metres
north of the pole.

In order to always be pointing directly at the object, how fast should the camera be pro-
grammed to rotate at time ¢? (Give your answer in terms of x(¢) and y(¢) and their deriva-
tives, in the units rad /sec.)

82[29]: Algipe of radius 3 follows the path of the curve r(t) = (2\—35153/2 , 32, t+2), for
<t <10.

What is the volume inside the pipe? What is the surface area of the pipe?

Q[30]: A wire of total length 1000cm is formed into a flexible coil that is a circular helix. If
there are 10 turns to each centimetre of height and the radius of the helix is 3 cm, how tall
is the coil?

Q[31]: A projectile falling under the influence of gravity and slowed by air resistance
proportional to its speed has position satisfying

dzr__ ﬁ—adr
ar = 8 dt

where « is a positive constant. If r = rp and % = vp at time t = 0, find r(#).

1.24 Reparametrization

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

t
QI1]: A curve r(s) is parametrized in terms of arclength. What is J t'(s)|ds when t > 1?2
1

7



CURVES 1.2 REPARAMETRIZATION

QJ2]: The function
1 1 .
r(s) = sin (%)i—l—cos <S—|2_ )j-l—%g( + 1)k

is parametrized in terms of arclength, starting from the point P. What is P?

QI3]: A curve R = a(t) is reparametrized in terms of arclength as R = b(s) = a((s)). Of
the following options, which best describes the relationship between the vectors a’(y)
and b’(sp), where t(sg) = t¢?

You may assume a’(t) and b’(s) exist and are nonzero for all ¢,s > 0.
A. they are parallel and point in the same direction

they are parallel and point in opposite directions

they are perpendicular

they have the same magnitude

m U 0 w

they are equal

» Stage 2

Q[4](+):

(a) Let
r(t) = (2sin’t,2cos’ t,3sin t cos t)

Find the unit tangent vector to this parametrized curve at t = 71/3, pointing in the
direction of increasing t.

(b) Reparametrize the vector function r(t) from (a) with respect to arc length measured
from the point ¢t = 0 in the direction of increasing t.

Q[5](*): This problem is about the logarithmic spiral in the plane
r(t) = e'(cost,sint), teR
(a) Find the arc length of the piece of this spiral which is contained in the unit circle.

(b) Reparametrize the logarithmic spiral with respect to arc length, measured from
t = —oo.

» Stage 3

QI6]: Define

r(t) = < ! arctan f arctan t)
VI+2 V12

for 0 < t. Reparametrize the function using z = arctant, and describe the curve it defines.
What is the geometric interpretation of the new parameter z?

Q[7]: Reparametrize the function r(t) = (3#2, 1+%) in terms of arclength from ¢ = —1.

8



CURVES 1.3 CURVATURE

1.34 Curvature

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

There are a lot of constants in this chapter that might be new to you. They can take a little getting used
to. Questions 1-5 provide practice working with and interpreting these constants and their relations to each
other.

QI1]: Sketch the curve r(t) = (3sint,3cost). At the point (0,3), label T and N. Give the
values of x and p at this point as well.

Q[2]: Consider the circle r(t) = (3sint,3cost). Find T(t) and T(s). Then, use parts (b)
and (c) of Theorem 1.3.3 to find N(¢) and N(s).

QI3]: The functon r(t) = (tcost,tsint), t > 0, defines a spiral centred at the origin. Using
only geometric intuition (no calculation), predict tlim k().
—00
. — : o d
QI4]: Let r(t) = (¢!, 3t,sint). What is $3?
Q[5]: In Question 5 of Section 1.2,we found that the spiral

r(t) = e'(cost,sint)

parametrized in terms of arclength is
R(s) = 5 (cos (1og (55)) sin (105 (5)) )

Find ﬁ—f and %—I for this curve.

Q[6]: In this exercise, we make more precise the sense in which the osculating circle is the
circle which best approximates a plane curve at a point.

e By translating and rotating our coordinate system, we can always arrange that the
point is (0,0) and that the curve is y = f(x) with f'(0) = 0 and f”(0) > 0. (We are
assuming that the curvature at the point is nonzero.)

e Let y = g(x) be the bottom half of the circle of radius r which is centred at (0, r).

Show that if f(x) and g(x) have the same second order Taylor approximation at x = 0,
then 7 is the radius of curvature of y = f(x) at x = 0.

» Stage 2

Q[7]: Given a curve r(t) = (¢!, #> + t), compute the following quantities:

9



CURVES 1.3 CURVATURE

QI8]: Find the curvature x(t) of r(t) = (cost + sint,sint — cost).

QI[9]: Find the minimum and maximum values for the curvature of the ellipse x(t) =
acost,y(t) = bsint. Herea > b > 0.

Q[10](+):

(a) Find the curvature of y = ¢* at (0,1).

(b) Find the equation of the circle best fitting y = e* at (0,1).
Q[11](+):

Consider the motion of a thumbtack stuck in the tread of a tire which is on a bicycle
moving at constant speed. This motion is given by the parametrized curve

r(t) = (t—sint, 1 —cost)

with t > 0.

(a) Sketch the curve in the xy-plane for 0 < t < 47r.

(b) Find and simplify the formula for the curvature x(t).

(c) Find the radius of curvature of the osculating circle to r(t) at t = 7.

(d) Find the equation of the osculating circle to r(f) at t = 7.

» Stage 3

QI12]: Find the curvature « as a function of arclength s (measured from (0, 0)) for the
curve

x(0) = JG cos (Ant?)dt  y(0) = Je sin (17t?)dt
0 0

Q[13](*): Let C be the curve in IR? given by the graph of the function y = % Let x(x) be
the curvature of C at the point (x,x>/3). Find all points where x(x) attains its maximal
values, or else explain why such points do not exist. What are the limits of x(x) as x — o
and x — —0?

10



CURVES 1.4 CURVES IN THREE DIMENSIONS

1.4a Curves in Three Dimensions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: In the sketch below of a three-dimensional curve and its osculating circle at a point,
label T and N. Will B be pointing out of the paper towards the reader, or into the paper
away from the reader?

QI2]: In the formula

ds ,
T = W] = ()

does s stand for speed, or for arclength?

Q[3]: Which curve (or curves) below have positive torsion, which have negative torsion,
and which have zero torsion? The arrows indicate the direction of increasing ¢.

11



CURVES 1.4 CURVES IN THREE DIMENSIONS

N
> IN
A

R L[/

Y

Y
X X
a(t) = (cost,—2sint, t/2)  b(t) = (cost,2sint,—t/2)  c(t) = (0,t/2sint,tcost)

Q[4]: Consider a curve that is parametrized by arc length s.
(a) Show that if the curve has curvature x(s) = 0 for all 5, then the curve is a straight line.

(b) Show that if the curve has curvature x(s) > 0 and torsion 7(s) = 0 for all s, then the
curve lies in a plane.

(c) Show that if the curve has curvature x(s) = ko, a strictly positive constant, and
torsion 7(s) = 0 for all s, then the curve is a circle.

Q[5](*): The surface z = x? + y? is sliced by the plane x = . The resulting curve is
oriented from (0,0,0) to (1,1, 2).

(a) Sketch the curve from (0,0,0) to (1,1,2).
(b) Sketch T, Nand Bat (3,3,1).

11
272
(c) Find the torsion at (3,1, 1).

» Stage 2

Q[6](+): Let C be the space curve
r(t) = (e —e )i+ (" +e')j+2tk
(a) Find v/, r’ and the curvature of C.
(b) Find the length of the curve between r(0) and r(1).
Q[7]: Find the torsion of r(t) = (t,t2,t%) at the point (2,4, 8).

QI[8]: Find the unit tangent, unit normal and binormal vectors and the curvature and
torsion of the curve

A

#2 £
£)=ti+—7+—k
r(t) l+2]+3

12



CURVES 1.4 CURVES IN THREE DIMENSIONS

Q[9]: For some constant c, define r(t) = (#3,t,e°). For which value(s) of c is T(5) = 0? For
each of those values of ¢, find an equation for the plane containing the osculating circle to
the curve at t = 5.

Q[10](+):
(a) Consider the parametrized space curve
1(t) = (£,t,1%)
Find an equation for the plane passing through (1,1, 1) with normal vector tangent to
r at that point.
(b) Find the curvature of the curve from (a) as a function of the parameter ¢.

QI11](x): Let C be the osculating circle to the helix r(t) = (cos t,sint, t) at the point
where t = 71/6. Find:

(a) the radius of curvature of C
(b) the center of C
(c) the unit normal to the plane of C
Q[12](+):
(a) Consider the parametrized space curve
r(t) = (cos(t),sin(t), t?)
Find a parametric form for the tangent line at the point corresponding to t = 7.

(b) Find the tangential component ar(t) of acceleration, as a function of ¢, for the
parametrized space curve r(t).

Q[13](*): Suppose, in terms of the time parameter ¢, a particle moves along the path
r(t) = (sint — tcost)i+ (cost + tsint)j+t*k, 1 < t < oo,

(a) Find the speed of the particle at time t.

(b) Find the tangential component of acceleration at time ¢.
(c) Find the normal component of acceleration at time .
(d) Find the curvature of the path at time ¢.

Q[14](+): Assume the paraboloid z = x? 4+ y? and the plane 2x + z = 8 intersect in a curve
C. Cis traversed counter-clockwise if viewed from the positive z-axis.

(a) Parametrize the curve C.

(b) Find the unit tangent vector T, the principal normal vector N, the binormal vector B
and the curvature « all at the point (2,0,4).

Q[15](*): Consider the curve C given by

1 1 .
r(t) = §t3i+\—@t2j+tk, —0 <t < .

13



CURVES 1.4 CURVES IN THREE DIMENSIONS

(a) Find the unit tangent T(#) as a function of ¢.
(b) Find the curvature x(t) as a function of .
(c) Determine the principal normal vector N at the point (%, 2v2,2).

Q[16](*): Suppose the curve C is the intersection of the cylinder x% + y2 = 1 with the
planex +y+z = 1.

(a) Find a parameterization of C.
(b) Determine the curvature of C.

(c) Find the points at which the curvature is maximum and determine the value of the
curvature at these points.

Q[17](x): Let
r(t) = Pi+2tj+Intk

Compute the unit tangent and unit normal vectors T(t) and N(t). Compute the curvature
k(t). Simplify whenever possible!
Q[18](+):
(a) Find the length of the curve r(t) = (1, %, %) for0<t<1
(b) Find the principal unit normal vector N to r(t) = cos(t)i +sin(t)j + tk at t = 71/4.
(c) Find the curvature of r(t) = cos(t)i+sin(t)j + tkat t = 71/4.
Q[19](*): A particle moves along a curve with position vector given by

r(t) = (t+2,1-t,1/2)
for —oo < t < o0.
(a) Find the velocity as a function of ¢.
(b) Find the speed as a function of t.
(c) Find the acceleration as a function of .

(d) Find the curvature as a function of ¢.

(e) Recall that the decomposition of the acceleration into tangential and normal
components is given by the formula

25 A S A
¢ = 10+ ($) N

Use this formula and your answers to the previous parts of this question to find N(¢),
the principal unit normal vector, as a function of t.

(f) Find an equation for the osculating plane (the plane which best fits the curve) at the
point corresponding to t = 0.

14



CURVES 1.4 CURVES IN THREE DIMENSIONS

(g) Find the centre of the osculating circle at the point corresponding to t = 0.
Q[20](*): Consider the curve C given by
£, P .

r(t):§i+\—ﬁj+tk —w<t<o
(a) Find the unit tangent T(t) as a function of ¢.
(b) Find the curvature x(t) as a function of t.
(c) Evaluate x(t) at t = 0.
(d) Determine the principal normal vector N(t) at t = 0.
(e) Compute the binormal vector B(t) at t = 0.
Q[21](+): A curve in R® is given by r(t) = (t?, t, £3).
(a) Find the parametric equations of the tangent line to the curve at the point (1, -1, —1).
(b) Find an equation for the osculating plane of the curve at the point (1,1,1).
Q[22](%): A curve in R3 is given by

r(t) = (sint —tcost)i+ (cost+tsint)j+ 2k, O0<t<w

(a) Find the length of the curve r(t) from r(0) = (0,1,0) to r(7t) = (7T, -1, 7r%).
(b) Find the curvature of the curve at time t > 0.

Q[23](*): At time t = 0, NASA launches a rocket which follows a trajectory so that its
position at any time ¢ is

X = —4\35153/2, y= —4\3@1‘3/2, z

— 12t

(a) Assuming that the flight ends when z = 0, find out how far the rocket travels.
(b) Find the unit tangent and unit normal to the trajectory at its highest point.
(c) Also, compute the curvature of the trajectory at its highest point.

Q[24](+): Consider a particle travelling in space along the path parametrized by
x = cos’ t, y= sin® t, z = 2sin? ¢
(a) Calculate the arc length of this path for 0 <t < /2.

(b) Find the vectors T, N, B for the particle at t = 7t/6.

Q[25]: Suppose that the curve C is the intersection of the cylinder x? + yz = 1 with the
surface z = x> — y2.

(a) Find a parameterization of C.

(b) Determine the curvature of C at the point (1/ V2,1/42, 0).
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CURVES 1.4 CURVES IN THREE DIMENSIONS

(c) Find the osculating plane to C at the point (1/v2,1/+/2, 0). In general, the
osculating plane to a curve r(t) at the point r(t() is the plane which fits the curve best
at r(to). It passes through r(t) and has normal vector B(ty).

(d) Find the radius and the centre of the osculating circle to C at the point

(1/v2,1/72,0).

» Stage 3

Q[26](+): Under the influence of a force field F, a particle of mass 2 kg is moving with
constant speed 3 m/s along the path given as the intersection of the plane z = x and the
parabolic cylinder z = y?, in the direction of increasing y. Find F at the point (1,1,1).
(Length is measured in m along the three coordinate axes.)

Q[27](*): Consider the curve C in 3 dimensions given by
r(t) = 26 + £2] + /3t%k

fort e R.

(a) Compute the unit tangent vector T().

(b) Compute the unit normal vector N(#).

(c) Show that the binormal vector B to this curve does not depend on t and is one of the
following vectors:

1/2 0 0 0
D {x@/zl ) [\@/2] ©) [\@/2] @ [1/2]
0 1/2 1/2 V3/2

This implies that C is a plane curve.

(d) According to your choice of vector (D, @), @ or @), give the equation of the plane
containing C.

(e) Compute the curvature «(t) of the curve.

(f) Are there point(s) where the curvature is maximal? If yes, give the coordinates of the
point(s). If no, justify your answer.

(g) Are there point(s) where the curvature is minimal? If yes, give the coordinates of the
point(s). If no, justify your answer.

(h) Let A A
u:=2i, v:=j+v3k w:=-/3j+k

(i) Expressi,j, k in terms of u, v, w.
(ii) Using (i), write r(t) in the form
a(H)u+b(t)v+c(t)w

where a(t), b(t) and c(t) are functions you have to determine. You should find
that one of these functions is zero.

16



CURVES 1.4 CURVES IN THREE DIMENSIONS

(iii) Draw the curve given by (a(t), b(t)) in the xy-plane.
(iv) Is the drawing consistent with parts (f) and (g)? Explain.

QI[28](+): Recall that if T is the unit tangent vector to an oriented curve with arclength
parameter s, then the curvature x and the principle normal vector N are defined by the
equation

i—: =xN
Moreover, the torsion T and the binormal vector B are defined by the equations
B=TxN, = <X
Show that .
e P

Q[29](+): A skier descends the hill z = 4/4 — x? — y? along a trail with parameterization

x = sin(20), y =1—cos(20), z =2cosb, 0<0< g

Let P denote the point on the trail where x = 1.
(a) Find the vectors T, N, B and the curvature x of the ski trail at the point P.
(b) The skier’s acceleration at Pisa = (-2, 3, fZﬁ). Find, at P,

(i) the rate of change of the skier’s speed and

(ii) the skier’s velocity (a vector).

Q[30](*): A particle moves so that its position vector is given by
r(t) = (cost, sint, csint), where t > 0 and c is a constant.

(a) Find the velocity v(t) and the acceleration a(t) of the particle.

(b) Find the speed v(t) = |v(t)| of the particle.

(c) Find the tangential component of the acceleration of the particle.

(d) Show that the trajectory of this particle lies in a plane.

QI[31](*): A race track between two hills is described by the parametric curve

r(0) = <4c059, 2sin@, %COS(ZQ)), 0<6<2m

(a) Compute the curvature of the track at the point ( —4,0, 7).

(b) Compute the radius of the circle that best approximates the bend at the point
(—4,0,1) (that is, the radius of the osculating circle at that point).

(c) A car drives down the track so that its position at time ¢ is given by r(¢?). (Note the
relationship between t and 0 is 6 = t?). Compute the following quantities.
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CURVES 1.6 INTEGRATING ALONG A CURVE

(i) The speed at the point ( — 4,0, 1).
(ii) The acceleration at the point ( —4,0, 1).

(iii) The magnitude of the normal component of the acceleration at the point
(—4,0,7).
7 M7 4

1.64 Integrating Along a Curve

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Give an equation for arclength of a curve C as a line integral.
QI2]:

(a) Show that the integral §, f(x,y) ds along the curve C given in polar coordinates by
r=r(0),6p <0 <0, is

JQZ f(r(6) cos,r(6) sin 9)\/r(9)2 + (%(9))2 de

61
(b) Compute the arc length of r = 1 4 cos 6, 0 < 6 < 271. You may use the formula

0
1+ cos@ :2c052§

to simplify the computation.

Q[3]: Evaluate {, x>y* dx + x>y dy counterclockwise around the square with vertices (0,0),
(1,0), (1,1) and (0,1).

» Stage 2

QI4]: Calculate § (%) ds, where C is the curve (%t3 , V/3t2, 3t) fromt=1tot =2.

Q[5]: A hoop of radius r traces out the curve xZ 4+ y2 = 1, where x and y are measured in
metres. At a point (x,y), its density is x? kg per metre. What is the mass of the hoop?

Q[6]: Compute {-(xy + z)ds where C is the straight line from (1,2,3) to (2,4,5).
Q[7]: Evaluate the path integral §, f(x,y, z) ds for
(@) f(x,y,z) =xcosz, C:r(t)=H+#j0<t<1.

®) f(xyz) =L, Cix(t)=(45P57%t),1<t<2.
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CURVES 1.7 SLIDING ON A CURVE

521 8—3%/2
(@) 17 (b) 3/2

Q[8]: Evaluate §. sin x ds, where C is the curve (arcsec(t),logt), 1 < t < v/2.

QI[9](+): A particle of mass m = 1 has position r(0) = j and velocity vy = i + k at time
t = 0. The particle moves under a force

F(t) =j—sintk
where t denotes time.

(a) Find the position r(t) of the particle as a function of .

(b) Find the position r(t1) of the particle when it crosses the plane x = 71/2 for the first
time at t;.

(c) Determine the work done by F in moving the particle from r(0) to r(#;).

» Stage 3

QI10](+): Evaluate the line integral {- F - i ds where F(x,y) = xy?i+ ye* j, C is the bound-
ary of the rectangle R: 0 < x < 3, -1 < y < 1, and fi is the unit vector, normal to C,
pointing to the outside of the rectangle.

Q[11](x): Let C be the curve given by
r(t) = tcosti+tsintj+t°k,  0<t<m

(a) Find the unit tangent T to C at the point (-, 0, 77%).

Lq/xz—i—yzds

(c) Find the equation of a smooth surface in 3-space containing the curve C.
(d) Sketch the curve C.

QI12]: A wire traces out a path C described by the curve (¢ + %tz , t— %tz , % ts/z), 0<t<
4. Tts density at the point (x,y,z) is p(x,y,z) = (%) Find its centre of mass.

(b) Calculate the line integral

1.7 Sliding on a Curve

Exercises

Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS. You may assume the accelera-
tion due to gravity is ¢ = 9.8 m/s>. You may also assume that the systems described function as they do in
the book: so tracks are frictionless, etc., unless otherwise mentioned.
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CURVES 1.7 SLIDING ON A CURVE

» Stage 1

Q[1]: The figure below represents a bead sliding down a wire. Sketch vectors
representing the normal force the wire exerts on the bead, and the force of gravity.

Assume the top of the page is “straight up.”

QI2]: In the definition E = %m|v|2 + mgy, v is the derivative of position with respect to
what quantity?

Q[3]: A bead slides down a wire with the shape shown below, x < 0.

y

Let WN be the normal force exerted by the wire when the bead is at position x. Note
W=>0.Is %y positive or negative?

Q[4]: A skateboarder is rolling on a frictionless, very tall parabolic ramp with cross-section
described by y = x2. Given a boarder of mass m with system energy E, what is the highest
elevation the skater reaches? How does this compare to a circular culvert?

» Stage 2

Q[5]: A skateboarder of mass 100 kg is freely rolling in a frictionless circular culvert of
radius 5 m. If the skateboarder oscillates between vertical heights of 0 and 3 m, what is
the energy E of the system?

Q[6]: A skateboarder is rolling on a frictionless circular culvert of radius 5 m. What
should their speed be when they’re at the bottom of the culvert (y = 0) for them to make
it all the way around?

Q[7]: A ball of mass 1 kg rolls down a track with the shape
r(0) = (3cosB,5sin6,4 +4cosh) for 0 < 0 < 7. Coordinates are measured in metres,

and the z axis is vertical (so the force due to gravity is —mgk.)

20



CURVES 1.7 SLIDING ON A CURVE

When 6 = 71/4, the particle has instantaneous velocity |v(t)| = 5 m/s. What is the normal
force exerted by the track at that time? Give your answer as a vector.

QI8]: A bead of mass g5 kg slides down a wire in the shape of the curve
r(0) = (sinh,sinf — 0), 6 > 0, with coordinates measured in metres. The bead will break
off the wire when the wire exerts a force of 100 N on the bead.

/
/

(
r(0) = (sinf,sinf — 06)

(
(

If the bead breaks off the wire at 6 = BT”, how fast is the bead moving at that point?

QI9]: A skier is gliding down a hill. The hill can be described as r(t) = (logt,1 —t),
1/e < t < e, with coordinates measured in kilometres. How fast would the skier have to
be moving in order to catch air?

~

» Stage 3

QI10]: A wire follows the arclength-parametrized path r(s) = (x(s), y(s)). A bead,
equipped with a jet pack, slides down the wire. The jet pack can exert a variable force in
a direction tangent to the wire, UT. Assuming the bead slides with constant speed

% =c % = ¢, find a simplified equation for U, the signed magnitude of the force
exerted by the jet pack.

Let the acceleration due to gravity be g, and let the mass of the bead with its jet pack be
m. Give U as a function of s.

Remark: most beads this author has seen did not have jet packs. However, in modelling a
frictionful® system, friction acts as a force that is directly opposing the direction of motion
— much like our jet pack.

Q[11]: A snowmachine is cautiously descending a hill in low gear. Its engine provides a
force MT parallel to the direction of motion. The engine provides whatever force is
necessary to keep the snowmachine moving at a constant speed, |v|. Its treads do not slip.

(a) Give a formula for M in terms of the mass m of the snowmachine, the acceleration
due to gravity g, and the tangent vector T to the hill.

2 Frictionated? Frictiony? Befrictioned?
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CURVES 1.8 POLAR COORDINATES

(b) Let T point in the downhill direction. Do you expect M to be positive or negative as
the snowmachine moves downhill?

. . . . . 3
(c) Find M for the hill of shape y = 1 + cos x (measured in metres) at the point x = °f

for a snowmachine of mass 200 kg.

Q[12]: A skateboarder rolls along a culvert with elliptical cross-section described by
r(0) = (4cos6,3(1+sinb)), 0 < 6 < 27, with coordinates measured in metres.

(a) Give the height ys (in terms of m, g, and E) where the skater’s speed is zero.

(b) Write an equation relating E, m, g, and v 4, where v 4 is the y-value where the skater
would become airborne, i.e. where W = 0. (You do not have to solve for 14
explicitly.)

(c) Suppose the skater has speed 11 m/s at the bottom of the culvert. Which of the
following describes their journey: they make it all the way around; they roll back and
forth in the bottom half; or they make it onto the ceiling, then fall off?

QI13]: A frictionless roller-coaster track has the form of one turn of the circular helix with
parametrization (acos6,asin®,bb). A car leaves the point where 6 = 27 with zero
velocity and moves under gravity to the point where 6 = 0. By Newton’s law of motion,
the position r(t) of the car at time ¢ obeys

Here m is the mass of the car, g is a constant, —mgk is the force due to gravity and
N (x(t)) is the force that the roller-coaster track applies to the car to keep the car on the

track. Since the track is frictionless, N (r(t)) is always perpendicular to v(t) = 9 (t).

(a) Prove that E(t) = sm|v(t)|* + mgr(t) - k is a constant, independent of t. (This is
called “conservation of energy”.)

(b) Prove that the speed |v| at the point 0 obeys |v|? = 2¢b(27 — 6).
(c) Find the time it takes to reach 6 = 0.

1.84 Polar Coordinates

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1
Q[1]: Consider the points

(x1,y1) = (3,0) (x2,42) = (1,1) (x3,y3) = (0,1)
(xa,y4) = (-1,1) (x5,y5) = (=2,0)




CURVES 1.8 POLAR COORDINATES

Also define, for each angle 6, the vectors
& (0) =cosfi+sinfj  &y(0) = —sinfi+cosfj

(a) Find, for each 1 < i < 6, the polar coordinates r; and 6;, with 0 < 8; < 27, for the
point (x;, ;).

(b) Determine, for each angle 0, the lengths of the vectors &,(6) and é,(6) and the angle
between the vectors &,(0) and &,(0). Compute &,(6) x &(6) (viewing &,(0) and &y(0)
as vectors in three dimensions with zero k components).

(c) Foreach 1 <i < 6, sketch, in the xy-plane, the point (x;, y;) and the vectors &,(6;) and
&9(0;). In your sketch of the vectors, place the tails of the vectors &,(6;) and &y(6;) at
(X1, yi).

Q[2]: Recall that a point with polar coordinates r and 6 has x = rcos 0 and y = rsin 6. Let

r = f(0) be the equation of a plane curve in polar coordinates. Find the curvature of this
curve at a general point 6.

» Stage 2

QI3]: Find the curvature of the cardioid r = a(1 — cos ).
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Chapter 2

VECTOR FIELDS

2.1a Definitions and First Examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

QI1]: Below is a sketch of the vector field v(x, ).

Find the regions where the x-coordinates and y-coordinates are positive, negative, and
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VECTOR FIELDS 2.1 DEFINITIONS AND FIRST EXAMPLES

>0 when| | >0 when| |
zero: v(x,y) 14 =0 when| | v(x,y)-j{=0 when| |
<0 when| | <0 when[ |

You may assume that v(x, y) behaves as expected at the points you don’t see. That is, the
samples are representative of a smooth, continuous vector-valued function. You may also
assume the tick marks on the axes correspond to unit distances.

QI2]: Below is a sketch of the vector field v(x, ).

Y

NN N
VN s
\ \\—>//
[ _>/>//
v

I

/’_>\ L w\
N\,\H\

to A
v
— T \M\ \

Find the regions where the x-coordinates and y-coordinates are positive, negative, and

zero:
>0 when| | >0 when| |
v(ty)i{=0 when| | v(xy)j{=0 when| |
<0 when| | <0 when| |

You may assume that the samples shown are representative of the general behaviour of
v(x,y). You may also assume the tick marks on the axes correspond to unit distances.

Q[3]: A platform with many small conveyor belts is aligned on a coordinate plane. Every
conveyor belt moves an object on top of it in the direction of the origin, and a conveyor
belt at position (x,y) causes an object on top of it to move with speed y. Assume the
objects do not interfere with one another.
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VECTOR FIELDS 2.1 DEFINITIONS AND FIRST EXAMPLES

Give a vector-valued formula for the velocity of an object at position (x, ).

Q[4]: Let F = P14 Q] be the two dimensional vector field sketched below.

Y
) \ \\\\4—4/4/4/
P AX NN N~y
(N AR A A
B A P NN
f VA e N
ST T
4////7/4»%%%\»
7T T > —>
e T

Determine the signs of P, Q %Q and %—g at the point A.

7 0x
QI5]: Imagine that the vector field v(x,y) = xi+ y] is the velocity field of a moving fluid.

(a) Attime 0 you drop a twig into the fluid at the point (1,1). What is the approximate
position of the twig at time t = 0.01?

(b) At time 0 you drop a twig into the fluid at the point (0,0). What is the position of the
twig at time t = 0.01?

(c) At time 0 you drop a twig into the fluid at the point (0,0). What is the position of the
twig at time t = 10?

QI6]: Imagine that the vector field v(x,y) = 2x1 — j is the velocity field of a moving fluid.
At time 0 you drop a twig into the fluid at the point (0,0). What is the position of the twig
at time t = 10?

» Stage 2

Q[7]: A platform with many small conveyor belts is aligned on a coordinate plane. Every
conveyor belt moves an object on top of it in the direction of the origin, and a conveyor
belt at position (x,y) causes an object on top of it to move with speed y. Assume the
objects do not interfere with one another.

Give a vector-valued formula for the velocity of an object at position (x, ).

Q[8]: Friendly bees fly towards your face from all directions. The speed of each bee is
inversely proportional to its distance from your face. Find a vector field for the velocity of
the swarm.

Q[9]: Sketch the vector field v(x,y) = (x2,y).

(]wkﬁwmhmmMWMMﬁdd&v@g):(v%1+ﬁ,xﬂx—nl+@—1y)
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VECTOR FIELDS 2.1 DEFINITIONS AND FIRST EXAMPLES

Q[11]: Sketch the direction field of v(x,y) = (x* + xy, y*> — xy).
1/3

1/3
N N |

Q[13]: Sketch each of the following vector fields, by drawing a figure like Figure 2.1.1 in
the CLP-4 text.

QI12]: Sketch the vector field v(x,y) =

(@) v(x,y) =xi+yj.
(b) v(x,y) = 2xi—]j.

—
© vixy) = S0
Q[14]: A body of mass M exerts a force of magmtude Hz ona particle of unit mass

distance D away from itself, where G is a physical constant. The force acts in the
direction from the particle to the body.

()

Suppose a mass of 5 kg sits at position (0,0), a mass of 3 kg sits at position (2,3), and a
mass of 7 kg sits at position (4,0) on a coordinate plane. Give the vector field f(x, y) of the
net gravitational force exerted on a unit mass at position (x, y).

» Stage 3
Q[15]:

a. A pole leans against a vertical wall. The pole has length 2, and it touches the wall at
height H = 1. The pole slides down, still touching the wall, with its height decreasing
at a rate of ‘% = 0.5.

Find a vector function v : [0,2] — RR? for the velocity, when H = 1, of a point on the
pole that is p units from the lower end, using the coordinate system from the sketch
above.

b. The frame of an umbrella is constructed by attaching straight, rigid poles to a
common centre. The poles are all the same length, so they form radii of a circle.
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VECTOR FIELDS 2.2 FIELD LINES

The frame is lifted from the centre of the circle. The edges of the frame drag on the
ground, keeping the frame in the shape of a right circular cone that is becoming taller

and thinner.
@ A

Suppose the length of each pole is 2 metres, and the centre of the frame is being lifted
at a rate of 50 cm/s. Give a vector field for the velocity V(x, v, z) of a point (x,y,z) on
the frame when its centre is 1 metre above the ground.

Let the ground have height z = 0, and let the centre of the frame sit directly above the
origin.

2.24 Field Lines

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

Q[1](x): Consider the function f(x,y) = xy.
(a) Explicitly determine the field lines (flow lines) of F(x,y) = V.
(b) Sketch the field lines of F and the level curves of f in the same diagram.

Q[2](+): Find the field line of the vector field F = 2y1i + y%j + eVk that passes through
(1,1,e).

Q[3](*): Find and sketch the field lines of the vector field F = x1 + 3yj.

2.34 Conservative Vector Fields

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: We've seen two calculations of the energy E of a system. Equation 1.7.1 told us
E = Ym|v|?> + mgy, while Example 2.3.3 says ym|v(t)|*> — ¢ (x(t),y(t),z(t)) = E.
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VECTOR FIELDS 2.3 CONSERVATIVE VECTOR FIELDS

Consider a force given by F = V ¢ for some differentiable function ¢ : R®> — R. A
particle of mass m is being acted on by F and no other forces, and its position at time ¢ is

given by (x(t),y(t),0).

True or false: mgy(t) = —@(x(t),y(t),0).

Q[2]: For each of the following fields, decide which of the following holds:
A. The screening test for conservative vector fields tells us F is conservative.

B. The screening test for conservative vector fields tells us F is not conservative.

C. The screening test for conservative vector fields does not tell us whether F is
conservative or not.

(The screening test is Theorem 2.3.9 in the text.)
a. F=xi+zj+yk

b. F = 12zl + x%zj + x*yk

c. F=(yeY +1)i+ (xe" +2)j+ (% + y) k

d. F = ycos(xy)i + xsin(xy)j

Q[3]: Suppose F is conservative and let 4, b, and c be constants. Find a potential for
F+ (a,b,c), OR give a conservative field F and constants 4, b, and ¢ for which F + (a,b, ¢)
is not conservative.

Q[4]: Prove, or find a counterexample to, each of the following statements.

a. If F is a conservative field and G is a non-conservative field, then F 4+ G is
non-conservative.

b. If F and G are both non-conservative fields, then F + G is non-conservative.

c. If F and G are both conservative fields, then F + G is conservative.

» Stage 2

QI5](%): Let D be the domain consisting of all (x,y) such that x > 1, and let F be the
vector field

— Yy 1+ * 7

Is F conservative on D? Give reasons for your answer.
QI6]: Find a potential ¢ for F(x,y) = (x +y)i + (x — y)j, or prove none exists.

QI7]: Find a potential ¢ for F(x,y) = <% — %) i+ (y%) j, or prove none exists.

QI8]: Find a potential ¢ for F(x,y) = (x*yz +xz)i+ (%x3z + y) j+ <%x3y + 124 y) K,
Or prove none exists.
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Q[9]: Find a potential ¢ for

(x . v\, 2 Vg
Flxy) = <m>1+ <x2+y2+zz>]+ <x2+y2+22> <

Or prove none exists.

Q[10]: Determine whether or not each of the following vector fields are conservative.
Find the potential if it is.

(a) F(x,y,z) = xi — 2y + 3zk

(b) F(x,y) = 74

Q[11]: Let F = e(#) i + 2Byz3j + (Axze(®) 4 3By?2?) k.
(a) For what values of the constants A and B is the vector field F conservative on IR3?

(b) If A and B have values found in (a), find a potential function for F.

» Stage 3

Q[12]: Find the velocity field for a two dimensional incompressible fluid when there is a
point source of strength m at the origin. That is, fluid is emitted from the origin at area
rate 27tm cm?/sec. Show that this velocity field is conservative and find its potential.

Q[13]: A particle of mass 10 kg moves in the force field F = V ¢, where
@(x,y,z) = —(x% + y? + z2). When its potential energy is 0, the particle is at the origin,
and it moves with a velocity 2 m/s.

Following Example 2.3.3, give a region the particle can never escape.

Q[14]: A particle with constant mass m = 1/2 moves under a force field F = j 4+ 3J/z k.
At position (0,0,0), its speed is 1. What is its speed at (1,1,1)?

(You may assume without proof that the particle does indeed reach the point (1,1,1).)

Q[15]: For some differentiable, real-valued functions f, g,k : R — R, we define
F=2f(x)f'(x)i+8 (y)h(z)] + g(y)l (2).

Verify that F is conservative.

Q[16]: Describe the region in R3 where the field

F= <xy, Xz, y2 + z>

has curl 0.
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2.44 Line Integals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: For each of the following fields, decide which of the following holds:

A. The characterization of conservative vector fields, Theorem 2.4.7 (with
Theorem 2.3.9), tells us F is conservative.

B. The characterization of conservative vector fields, Theorem 2.4.7 (with
Theorem 2.3.9), tells us F is not conservative.

C. The characterization of conservative vector fields, Theorem 2.4.7 (with
Theorem 2.3.9), does not tell us whether F is conservative or not.

a. F=xi+zj+vyk

b. F = y?zi + x2zj + x’yk

c. F=(yeY+1)i+ (xe” +2)j + (% + y) k

d. F = ycos(xy)i + xsin(xy)j

QI[2]: Let ¢(x,y,z) = eV 4 cos(z2), and define F = V. Evaluate - F - dr over the

closed curve C that is an ellipse traversed clockwise, centred at (1,2,3), passing through

the points (v/5 —1,-2,v/5-3), ((v/5—-2)/2,-1/2,(v/5—6)/2),and (-2,4/3 —2,4/3 - 3).

Q[3]: Let P; and P, be points in R?. Let A and B be paths from P to P>, as shown below.
Py

P,

Suppose F is a conservative vector field in R* with { , F- dr = 5. What is { F - dr?

Q[4](+): Let F(x,y,z) = e*sinyi+ [ae* cosy + bz]j + cx k. For which values of the con-
stants a, b, ¢ is SC F - dr = 0O for all closed paths C?
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Q[5]: Consider the four vector fields sketched below. Exactly one of those vector fields is
conservative. Determine which three vector fields are not conservative and explain why.

(a) (b)

y y
S N S N NN NN NN
///—»\\\ S e SN NN N NN
YR SN + N AN
NEEE TR N
S

oL - 7 7
NS AN S

Lo
R Voar s 2
L4 a A A A A A A
o T T T T

©, (),

bttt rrrtrr
bttt fFrr et
bbb b bt (A A A A
bt bttt (1 N N O
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e " —

QI6](x): Consider the vector field

x—2y ., 2x+vy . N
F(x,y,z):x2+yyzz+x2+;/2]+zk

(a) Determine the domain of F.
(b) Compute V x F. Simplify the result.
(c) Evaluate the line integral

JF-dr
C

where C is the circle of radius 2 in the plane z = 3, centered at (0,0,3) and traversed
counter-clockwise if viewed from the positive z-axis, i.e. viewed “from above”.

(d) Is F conservative?

Q[7]: Find the work, §, F - dr, done by the force field F = (x +y)i+ (x —z)j + (z — y)k
in moving an object from (1,0, —1) to (0, —2,3). Does the work done depend on the path
used to get from (1,0, 1) to (0, -2,3)?
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» Stage 2

QI8]: Consider the vector field
V(x,y) = (e cosy + x2, x*y + 3)

Evaluate the line integral {~ V - dr along the oriented curve C obtained by moving from
(0,0) to (1,0) to (1, 7r) and finally to (0, 7r) along straight line segments.

QI[9]: Evaluate {, F - dr for
(a) F(x,y) = xyi—x*jalong y = x? from (0,0) to (1,1).

(b) F(x,y,z) = (x —z)i+ (y —2)j — (x +y) k along the polygonal path from (0,0,0) to
(1,0,0) to (1,1,0) to (1,1,1).

Q[10](*): Let C be the part of the curve of intersection of xyz = 8 and x = 2y which lies
between the points (2,1,4) and (4,2,1). Calculate

JF-dr
C

F=xi+4 (x—2y)j+x*yk

where

Q[11](+): Let F = e*sinyi + [ae* cosy + bz]j + cx k. For which values of the constants
a, b, cis SC F.dr =0 for all closed paths C?

Q[12]: Let F = 6x%yz%1 4 (2x32%2 + 2y — xz)j + 4x%yzk and let G = yzi + xy k.

(a) For what value of the constant A is the vector field H = F 4+ AG conservative on
3-space?

(b) Find a scalar potential ¢(x,y, z) for the conservative field H referred to in part (a).

(c) Find SC F - dr if C is the curve of intersection of the two surfaces z = x and y = e**
from the point (0,1,0) to the point (1,e,1).

Q[13](+): Find the work done by the force field F(x,y,z) = (x —y?,y—2z?,z—x*) ona
particle that moves along the line segment from (0,0,1) to (2,1,0).

Q[14](+): Let F = xziyz i+ xz_ykyz j + 2 k. Let P be the path which starts at (1,0,0), ends
1

at (\/_E’ %, % log2) and follows

Py =1 xet =1
Find the work done in moving a particle along P in the field F.

QI[15](+): Let F = (yzcosx, zsinx +2yz, ysinx +y> —sinz) and let C be the line segment

r(t) = (t,t,t),for0 <t < m/2. Evaluatef F.-dr.
c

QI16](*): Let C be the upper half of the unit circle centred on (1,0) (i.e. that part of the
circle which lies above the x-axis), oriented clockwise. Compute the line integral {- xy dy.
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Q[17](*): Show that the following line integral is independent of path and evaluate the
integral.

J (ye* + siny) dx + (e* +siny + x cosy) dy
c

where C is any path from (1,0) to (0, 77/2).
Q[18](*): Evaluate the integral
J xydx +yzdy + zxdz
C
around the triangle with vertices (1,0,0), (0,1,0), and (0,0, 1), oriented clockwise as seen
from the point (1,1,1).
Q[19](+): Evaluate the line integral §- F - dr, where F is the conservative vector field
F(x,y,2) = (y +ze*,x +e¥sinz,z+ e* + e cos z)
and C is the curve given by the parametrization

r(t) = (t,€,sint), t from O to 7.

Q[20](+):
(a) For which values of the constants «,  and 1 is the vector field
F(x,y,z) = aeVi+ (xe¥ + Bcosz)j— yysinzk
conservative?

(b) For those values of «, f and - found in part (a), calculate §~ F - dr, where C is the
curve parametrized by x = 2, y=eé,z=mt,0<t <1

QI21](x): Consider the vector field F(x,y,z) = (cos x,2 + siny, e*).
(a) Compute the curl of F.
(b) Is there a function f such that F = V f? Justify your answer.

(c) Compute the integral §- F - dr along the curve C parametrized by
r(t) = (t,cost,sint) with 0 < t < 3.

Q[22](+):
(a) Consider the vector field
F(x,y,z) = (z+ ¢, xe¥ —e*siny, 1+ x + e* cos y)
Find the curl of F. Is F conservative?

(b) Find the integral SC F - dr of the field F from (a) where C is the curve with
parametrization
r(t) = (t%,sint,cos? t)

where t ranges from 0 to 7.
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Q[23](*): A physicist studies a vector field F. From experiments, it is known that F is of
the form
F=(x—a)ye*i+ (xe* +2°)j+ by’ k

where a and b are some real numbers. From theoretical considerations, it is known that F
is conservative.

(a) Determine a and b.
(b) Find a potential f(x,y, z) such that Vf = F.
(c) Evaluate the line intgeral {~ F - dr where C is the curve defined by
r(t) = (t, cos2t, cost), o<t<m
(d) Evaluate the line integral
1= J (x + 1)ye* dx + (xe* +2°) dy + 4yz* dz,
Cc
where C is the same curve as in part (c). [Note: the “4” in the last term is not a
misprint!].

Questions 24 and 25 ask you to evaluate line integrals of vector fields that are not conservative, but that can
be expressed as a sum of a conservative vector field and another vector field that can be written concisely.

Q[24](x): Let R
F = (2% + Axy®) i + (2xye® + 3x%y%) j + Bxy?e¥ k
(a) Find all values of A and B for which the vector field F is conservative.
(b) If A and B have values found in (a), find a potential function for F.
(c) Let C be the curve with parametrization r(t) = e i 4 e~*j +log(1 + t) k from (1,1,0)
to (€2, %, log2). Evaluate

J (y?e¥ + xy®) dx + (2xye® + 3x%y?) dy + 3xy?e> dz.
C

QI[25](+):
(a) For which value(s) of the constants a, b is the vector field
F = (2xsin(mty) — e)i + (ax® cos(rty) — 3¢%)j — (x + by)e*k
conservative?
(b) Let F be a conservative field from part (a). Find all functions ¢ for which F = V ¢.

(c) Let F be a conservative field from part (a). Evaluate SC F - dr where C is the
intersection of y = x and z = log(1 + x) from (0,0,0) to (1,1,log2).

(d) Evaluate §- G - dr where
G = (2xsin(mty) —€*) i + (nxz cos(mty) — 362) j—xek

and C is the intersection of y = x and z = log(1 + x) from (0,0,0) to (1,1,10g2).
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QI26](+): Consider the vector field
F(x,y,z) = —2ycosxsinxi+ (cos2 x4 (14 yz)e*)j + yZeyz k

(a) Find a real valued function f(x,y,z) such that F = V f.

JF-dr
C

where C is the arc of the curve r(t) = (t,¢!,t* — %), 0 < t < 7, traversed from
(0,1, —7?) to (71, €%, 0).

QI27](x): Consider the vector field F(x,y,z) = 2x1+2yj + 2z k.
(a) Compute V x F.

(b) Evaluate the line integral

(b) If C is any path from (0,0,0) to (a1,a,a3) and a = a11+axj+as k, show that
f{cF-dr=a-a

QI[28](*): Let C be the parameterized curve given by

r(t) = (cost,sint,t), 0<t<

NN

and let
F = (e¥%, xze¥* + ze¥ , xye¥* 4 ¢¥)

(a) Compute and simplify V x F.

(b) Compute the work integral {-F - dr.
Q[29](+):

(a) Show that the planar vector field

F(x,y) = (2xy cos(x?), sin(x?) — sin(y))
is conservative.

(b) Find a potential function for F.

(c) For the vector field F from above compute §- F - dr, where C is the part of the graph
x =sin(y) fromy = 7/2toy = m.

Q[30](*): Consider the following force field, in which m, n, p, q are constants:
F = (mxyz 42> — ny?) i + (x%z — 4xy)j + (x®y + pxz + q2°) k
(a) Find all values of m, n, p, g such that <§C F - dr = 0 for all piecewise smooth closed
curves C in R3.

(b) For every possible choice of m, 1, p, g in (a), find the work done by F in moving a
particle from the bottom to the top of the sphere x? + y* + z% = 2z. (The direction of
k defines “up”.)
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» Stage 3

QI31]: Let C be the curve from (0,0,0) to (1,1,1) along the intersection of the surfaces

y = x?>and z = x°.

(a) Find (- pds if s is arc length along C and p = 8x + 36z.
(b) Find §-F-drif F = sinyi+ (xcosy +z)j+ (y +z) k.
Q[32](*): The curve C is the helix that winds around the cylinder xZ + yz =1
(counterclockwise, as viewed from the positive z-axis, looking down on the xy-plane). It
starts at the point (1,0,0), winds around the cylinder once, and ends at the point (1,0, 1).
Compute the line integral of the vector field

F(x,y,2) = (-y,x,2°)
along C.
Q[33](#): Evaluate the line integrals below. (Use any method you like.)

(@) §o(x* +y)dx + x dy, where C is the arc of the parabola y = 9 — x? from (-3,0) to
(3,0).

(b) {-F-nds, where F(x,y) = 2x%1 + ye*j, C is the boundary of the square 0 < x < 1,
0 <y < 1. Here fi is the unit normal vector pointing outward from the square, and s
is arc length.

Q[34](+): A particle of mass m = 1 has position ry = j ar}d velocity vo =1 + k at time
t = 0. The particle moves under a force F(t) = j — sin t k, where t denotes time.

(a) Find the position r(t) of the particle as a function of ¢.

(b) Find the position r; of the particle when it crosses the plane x = 7r/2 for the first time
after time t = 0.

(c) Determine the work done by F in moving the particle from rj to ry.

Questions 35 and 36 ask you to find a path that leads to a particular value of a line integral. Many such
paths are possible — you only need to find one.

QI35](+):
(a) Consider the vector field F(x,y) = (3y,x — 1) in R?> . Compute the line integral

JF-dr
L

where L is the line segment from (1,1) to (2,2).
(b) Find an oriented path C from (2,2) to (1,1) such that

JF-dr:4
C

where F is the vector field from (a).
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QI[36](+): Let F = (2y +2) 1 be a vector field on IR?. Find an oriented curve C from (0,0) to
(2,0) such that {-F - dr = 8.
Q[37](+): Let

F(x,y) = (Lyg(y))

and suppose that g(v) is a function defined everywhere with everywhere continuous
partials. Show that for any curve C whose endpoints P and Q lie on the x-axis,

J F-dr

C

QI38](*): Let S be the surface z = 2 + x? — 3y? and let

F(x,y,z) = (xz + axy?)i + yzj + z*k. Consider the points P; = (1,1,0) and P, = (0,0,2)
on the surface S.

distance between P and Q =

Find a value of the constant a so that Scl F-dr = Scz F - dr for any two curves C; and C; on
the surface S from P; to P;.

QI39](*): Consider the vector field F defined as
F(x,y,z) = ((1 + axz)ye3x2 — bxz cos(x2 ), xe3 | x? cos(xzz))

where a and b are real valued constants.
(a) Compute V x F.
(b) Determine for which values a and b the vector field F is conservative.

(c) For the values of a and b obtained in part (b), find a potential function f such that
Vf=F

(d) Evaluate the line integral
f (ye3x2 +2xz cos(xzz)> dx + xe3x2dy + x% cos(x%z)dz
C
where C is the arc of the curve (t, ¢, t3) starting at the point (0,0,0) and ending at the
point (1,1,1).

Q[40](=): Let C be the curve from (0,0,0) to (1,1,1) along the intersection of the surfaces
y = x?>and z = x°.

(a) Find (- F-drif F= (xz—y)i+ (z+x)j +yk.
(b) Find §- pds if s is arc length along C and p(x,y,z) = 8x 4 36z.
(c) Find §-F-drif F =sinyi+ (xcosy +z)j+ (y + z) k.

QI41](+): The vector field F(x,y,z) = Ax®y?zi + (23 + Bxtyz) j + (3yz2 — x*y?) ks
conservative on R3.

(a) Find the values of the constants A and B.
(b) Find a potential ¢ such that F = V¢ on R>.
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(c) If Cis the curve y = —x, z = x? from (0,0,0) to (1,—1,1), evaluate I = ¢ F-dr.

(d) Evaluate | = {,(z — 4x3y?z)dx + (2% — x*yz)dy + (3yz? — x*y?)dz, where C is the
curve of part (c).

(e) Let T be the closed triangular path with vertices (1,0,0), (0,1,0) and (0,0,1),
oriented counterclockwise as seen from the point (1,1,1). Evaluate {-(zi + F) - dr.

Q[42](+): A particle of mass
m=2

is acted on by a force
F = (4, 6t*, —4t)

Att = 0, the particle has velocity zero and is located at the point (1,2, 3).
(a) Find the velocity vector v(t) for t > 0.

(b) Find the position vector r(t) for t > 0.

(c) Find x(t) the curvature of the path traversed by the particle for t > 0.
(d) Find the work done by the force on the particle fromt =0tot = T.

QI43](+): The position of an airplane at time t is given by x =y = %ﬁth, z=1(2—-1t)
from take-off at t = 0 to landing at t = 2.

(a) What is the total distance the plane travels on this flight?
(b) Find the radius of curvature « at the apex of the flight, which occurs at t = 1.
(c) Two external forces are applied to the plane during the flight: the force of gravity

G = —Mgk, where M is the mass of the plane and g is a constant; and a friction force
F = —|v|?v, where v is the velocity of the plane. Find the work done by each of these
forces during the flight.

(d) One half-hour later, a bird follows the exact same flight — path as the plane,
travelling at a constant speed v = 3. One can show that at the apex of the path, i.e.

when the bird is at (4‘75, 4‘3@, 1), the principal unit normal N to the path points in the
—k direction. Find the bird’s (vector) acceleration at that moment.
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Chapter 3

SURFACE INTEGRALS

3.1 Parametrized Surfaces

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Parametrize the surface given by z = e**! + xy in terms of x and y.
Q[2](*): Let S be the surface given by
r(u,v):(u—i—v,u2+vz,u—v), 2<u<?2 -2<v<?2
This is a surface you are familiar with. What surface is it (it may be just a portion of one
of the following)?

sphere helicoid ellipsoid saddle parabolicbowl cylinder cone plane

» Stage 2

QI[3](*): Suppose S is the part of the hyperboloid x> + y? — 2z2 = 1 that lies inside the
cylinder x? + y?> = 9 and above the plane z = 1 (i.e. for which z > 1).

Which of the following are parameterizations of S?

(a) The vector function
Vu?z 40?2 -1

k
V2

r(u,v) =ui+vj+
with domain D = { (1,v) [2<u®> +0v* <9 }.
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(b) The vector function

2

PPN " 1
r(u,v) = usinvi—ucosvj+ 5

=

k
with domain D = { (u,0) |V3<u<3,0<v<2m}.

(¢) The vector function

r(u,0) = /14 202cosui++/1+202sinuj+ vk
with domain D = { (u,0) |0<u<2m, 1<v<2}.

(d) The vector function

r(u,v) = \/1+usinvi+\/1+ucosvj+\/gf<

with domain D = { (u,0) [2<u <8, 0<0v<2m}.

(e) The vector function

Vu 11A<
V2

r(u,v) = Vucosvi—+/usinvj+
with domain D = { (1,0) [3<u <9, 0<v<2m}.

Q[4](*): Suppose the surface S is the part of the sphere x> + y? + z? = 2 that lies inside
the cylinder x? + y?> = 1 and for which z > 0. Which of the following are
parameterizations of S?

(a) 1(¢,0) = 2sin¢cosfi+2cos¢pj+2sinpsinfk
0<¢<7,0<0<2m

(b) r(x,y) =xi—yj++/2-x2—y2k
2+ <1

() r(u,0) = usinfi+ucosfj++2—-u?k
O<u<20<0<21

(d) 1(¢,0) = 2sin¢cosfi+/2singsinfj++2cospk
0<¢p<7,0<0<2m

(e) r(¢,z) = —V2 —z2sindpi ++/2 —z22cospj + zk
0<¢p<2m1<z<2

Q[5](+): Let S be the part of the paraboloid z + x% + y? = 4 lying between the planes
z = 0 and z = 1. For each of the following, indicate whether or not it correctly
parameterizes the surface S.

@@ r(u,v)=ui+vj+(@E-u?>-v¥)k,  0<u’+0><1

(b) r(u,v) = (vV4—ucosv)i+ (V& —usinv)j+uk, 0<u<1,0<v<2n
(© r(u,v) = (ucosv)i+ (usinv)j+ (4 —u?)k V3<u<20<0<2n
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» Stage 3

Q[6](*): Consider the following surfaces
e S is the hemisphere given by the equation x? + y? + z? = 4 with z > 0.
e S, is the cylinder given by the equation x? + y? = 1.
e S is the cone given by the equation z? = x? + y? with z > 0.

Consider the following parameterizations:

A. 1(0,¢) = (V4cosOsing, vasinfsing, V4cos¢), 0<6 0<¢p<m/6
B. 1(0,¢) = (VdcosOsing, Vdsinfsing, Vdcosp), 0<0<2m, 0<¢p<m/4
C. 1(6,¢) = (V4cosOsing, V4sinfsing, Vdcosp), 0<6<2m, 0<¢p<mn/3
D. 1(6,z) = (V4 —2z2cosf, V4 —22sinf,z) 0<0 1<z<2

E. 1(0,z) = (V4 —z2cos0, V4 —22sinf,z) 0<6<2m, V2<z<2

F r(0,z) = (V4—z2cosf,V4—22sinf,z) 0<6<2m, +3<z<2

G. r(6,z) = (zcosb, zsinf,z) 0<6<2m, 0<z<l

H. r(0,z) = (zcosf, zsinb, z) 0<0<2r, 0<z<+?2

L r(0,z) = (zcosf,zsinh,z) 0<0<2m, 0<z<+3

Jor(oy) = (v, 9, V22 +y2) P Hyr<l

K. r(xy) = (x,y, v/x24+y2) 22+ <V2

L r(x,y) = (x,y,/22+y2)  x*+y*><2

For each of the following, choose from above all of the valid parameterization of each of
the given surfaces. Note that there may be one or more valid parameterization for each
surface, and not necessarily all of the above parameterizations will be used.

(a) The part of S contained inside Sj:
(b) The part of S; contained inside S3:
(c) The part of S3 contained inside S:
(d) The part of S3 contained inside Sj:

Q[7]: Parametrize a solid of rotation about a line not parallel to an axis. Maybe first show
that the plane you're rotating is normal to that axis.

(a) Give a parametric equation for the circle of radius 1, centred at (2, 2,4), lying in the
plane x = v.

(b) Give a parametrized equation for the surface formed by rotating the circle from part
(a) about the line r(t) = 41 + 4j + tk.
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r(t) = (4,4, 1)

> IN
AN
?

224 | v

3.24 Tangent Planes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

2
Q[1](x): Let f(x,y) = %. Find the tangent plane to the surface z = f(x,y) at the

x*+ 2y
point (—1, 1, %)
QI[2](*): Find the tangent plane to

27 _
VA2 +y?+22+3

at the point (2,1,1).

QI[3](*): Consider the surface z = f(x,y) defined implicitly by the equation xyz?* + y?z3 =
3 + x2. Use a 3—dimensional gradient vector to find the equation of the tangent plane to
this surface at the point (—1,1,2). Write your answer in the form z = ax + by + ¢, where

a, b and c are constants.

Q[4](+): A surface is given by
z = x* = 2xy + %

(a) Find the equation of the tangent plane to the surface at x = a, y = 2a.
(b) For what value of a is the tangent plane parallel to the plane x —y +z = 1?
Q[5](#): A surface S is given by the parametric equations

x = 2u?
y=7v
z=u’+0°
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Find an equation for the tangent plane to S at the point (8,1, 5).
Q[6](+): Let S be the surface given by

r(u,v):(u—i—v,uz—l—vz,u—v), 2<u<?2 -2<v<?2

Find the tangent plane to the surface at the point (2,2,0).

2y

x2+y? at

QI[7](%): Find the tangent plane and normal line to the surface z = f(x,y) =
(v y) = (=1,2).

QI[8](*): Find all the points on the surface x? 4+ 9}/2 + 4z% = 17 where the tangent plane is
parallel to the plane x — 8z = 0.

Q[9](»): Let S be the surface z = x% + 2]/2 + 2y — 1. Find all points P(x, yo,20) on S with
xg # 0 such that the normal line at P contains the origin (0,0, 0).

Q[10](+): Find all points on the hyperboloid z2 = 4x? + y? — 1 where the tangent plane is
parallel to the plane 2x —y +z = 0.

» Stage 3

Q[11](+):

(a) Find a vector perpendicular at the point (1,1, 3) to the surface with equation
x? +z2 =10.

(b) Find a vector tangent at the same point to the curve of intersection of the surface in
part (a) with surface y? + z2 = 10.

(c) Find parametric equations for the line tangent to that curve at that point.

Q[12](*): Let P be the point where the curve
r(t) =Pi+tj+2k,  (0<t<o)

intersects the surface
2 4+xyz—2=0

Find the (acute) angle between the curve and the surface at P.

3.34 Surface Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

44



SURFACE INTEGRALS 3.3 SURFACE INTEGRALS

» Stage 2

QI[1]: Let S be the part of the surface z = xy lying inside the cylinder x* + y? = 3. Find
the moment of inertia of S about the z-axis, that is,

[ = Jj(xz + %) dS
5

QI[2](x): Find the surface area of the part of the paraboloid z = a
above the xy—plane.

2 — x? — y? which lies

Q[3](+): Find the area of the portion of the cone z> = x? + y? lying between the planes
z=2and z = 3.

Q[4](): Determine the surface area of the surface given by z = %(x3/ 2 4 y3/ 2), over the
square0 <x <1,0<y <1l

QI5](»):

(a) To find the surface area of the surface z = f(x,y) above the region D, we integrate
$$ F(x,y) dA. What is F(x,y)?

(b) Consider a “Death Star”, a ball of radius 2 centred at the origin with another ball of
radius 2 centred at (0,0,2+/3) cut out of it. The diagram below shows the slice where
y=0.

-------

(i) The Rebels want to paint part of the surface of Death Star hot pink; specifically,
the concave part (indicated with a thick line in the diagram). To help them
determine how much paint is needed, carefully fill in the missing parts of this
integral:

surface area = f o f drdo

(ii)) What is the total surface area of the Death Star?
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Q[6](+): Find the area of the cone z%> = x? + yz between z = 1 and z = 16.
Q[7](+): Find the surface area of that part of the hemisphere z = /4% — x> — y? which lies
within the cylinder (x — %)2 +y? = (%)2
QI[8]: The cylinder x? +y? = 2x cuts out a portion S of the upper half of the cone
x? + y* = z2. Compute
ff(x"‘ —yt 22 -2+ 1)dS
S

Q[9]: Find the surface area of the torus obtained by rotating the circle (x — R)? + z? = 2

(the circle is contained in the xz-plane) about the z-axis.

Q[10]: A spherical shell of radius a is centred at the origin. Find the centroid (i.e. the
centre of mass with constant density) of the part of the sphere that lies in the first octant.

Q[11]: Find the area of that part of the cylinder x> + y? = 2ay lying outside z? = x> + 2.
Q[12](*): Let a and b be positive constants, and let S be the part of the conical surface
222 = (2 + 1)

where 0 < z < b. Consider the surface integral

1= Jf(xz +y%)dS.
S

(a) Express I as a double integral over a disk in the xy-plane.

(b) Use the parametrization x = tcosf, y = tsin 6, etc., to express I as a double integral
over a suitable region in the tf-plane.

(c) Evaluate I using the method of your choice.

Q[13]: Evaluate, for each of the following, the flux SSS F-fidS where fi is the outward
normal to the surface S.

(@) F= (x> +1y?+22)"(xi+yj+zk) and the surface S is the sphere x> + y2 + 22 = 2.

(b) F=xi+yj+zk and S is the surface of the rectangular box 0 < x < 4,0 <y < b,
0<z<ec

() F=yi+zk and S is the surface of the solid cone 0 < z < 1 — /x2 + 2.

Q[14](+): Let S be the part of the surface x? + yz + 2z = 2 that lies above the square
~1<x<1,-1<y<l

2 2
(a) Find H Y gs.
S

V14 x2+y?
(b) Find the flux of F = xi + yj + zk upward through S.

Q[15](x): Let S be the part of the surface z = xy that lies above the square 0 < x <1,
0 <y < 1in the xy-plane.
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(a) Find Jf m

(b) Find the flux of F = xi + yj + k upward through S.
QI[16](+): Find the area of the part of the surface z = y3/? that lies above 0 < x,y < 1.

Q[17](+): Let S be spherical cap which consists of the part of the sphere
x% 4+ y? + (z — 2)? = 4 which lies under the plane z = 1. Let f(x,v,z) = (2 —z)(x? + ).

Calculate
J f(x,y,2z)dS
S

Q[18](+):

(a) Find a parametrization of the surface S of the cone whose vertex is at the point
(0,0,3), and whose base is the circle x> + y?> = 4 in the xy-plane. Only the cone
surface belongs to S, not the base. Be careful to include the domain for the
parameters.

(b) Find the z-coordinate of the centre of mass of the surface S from (a).

Q[19](*): Let S be the surface of a cone of height a2 and base radius a. The surface S does
not include the base of the cone or the interiour of the cone. Find the centre of mass of S.

Locate the cone in a coordinate system so that its base is in the xy-plane, and its vertex on
the z-axis. So the vertex will be the point (0,0, a). The base is a circle of radius a in the
xy-plane with centre at the origin. The cone surface is characterized by the fact that for
every point of S, the distance from the z-axis and the distance from the xy-plane add up
to a.

QI20](+): Let S be the portion of the elliptical cylinder x2 + 1y? = 1 lying between the
planes z = 0 and z = 1 and let A denote the outward normal to S. Let F = xi+ xyzj +
zy* k. Calculate the flux integral {{s F - fidS directly, using an appropriate parameteriza-
tion of S.

Q[21](+):

Evaluate the flux integral
|| Fas
S

where F(x y,z) = (x +1)i+ (y+1)j+2zk, and S is the part of the paraboloid z =
4 — x> — y? that lies above the triangle 0 < x < 1,0 < y < 1 — x. S is oriented so that its
unit normal has a negative z-component.

ff xy* ds
S

where S is the part of the sphere x? + y* 4 z2 = 2 for which x > /)2 + z2.

Q[22](*): Evaluate the surface integral

47



SURFACE INTEGRALS 3.3 SURFACE INTEGRALS

Q[23](*): Let S be the surface given by the equation
x> + 2% = sin? y

lying between the planes y = 0 and y = 7. Evaluate the integral

Jf«/l—l—coszyds
S

Q[24](*): Let S be the part of the paraboloid z = 1 — x? — y? lying above the xy-plane. At
(x,y,z) S has density

z
5-4z

pxy,z) =
Find the centre of mass of S.
Q[25](*): Let S be the part of the plane
x+y+z=2
that lies in the first octant oriented so that fi has a positive k component. Let

F=xi+yj+zk

|| Fonas
S

QI[26](+): Find the net flux {{¢ F - fi dS of the vector field F(x, y, z) = (x,y,z) upwards (with

respect to the z-axis) through the surface S parametrized r = (uvz , v, uv) forO<u<l,

O0<ov<3.

Evaluate the flux integral

Q[27](+): Let S be the surface obtained by revolving the curve z = ¢/, 0 < y < 1, around
the y-axis, with the orientation of S having fi pointing toward the y-axis.

(a) Draw a picture of S and find a parameterization of S.

(b) Compute the integral {{¢ e¥ dS.

(c) Compute the flux integral {{. F - fidS where F = (x,0, z).
Q[28](*): Compute the net outward flux of the vector field

N xi+yj+zk

X /a2 +y2 422

across the boundary of the region between the spheres of radius 1 and radius 2 centred at
the origin.

QI[29](*): Evaluate the surface integral {{s z> dS where S is the part of the cone x> + 1> =
47> where0 < x <yand 0 <z < 1.
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QI[30](+): Compute the flux integral {{ F - A dS, where
— 1 3 2 1 3 2
= (-}, 1)
and S is the part of the paraboloid z = 5 — x? — y? lying inside the cylinder x? + y* < 4,

with orientation pointing downwards.

Q[31](*): Let the thin shell S consist of the part of the surface z> = 2xy with x > 1,y > 1
and z < 2. Find the mass of S if it has surface density given by p(x,y,z) = 3z kg per unit
area.

QI[32](+): Let S be the portion of the paraboloid x = y? + z? that satisfies X < 2y. Its unit
normal vector fi is so chosen that fi -7 > 0. Find the flux of F = 27+ zj + yk out of S.

Q[33](*): Let S denote the portion of the paraboloid z = 1 — }sz — y? for which z > 0.
Orient S so that its unit normal has a positive k component. Let

F(x,y,2) = By +2)i+ (x —x*)j+ k
Evaluate the surface integral {{; V x F-fdS.

Q[34]: Let S be the boundary of the apple core bounded by the sphere x? + y? + 22 = 16
and the hyperboloid x? + y* — z2 = 8. Find the flux integral ([ F-fdS where F =

x14 yj + zk and #i is the outward normal to the surface S.

» Stage 3
QI35](+):

(a) Consider the surface S given by the equation
2% + 2% = cos? y

Find an equation for the tangent plane to S at the point (3, Z, 7).

JJ siny dS
S

where S is the part of the surface from (a) lying between the planesy = 0and y = 371

(b) Compute the integral

Q[36](*): Let f be a function on R3 such that all its first order partial derivatives are
continuous. Let S be the surface { (x,y,z) | f(x,y,z) = ¢ } for some ¢ € R. Assume that
Vf #0onS. Let F be the gradient field F = V.

(a) Let C be a piecewise smooth curve contained in S (not necessarily closed). Must it be
true that {- F - dr = 0? Explain why.

(b) Prove that for any vector field G,

JJ(FXG)-ﬁdS:O.
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QI37](+):

(a) Give parametric descriptions of the form r(u,v) = (x(u,v), y(u,v), z(u,v)) for the
following surfaces. Be sure to state the domains of your parametrizations.

(i) The part of the plane 2x + 4y + 3z = 16 in the first octant
{(xy2)|x>0y>02>0}
(ii) The cap of the sphere x> + y? +z? = 16 for 4/+/2 < z < 4.

(iii) The hyperboloid z? = 1+ x> 4+ y* for 1 < z < 10.
yp y

(b) Use your parametrization from part (a) to compute the surface area of the cap of the
your p p p P
sphere x> +y? +z? = 16 for 4/v/2 < z < 4.

QI38](+): Let S be the part of the sphere x? + y? + z% = 2 where y > 1, oriented away

from the origin.
Jf y3 ds
S

JJ (xyi+xzj+zyk) -adS
S

(a) Compute

(b) Compute

QI[39](+): Let S be the part of the surface (x +y + 1)? + z? = 4 which lies in the first
octant. Find the flux of F downwards through S where

F=xyi+ (z—2xy)j

50



Chapter 4

INTEGRAL THEOREMS

4.1a Gradient, Divergence and Curl

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1](+): Let F = Pi+ Q] be the two dimensional vector field shown below.

(a) Assuming that the vector field in the picture is a force field, the work done by the
vector field on a particle moving from point A to B along the given path is:

(A) Positive
(B) Negative
(C) Zero
(D) Not enough information to determine.
(b) Which statement is the most true about the line integral Scz F-dr:
(A) SCZF-dr> 0
(B) SCZF-drzo
©) SCZF-dr<O

(D) Not enough information to determine.
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(c) V -F at the point N (in the picture) is:

(A) Positive

(B) Negative

(C) Zero

(D) Not enough information to determine.
(d) Qx — Py at the point Q is:

(A) Positive

(B) Negative

(C) Zero

(D) Not enough information to determine.

(e) Assuming that F = P14 Qj, which of the following statements is correct about g—i at
the point D?

A) 2 —o0atD.

( )6x

(B) 2 > 0atD.
0x

(C) &£ <o0atD.

(D) The sign of 2 at D can not be determined by the given information.
g ox y g
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QI[2]: Does V x F have to be perpendicular to F?
QI[3]: Verify the vector identities

(@) V- (fF) = fV-F+F.-Vf

b) V- (FxG)=G-(VxF)—F-(V xG)

(o) V2(fg) = fV°g+2Vf -Vg+gVf

» Stage 2

Q[4]: Evaluate V - F and V x F for each of the following vector fields.
(@) F=xi+yj+zk
(b) F = xy?i — yz%j + zx’k

(c) F= xy) (the polar basis vector # in 2d)

N

(d) F= g (the polar basis vector 0 in 2d)

Ve
QIs1e):

(a) Compute and simplify V - () forr = (x,y,z) and r = |(x,y, z)|. Express your answer
in terms of r.

(b) Compute V x (yzi+2xzj + e k).

Q[6](*): In the following, we use the notationr = x4 yj +z k,r= |, and k is some
number k =0,1,-1,2,-2,....

(a) Find the value k for which

vV (rF) = _Sr_5
(b) Find the value k for which

V- (rfr) = 52
(¢) Find the value k for which

Vi) = 4

Q[7](+): Let r be the vector field r = xi+ yj +z k and let r be the function 7 = [r|. Leta
be the constant vector a = a1 1+ a>j + az k. Compute and simplify the following
quantities. Answers must be expressed in terms of a, r, and r. There should be no x’s, y’s,
or z’s in your answers.

(@ V.r
(b) V(r?)
(© V x (rxa)
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(d) V- (V(r))
Q[8](+): Let

(a) Compute a where V (%) = —rr.
(b) Compute a where V - (rr) = ar.
(c) Compute a where V - (V (%)) = ar.

Q[9]: Find, if possible, a vector field A that has k component Az = 0 and that is a vector
potential for

(@) F= (1+yz)i + (2y + zx)j + (322 + xy)k
(b) G = yzi + zxj + xyk

» Stage 3

Q[10](*): Let
-z X 4
Ty Tt
(a) Determine the domain of F.
(b) Determine the curl of F. Simplify if possible.
(c) Determine the divergence of F. Simplify if possible.
(d) Is F conservative? Give a reason for your answer.

Q[11](*): A physicist studies a vector field F in her lab. She knows from theoretical
considerations that F must be of the form F = V x G, for some smooth vector field G.
Experiments also show that F must be of the form

F(x,y,z) = (xz +xy)i + a(yz — xy)j + B(yz + xz)k

where « and B are constant.
(a) Determine « and B.

(b) Further experiments show that G = xyzi — xyzj + g(x,y, z)k. Find the unknown
function g(x,y, z).

Q[12]: A rigid body rotates at an angular velocity of () rad/sec about an axis that passes
through the origin and has direction &. When you are standing at the head of a looking
towards the origin, the rotation is counterclockwise. Set (2 = Qa.

(a) Show that the velocity of the point r = (x, y,z) on the body is Q x r.
(b) Evaluate V x (2 x r) and V - (Q2 x r), treating ) as a constant.
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(c) Find the speed of the students in a classroom located at latitude 49° N due to the
rotation of the Earth. Ignore the motion of the Earth about the Sun, the Sun in the
Galaxy and so on. The radius of the Earth is 6378 km.

Q[13]: Suppose that the vector field F obeys V - F = 0 in all of R3. Let
r(t) = txi+tyj+tzk, 0<t<l1

be a parametrization of the line segment from the origin to (x,y, z). Define

1 r
G(x,y,7) :L FE(x(1)) %(t) dt

Show that V x G = F throughout R®.

4.2a The Divergence Theorem

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1
QI[1]: Let V be the cube
V={(xyz)|0<x<1,0<y<1,0<z<1}
and R be the square
R={(vry)|0<x<1l0<y<1}

and let f(x,y, z) have continuous first partial derivatives.

(a) Use the fundamental theorem of calculus to show that
of
&(x,y,z) dxdydz = || f(x,y,1)dxdy — || f(x,y,0) dxdy
1% R R

(b) Use the divergence theorem to show that

ijg_];(x,y,Z) dxdydz = Jff(x,y,l) dxdy — fjf(x,y,O) dxdy
14 3 )
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QI2[:

(a) By applying the divergence theorem to F = ¢ a, where a is an arbitrary constant

vector, show that
[[[oav = [[onas
1% ov

(b) Show that the centroid (%, 7, Z) of a solid V with volume |V| is given by

o 1 .
(%,7,2) = 3V ff(xz +y*+2*)ads
oV

» Stage 2

Q[3]: Let S be the unit sphere centered at the origin and oriented by the outward
pointing normal. If

F(x,y,z) = (x,y, zz)
evaluate the flux of F through S
(a) directly and
(b) by applying the divergence theorem.

Q[4]: Evaluate, by two methods, the integral SSS F-AdS, where F = z Kk, S is the surface
x? 4+ y? + z? = a® and i is the outward pointing unit normal to S.

(a) First, by direct computation of the surface integral.
(b) Second, by using the divergence theorem.

QI[5]: Let

F=zy*1+yxj+ (2z +y?)k and
V be the solid in 3-space defined by

a2 2
ngggx—y
9+ x2 + 1?2

and

22
D be the bottom surface of V. Because o5
9+x°+y

negative for x> + y> > 9, the bottom surface is z = 0, x> + y> < 9.

2 2
Let S be the curved portion of the boundary of V. Itis z = g;’zﬁ, x2 + y2 < 9.

is positive for x?> + y? < 9 and
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Denote by |V| the volume of V and compute, in terms of |V,

r

(a) ,J F-fAdS with fi pointing downward

(b) HV-FdV

() J F-ndS with fi pointing outward

Use the divergence theorem to answer at least one of parts (a), (b) and (c).

Q[6]: Evaluate the integral {{c F - i dS, where F = (x,y,1) and S is the surface
z=1-x?—y? for x? +y? < 1, by two methods.

(a) First, by direct computation of the surface integral.

(b) Second, by using the divergence theorem.

Q[7](x):

(a) Find the divergence of the vector field F = (z + siny, zy, sin x cos y).

(b) Find the flux of the vector field F of (a) through the sphere of radius 3 centred at the
origin in R3 .

QI8]: The sides of a grain silo are described by the portion of the cylinder x> + y* = 1
with 0 < z < 1. The top of the silo is given by the portion of the sphere x? + y* + 22 = 2
lying within the cylinder and above the xy-plane. Find the flux of the vector field

V(x,y,z) = (xzyz, yz+e'z, X+ )

out of the silo.

QI9]: Let B be the ball of volume V centered at the point (x, yo, zo), ancA:l let S be the sphere
that is the boundary of B. Find the flux of F = x% + xyj + (3z — yz)k outward (from B)
through S.

Q[10](+): Let

Floyz) = (142527, 140204 1)
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Let S be the portion of the surface
Ryt =1-z

which is above the xy-plane. What is the flux of F downward through S?

Q[11](x): Use the divergence theorem to find the flux of xi + yj + 2zk through the part of
the ellipsoid
24y 4222 =2
with z > 0. [Note: the ellipsoid Z—; + ‘Z—z + i—; = 1 has volume %mzbc.]
Q[12](+): Let F(x,y,z) = r/r> wherer = xi +yj + zk and r = |r|.
(a) Find V - F.
(b) Find the flux of F outwards through the spherical surface x> + y? + z? = a2,

(c) Do the results of (a) and (b) contradict the divergence theorem? Explain your answer.

(d) Let E be the solid region bounded by the surfaces z> — x> —y>+1 =0,z = 1 and
z = —1. Let 0 be the bounding surface of E. Determine the flux of F outwards
through .

(e) Let R be the solid region bounded by the surfaces z2 — x> —y?> + 4y —3 = 0,z = 1 and
z = —1. Let X be the bounding surface of R. Determine the flux of F outwards
through 2.

Q[13](*): Consider the ellipsoid S given by

2 2

2 Y z
——:1

x+4 1

with the unit normal pointing outward.
(a) Parameterize S.

(b) Compute the flux {{, F- i dS of the vector field
F(x,y,2) = (x,y,2)

(c) Verify your answer in (b) using the divergence theorem.

Q[14](+): Evaluate the flux integral {{; F - i dS, where
F(x,y,z) = (x3 + COS(yZ) , y3 + ze*, 22 + arctan(xy))

and S is the surface of the solid region bounded by the cylinder x? + y? = 2 and the planes
z = 0 and z = 2x + 3. The surface is positively oriented (its unit normal points outward).

QI15](*): Find the flux of the vector field (x +y, x +z, y + z) through the cylindrical surface
whose equation is x? 4 z2 = 4, and which extends from y = 0 to y = 3. (Only the curved
part of the cylinder is included, not the two disks bounding it on the left and right.) The
orientation of the surface is outward, i.e., pointing away from the y-axis.
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Q[16](*): The surface S is the part above the xy-plane of the surface obtained by
revolving the graph of z = 1 — x* around the z-axis. The surface S is oriented such that
the normal vector has positive z-component. The circle with radius 1 and centre at the
origin in the xy-plane is the boundary of S.

Find the flux of the divergenceless vector field F(x,y,z) = (yz, x + z, x> + y?) through S.
Q[17](+):
Let S be the part of the paraboloid z = 2 — x? — y? contained in the cone z = 1/x2 + 12
and oriented in the upward direction. Let

F = (tan+/z + sin(y°)) 1 + e*xzj + zk
Evaluate the flux integral {{, F - i dS.
Q[18](*): Evaluate the surface integral

|| Fsas

S

where F(x,y,z) = (cosz + xy?, xe™*, siny + x%z) and S is the boundary of the solid
region enclosed by the paraboloid z = x? + y? and the plane z = 4, with outward pointing
normal.

Q[19](»): Let S be the part of the sphere x> + y? + z> = 4 between the planes z = 1 and
z = 0 oriented away from the origin. Let

F= (¢ +x2)i+ (zy+tan(x))j+ (2> -1k

|| F-as.
S

Q[20](*): Let B be the solid region lying between the planesx = -1, x =1,y =0,y =2
and bounded below by the plane z = 0 and above by the plane z + y = 3. Let S be the
surface of B. Find the flux of the vector field

Compute the flux integral

F(x,y,z) = (x¥*z+cosmy)i+ (yz+sinnz)j+ (x —y*) k

Q[21](*): Let S be the hemisphere x> + y? +z2 = 1, z > 0, oriented with fi pointing away
from the origin. Evaluate the flux integral

|| F-as
S

F=(x+cos(z?))i+ (y+In(x*+2°))j+4/x2+ 12k

where
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Q[22](*): Let E be the solid region between the plane z = 4 and the paraboloid
z = x?+ 12 Let
_ 1 3 72\ 4 1 3 A (.
F= <—§x +e >l+ <—§y —i—xtanz>]+4zk
(a) Compute the flux of F outward through the boundary of E.

(b) Let S be the part of the paraboloid z = x? + y? lying below the z = 4 plane oriented
so that i has a positive k component. Compute the flux of F through S.

QJ23](*): Consider the vector field
xi+yj+zk
32+ 2 + 222

F(x,y,z) =

(a) Compute V - F.
(b) Let Sq be the sphere given by

4 (y-27+2"=9
oriented outwards. Compute JJ F-fidS.

51

(c) Let Sy be the sphere given by
P y—-22+22=1
oriented outwards. Compute Jf F-fidS.

S»

(d) Are your answers to (b) and (c) the same or different? Give a mathematical
explanation of your answer.

Q[24](+): Let F be the vector field defined by
F(x,y,2) = (Pz+2x) i+ By — %) j+ (¥ +2) k
Calculate the flux integral {{¢ F - fidS where S is the boundary surface of the solid region
E:0<x<2 0<y<2 0<z<2+y
with outer normal.
QI25](*): Consider the vector field
F(x,y,z) = (zarctan(y?), 22 In(x* + 1), 3z)

Let the surface S be the part of the sphere x? + y? + z? = 4 that lies above the plane z = 1
and be oriented downwards.

(a) Find the divergence of F.
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(b) Compute the flux integral {{. F- i dS.
QI[26](+): Let S be the sphere x> + > + z> = 3 oriented inward. Compute the flux integral

|| F-as
S

F= (xy* +y*2°, y22 + x'z, 22 + xy*)

where

Q[27](x): Consider the vector field F(x,y,z) = —2xyi+ (y2 + sin(xz)) j + (x> +?) k.
(a) Calculate V - F.
(b) Find the flux of F through the surface S defined by

x2+y2+(z—12)2=13z,220

using the outward normal to S.

Q[28](+): Let S be the portion of the hyperboloid x* + y* — z% = 1 between z = —1 and
z = 1. Find the flux of F = (x + ¢¥*) i + (2yz + sin(xz)) j + (xy — z — z2) k out of S (away
from the origin).

Q[29](+): Let F be the vector field F(x,y,z) = (x> —y — 1)1+ (e“Y +2%)j + (2xz + 2°) k.
Evaluate {4V x F-fidS where S is the part of the ellipsoid x* + > + 2z% = 1 with z > 0.

Q[30](x): Let S be the portion of the sphere x> + y? + (z — 1)? = 4 that lies above the
xy-plane. Find the flux of F = (x? + e’ )i+ (e¥ +y2)j + (4 + 5x) k outward across S.

QI31](+): Find the flux of F = xy%i + x2yj + k outward through the hemispherical surface

2ty +22=4, z=0

Q[32](*): Let D be the cylinder x? + yz < 1,0 < z < 5. Calculate the flux of the vector field
F = (x+ xye*) i+ sy°ze*j + (3z — yze*) k
outward through the curved part of the surface of D.

QI33]: Find the flux of F = (y + xz)i + (y + yz)j — (2x + z%)k upward through the first
octant part of the sphere x% + y2 + 22 = 4°.

Q[34]: Let F = (x —yz)i+ (y + x2)j + (z + 2xy)k and let
e S; be the portion of the cylinder x? 4 y? = 2 that lies inside the sphere
x> +y>+z22=4
e S, be the portion of the sphere x? + y? + z2 = 4 that lies outside the cylinder
x> 4+y? =2
e V be the solid bounded by S; and S,

Compute
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(a) “51 F-ndS with A pointing inward
) §§§, V-Fdv
(c) §§s,F-adS  with i pointing outward

Use the divergence theorem to answer at least one of parts (a), (b) and (c).

» Stage 3

QI35]: Let E(r) be the electric field due to a charge configuration that has density p(r).
Gauss’ law states that, if V' is any solid in R3 with surface 0V, then the electric flux

;!VJE -adS =4n1Q where Q= Jifp dv

is the total charge in V. Here, as usual, fi is the outward pointing unit normal to 0V
Show that
V - E(r) = 4mp(r)

for all r in R3. This is one of Maxwell’s equations. Assume that V - E(r) and p(r) are
well-defined and continuous everywhere.

QI36]: Let V be a solid in R3 with surface V. Show that

Jfr‘ﬁds = 3 Volume(V)
ov

where r = x1 + yj + zk and, as usual, i is the outer normal to V. See if you can explain
this result geometrically.

Q[37](+): Let S be the sphere of radius 3, centered at the origin and with outward
orientation. Given the vector field F(x,y,z) = (0,0, x + z):

(a) Calculate (using the definition) the flux of F through S

|| F-nas
S

That is, compute the flux by evaluating the surface integral directly.
(b) Calculate the same flux using the divergence theorem.

Q[38](*): Consider the cube of side length 1 that lies entirely in the first octant (x > 0,

y =0, z = 0) with one corner at the origin and another corner at point (1,1,1). As such,
one face lies in the plane x = 0, one lies in the plane y = 0, and another lies in the plane
z = 0. The other three faces lie in the planes x =1,y = 1, and z = 1. Denote S as the
open surface that consists of the union of the 5 faces of the cube that do not lie in the
plane z = 0. The surface S is oriented in such a way that the unit normal vectors point

62



INTEGRAL THEOREMS 4.2 THE DIVERGENCE THEOREM

outwards (that is, the orientation of S is such that the unit normal vectors on the top face
point towards positive z-directions). Determine the value of

1= [|F-aas
S

where F is the vector field given by

z

F = (ycos(y2)+z—1, o +1,xyezz)

Q[39](+):

(a) Find an upward pointing unit normal vector to the surface z = xy at the point
(1,1,1).

(b) Now consider the part of the surface z = xy, which lies within the cylinder
x? +y* = 9 and call it S. Compute the upward flux of F = (y, x, 3) through S.

(c) Find the flux of F = (y, x,3) through the cylindrical surface x> + y* = 9 in between
z = xy and z = 10. The orientation is outward, away from the z-axis.

Q[40](+):
(a) Find the divergence of the vector field F = (x + siny, z + vy, z2).

(b) Find the flux of F through the upper hemisphere x? + 1 + z2 = 25, z > 0, oriented in
the positive z-direction.

(c) Specify an oriented closed surface S, such that the flux {{, F - i dS is equal to —9.
Q[41](+): Evaluate the surface integrals. (Use any method you like.)
(a) §§5z2dS, if S is the part of the cone x> + y*> = 4z where0 < x < yand 0 <z < 1.

(b) {{cF-ndS,if F = zk and S is the rectangle with vertices (0,2,0), (0,0,4), (5,2,0),
(5,0,4), oriented so that the normal vector points upward.

(c) §§sF-fadS, where F = (y —z2)i + (z — x2)j + z?k and S is the boundary surface of the
box 0 <x <1,0 <y <20 <z <3, with the normal vector pointing outward.

Q[42](*): Let o1 be the open surface given by z = 1 — x> — y?, z > 0. Let 0, be the open
surface given by z = x2 + y? — 1, z < 0. Let 03 be the planar surface given by z = 0,
X2+ 12 < 1. LetF = [a(y? + 2%) + bxz]i + [c(x? + 2%) + dyz]j + x> k where a, b, ¢, and d
are constants.

(a) Find the flux of F upwards across 7.

(b) Find all values of the constants a, b, ¢, and d so that the flux of F outwards across the
closed surface o7 U 03 is zero.

(c) Find all values of the constants a, b, ¢, and d so that the flux of F outwards across the
closed surface oy U 07 is zero.

Q[43](*): Let S be the ellipsoid x? + 2y* + 3z2 = 16 and fi its outward unit normal.
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(v,y,2) ~ (2,1,1)

[(x =22+ (y =12+ (- 1)?]
(xy,z) —(3,22)

[(x=3)2+ (y —2)* + (z - 2)?]

Q[44](+): Let Q c R3be a smoothly bounded domain, with boundary 0C) and outer unit
normal fi. Prove that for any vector field F which is continuously differentiable in

Qu o,
ff V xFdV = —ffoﬁdS
Q 0Q)

QI45](*): Recall that if S is a smooth closed surface with outer normal field fi, then for
any smooth function p(x,v,z) on R, we have

prﬁds:f VpdV

S E

(a) Find {{cF-AdSif F(x,y,z) =

3/2°

(b) Find {{; G-ndSif G(x,y,z) =

3/2°

where E is the solid bounded by S. Show that as a consequence, the total force exerted on
the surface of a solid body contained in a gas of constant pressure is zero. (Recall that the
pressure acts in the direction normal to the surface.)

QI46](*): Let F be a smooth 3-dimensional vector field such that the flux of F out of the
sphere x? + y? + z2 = a? is equal to 7r(a® + 2a*) for every a > 0. Calculate V - F(0,0,0).

Q[47](+): Let F = (x> +y* +2z%)i+ (e"2 +1y%)j+ (34 x +z) k and let S be the part of the
surface x? + y? + z? = 2az + 34> having z > 0, oriented with normal pointing away from
the origin. Here a > 0 is a constant. Compute the flux of F through S.

QI48](+): Let u = u(x,y, z) be a solution of Laplace’s Equation,

u N Pu Pu
oxz  oy? 022

- 4

in R3. Let R be a smooth solid in IR3.
(a) Prove that the total flux of F = Vu out through the boundary of R is zero.
(b) Prove that the total flux of G = uVu out through the boundary of R equals

(10 2+ (2o

Q[49](+): Let R be the part of the solid cylinder x> + (v — 1)? < 1 satisfying 0 < z < y?; let
S be the boundary of R. Given F = x21 +2yj — 2z k,

(a) Find the total flux of F outward through S.
(b) Find the total flux of F outward through the (vertical) cylindrical sides of S.

. T n—1 (" . )
Hint: J sin” 6do = " f sin"~“0df forn =2,3,4,....
0 0
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Q[50](): A smooth surface S lies above the plane z = 0 and has as its boundary the circle
x? 4+ y? = 4y in the plane z = 0. This circle also bounds a disk D in that plane. The
volume of the 3-dimensional region R bounded by S and D is 10 cubic units. Find the
flux of

F(x,y,2) = (x + %)+ (y — xy*)] + (2 + 2x + 3y)k

through S in the direction outward from R.

4.3a4 Green’s Theorem

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Let R be the square
R={(xy)|0<x<1,0<y<1}
and let f(x, y) have continuous first partial derivatives.

(a) Use the fundamental theorem of calculus to show that

([ Lom axay= [ s ar- [ f0) aa
R

(b) Use Green’s theorem to show that

Jf%(x,y) dxdy = folf(x,l) dx—folf(x,O) dx
R

Q[2]: Let R be a finite region in the xy-plane, whose boundary, C, consists of a single,
piecewise smooth, simple closed curve that is oriented couterclockwise. “Simple” means
that the curve does not intersect itself. Use Green’s theorem to show that

fJV-FdxdyzﬂgF-ﬁds
C

R

where F = F; 1 + F,j, i is the outward unit normal to C and s is the arclength along C.

Y

=>
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So, by Green’s theorem,

dy 0

N dx B B 0
§F~nds = jg {FlE—Fz E} ds = j@[—dex—l—Fldy] = JJ {51:1 — @(—Fz)} dxdy
C C C R

= JJV-Fdxdy
R

xdy —ydx

> 7 counterclockwise around
xX-+y

1
Q[3]: Integrate o §

C

(a) the circle x? + y? = a?

(b) the boundary of the square with vertices (—1,-1), (-1,1), (1,1) and (1, -1)
(c) the boundary of the region 1 < x> +y* <2, y >0
QI4]: Show that

0 0 -
=) =5 a)

for all (x,y) # (0,0). Discuss the connection between this result and the results of Q[3].

» Stage 2

QI5]: Evaluate (- F - dr where F = x?y?1 + 2xyj and C is the boundary of the square in
the xy-plane having one vertex at the origin and diagonally opposite vertex at the point
(3,3), oriented counterclockwise.

Ql6]: Evaluate § (xsiny? — y?) dx + (x*y cos y* + 3x) dy where C is the counterclockwise

C
boundary of the trapezoid with vertices (0, —2), (1,—1), (1,1) and (0, 2).

Q[7](+): Evaluate I = j[; (%xzjﬁ - x4y> dx + (xy4 + x3y2) dy counterclockwise around the

c

boundary of the half-disk 0 < y < v4 — x2.
QI8](): Let C be the counterclockwise boundary of the rectangle with vertices (1,0),
(3,0), (3,1) and (1,1). Evaluate

j@ (3y* + 2xey2) dx + (Zyxzeyz) dy

c
Q[9](*): Consider the closed region enclosed by the curves y = x* + 4x + 4 and
y = 4 — x%. Let C be its boundary and suppose that C is oriented counter-clockwise.

(a) Draw the oriented curve C carefully in the xy-plane.
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(b) Determine the value of

jgxy dx + (e¥ + x*)dy
C

Q[10](+): Let
F(x,y) = (y* - eV +sinx, 2xye ¥ + x)

Let C be the boundary of the triangle with vertices (0,0), (1,0) and (1,2), oriented
counter-clockwise. Compute
J F-dr
C

Q[11](x): Suppose the curve C is the boundary of the region enclosed between the curves
y = x?> —4x + 3 and y = 3 — x? + 2x. Determine the value of the line integral

f (2xe” ++/2+22) dx + x3(2+ ¢¥) dy
C
where C is traversed counter-clockwise.
Q[12](*): Let
F(x,y) = 3y +e ¥ +sinx)i+ (3x2 +x—xe¥)j

Find SC F - dr, where C is the boundary of the triangle (0,0), (1, -2), (1,2), oriented
anticlockwise.

Q[13](+):

(a) Use Green’s theorem to evaluate the line integral

fc 2 _,_yzdx T2 _,_yzdy

where C is the arc of the parabola y = 7x* + 1 from (-2,2) to (2,2).

(b) Use Green’s theorem to evaluate the line integral

d d
fcx2+y2 T
where C is the arc of the parabola y = x? — 2 from (-2,2) to (2,2).

(c) Is the vector field

F = ]
x2+y21+x2+y2]

conservative? Provide a reason for your answer based on your answers to the
previous parts of this question.
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Q[14](*): Suppose the curve C is the boundary of the region enclosed between the curves
y = x? —4x + 3 and y = 3 — x? + 2x. Determine the value of the line integral

J (2xe! + V2 + x%)dx + 2% (2 + ¢¥)dy
C

where C is traversed counter-clockwise.

QI[15](%): Let F(x,y) = Pi+ Q] be a smooth plane vector field defined for (x,y) # (0,0),
and suppose Qy = P, for (x,y) # (0,0). In the following I; = Scj F - dr for integer j, and

all C; are positively oriented circles. Suppose I; = 7t where C; is the circle 2 +yr=1
(a) Find I for C; : (x — 2)% + y? = 1. Explain briefly.

(b) Find I3 for C3 : (x —2)% + y?> = 9. Explain briefly.

(c) Find Iy for Cy : (x —2)%2 + (y — 2)? = 9. Explain briefly.

Q[16](*): Consider the vector field F = Pi+ Qj, where

p— x+y 0= y—x

2 + yZ’ x2 4 yZ
(a) Compute and simplify Q, — P,

(b) Compute the integral SCR F - dr directly using a parameterization, where Cg is the
circle of radius R, centered at the origin, and oriented in the counterclockwise
direction.

(c) Is F conservative? Carefully explain how your answer fits with the results you got in
the first two parts.

(d) Use Green’s theorem to compute {- F - dr where C is the triangle with vertices (1,1),
(1,0), (0,1) oriented in the counterclockwise direction.

(e) Use Green’s theorem to compute \ -~ F - dr where C is the triangle with vertices
p C &
(-1,-1), (1,0), (0,1) oriented in the counterclockwise direction.

Q[17](+):
(a) Evaluate

fc V14 x3dx+ (2xy? +y?) dy

where C is the unit circle x? + y?> = 1, oriented counterclockwise.
(b) Evaluate

Jc V14 x3dx+ (2xy? +y?) dy

where C is now the part of the unit circle x> + y?> = 1, with x > 0, still oriented
counterclockwise.
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» Stage 3

Q[18](*): Evaluate the line integral
f (x® + ye*)dx + (xcosy +€*) dy
C
where C is the arc of the curve x = cosy for —71/2 < y < /2, traversed in the direction

of increasing v.

Q[19](*): Use Green’s theorem to establish that if C is a simple closed curve in the plane,
then the area A enclosed by C is given by

A:%§xdy—ydx
C

Use this to calculate the area inside the curve x?/3 + y?/3 = 1.

Q[20](+): Let F(x,y) = (x +3y) i+ (x +y)jand G(x,y) = (x +y) I+ (2x —3y) ] be
vector fields. Find a number A such that for each circle C in the plane

j@F-drzA%G‘dr
C C

3

2
Q[21](+): Let F(x,y) = (xzj—yz)zi_ (x;fyz)ﬁ, (x,y) # (0,0).

(a) Compute §- F - dr where C is the unit circle in the xy-plane, positively oriented.
(b) Use (a) and Green’s theorem to find §C0 F - dr where C is the ellipse % + % =1,
positively oriented.

Q[22](+): Let C; be the circle (x —2)? 4+ y? = 1 and let C, be the circle (x —2)? +y> = 9.
LetF = — Jyryz i+ > J. Find the integrals §C1 F-drand §Cz F-dr.

x2jcry
Q[23](*): Let R be the region in the first quadrant of the xy-plane bounded by the

coordinate axes and the curve y = 1 — x2. Let C be the boundary of R, oriented
counterclockwise.

(a) Evaluate {, xds.
(b) Evaluate {, F-dr, where F(x,y) = (sin(x?) — xy) i + (x* + cos(y?)) j.

Q[24](+): Let C be the curve defined by the intersection of the surfaces z = x + y and
z=x%+ vy

(a) Show that C is a simple closed curve.
(b) Evaluate §-F - dr where

(i) F = x%1+y%j +3e* k.

(i) F=y%1+x2j + 3¢ k.
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Q[25]: Find a smooth, simple, closed, counterclockwise oriented curve, C, in the xy-plane
for the which the value of the line integral §-(y> — y) dx — 2x® dy is a maximum among all
smooth, simple, closed, counterclockwise oriented curves.

4.44 Stokes’ Theorem

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

QI1]: Verify the identity §- ¢V -dr = —§.¢V¢-dr for any continuously differentiable
scalar fields ¢ and ¢ and curve C that is the boundary of a piecewise smooth surface.

» Stage 2

Q[2]: Let C be the curve of intersection of the cylinder x% +y? = 1 and the surface z = y?

oriented in the counterclockwise direction as seen from (0,0,100). Let
F=(x>—y, y*+x,1). Calculate § - F - dr

(a) by direct evaluation
(b) by using Stokes” Theorem.
QI[3]: Evaluate §-F - dr where F = ye*i+ (x +¢*)j + z2k and C is the curve

r(t) = (1+cost)i+ (1+sint)j+ (1 —sint —cost) k 0<t<2n

Q[4](+): Find the value of {§; V x F- AdS where F = (z—y, x, —x) and S is the
hemisphere
{ (x,y,2) eR3 | Py +z=4,2>0}

oriented so the surface normals point away from the centre of the hemisphere.
Q[5](+):

Let S be the part of the surface z = 16 — (x* + yz)2 which lies above the xy-plane. Let F
be the vector field
F=xIn(1+z)i+x(3+y)j+ycoszk

JJV x F-AdS
S

where 1 is the upward normal on S.

Calculate
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Q[6](+): Let C be the intersection of the paraboloid z = 4 — x2 — yz with the cylinder
2+ y—-1)72 =1, oriented counterclockwise when viewed from high on the z-axis. Let
F=xzi+xj+yzk Find §,F-dr.

Q[7]: Let F = —ye?i+ x3coszj + zsin(xy) k, and let S be the part of the surface z =
(1 —x2)(1 — y?) that lies above the square —1 < x < 1, —1 < y < 1 in the xy-plane. Find
the flux of V x F upward through S.

QI[8]: Evaluate the integral §- F - dr, in which F = (e —yz, siny — yz, xz + 2y) and C is
the triangular path from (1,0,0) to (0,1,0) to (0,0,1) to (1,0,0).

QI9](+): Let F(x,,z) = —zi + xj + y k be a vector field. Use Stokes’ theorem to evaluate
the line integral §- F - dr where C is the intersection of the plane z = y and the ellipsoid

’ﬁl—z +%+ % = 1, oriented counter-clockwise when viewed from high on the z-axis.
QI10](x): Consider the vector field F(x,y,z) = 221 + x2j + y? k in R®.

(a) Compute the line integral I} = Scl F - dr where C; is the curve consisting of three line
segments, L; from (2,0,0) to (0,2,0), then L, from (0,2,0) to (0,0,2), finally L3 from
(0,0,2) to (2,0,0).

(b) A simple closed curve C, lies on the plane E : x 4+ y + z = 2, enclosing a region R on
the plane of area 3, and oriented in a counterclockwise direction as observed from the
positive x-axis. Compute the line integral I, = SCZ F-dr.

Q[11](#): Let C = C; + C; 4 C3 be the curve given by the union of the three
parameterized curves

11 (t) = (2cost,2sint,0), o<t<m/2
1(t) = (0,2cost,2sint), o<t<m/2
r3(t) = (2sint,0,2cost), o<t<m/2

(a) Draw a picture of C. Clearly mark each of the curves C;, Cp, and C3 and indicate the
orientations given by the parameterizations.

(b) Find and parameterize an oriented surface S whose boundary is C (with the given
orientations).

(c) Compute the line integral {- F - dr where

F= (y +sin(x?), z - 3x +log(1+y%), y + ezz>

Q[12](*): We consider the cone with equation z = 4/ x2 4 yz. Note that its tip, or vertex, is
located at the origin (0,0,0). The cone is oriented in such a way that the normal vectors
point downwards (and away from the z axis). In the parts below, both S; and S, are
oriented this way.

Let F = (—zy, zx, xy cos(yz)).
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(a) Let S be the part of the cone that lies between the planes z = 0 and z = 4. Note that
S1 does not include any part of the plane z = 4. Use Stokes’ theorem to determine the

value of
JJV x F-fAdS
51

Make a sketch indicating the orientations of S; and of the contour(s) of integration.

(b) Let Sy be the part of the cone that lies below the plane z = 4 and above z = 1. Note
that S, does not include any part of the planes z = 1 and z = 4. Determine the flux of
V x F across S,. Justify your answer, including a sketch indicating the orientations of
S, and of the contour(s) of integration.

Q[13](*): Consider the curve C that is the intersection of the plane z = x 44 and the
cylinder x2 + y?> = 4, and suppose C is oriented so that it is traversed clockwise as seen
from above.

Let F(x,y,z) = (x®+ 2y, sin(y) +z, x +sin(z?)).
Use Stokes’ Theorem to evaluate the line integral §- F - dr.
Q[14](+):

2,2 .2

(a) Consider the vector field F(x,y,z) = (z2,x2,y?) in R3. Compute the line integral
<§C F - dr, where C is the curve consisting of the three line segments, L; from (2,0,0) to
(0,2,0), then L, from (0,2,0) to (0,0,2), and finally L3 from (0,0,2) to (2,0,0).

(b) A simple closed curve C lies in the plane x + y + z = 2. The surface this curve C
surrounds inside the plane x + y + z = 2 has area 3. The curve C is oriented in a
counterclockwise direction as observed from the positive x-axis. Compute the line
integral §- F - dr , where F is as in (a).

Q[15](+): Evaluate the line integral

1 X
L <z+m) dx + xzdy + <3xy (z—|—1)2) dz

where C is the curve parameterized by

r(t) = (cost,sint, 1 —cos’tsint) 0<t<2m

Q[16](): A simple closed curve C lies in the plane x 4+ y 4 z = 1. The surface this curve C
surrounds inside the plane x 4+ y +z = 1 has area 5. The curve C is oriented in a
clockwise direction as observed from the positive z-axis looking down at the plane
x+y+z=1

Compute the line integral of F(x,y,z) = (z2,x2,y?) around C.

Q[17](#): Let C be the oriented curve consisting of the 5 line segments which form the
paths from (0,0,0) to (0,1,1), from (0,1,1) to (0,1,2), from (0,1,2) to (0,2,0), from
(0,2,0) to (2,2,0), and from (2,2,0) to (0,0,0). Let

F=(—y+e'sinx)i+y*j+ztanzk
Evaluate the integral {- F - dr.
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Q[18](*): Suppose the curve C is the intersection of the cylinder x? + yz = 1 with the
surface z = xy?, traversed clockwise if viewed from the positive z-axis, i.e. viewed “from
above”. Evaluate the line integral

z+sinz)dx + (x° — x%y)dy + (xcosz — v) dz
y)day y
C

Q[19](+): Evaluate {4V x F-fidS where S is that part of the sphere x + y> + 2> = 2
above the plane z = 1, fi is the upward unit normal, and

F(x,y,z) = —y*i+xj+ (e +eV +2) k

Q[20](+): Let

A

F = xsinyi—ysinxj+ (x —y)z°k

JF-dr
C

along the path consisting of the straight line segments successively joining the points Py =
(0,0,0) to P; = (m/2,0,0) to P, = (7t/2,0,1) to P; = (0,0,1) to P, = (0,77/2,1) to
Ps = (0,71/2,0), and back to (0,0,0).

Q[21](+): Let

Use Stokes’ theorem to evaluate

. 2z . 2 3z . 2
F= (—1+y+sm(x ), —1+x—|—sm(y ),5(x+1)(y+2))

Let C be the oriented curve consisting of four line segments from (0,0,0) to (2,0,0), from
(2,0,0) to (0,0,2), from (0,0,2) to (0,3,0), and from (0, 3,0) to (0,0,0).

(a) Draw a picture of C. Clearly indicate the orientation on each line segment.

(b) Compute the work integral {-F - dr.

QI22](x): Evaluate JJV x F-AdS where F = yi+2zj+ 3xk and S is the surface z =
S

\/1—x2—42,z > 0and f is a unit normal to S obeying f - k > 0.
Q[23](*): Let S be the curved surface below, oriented by the outward normal:
2+ +2z-12=6, z2=0.
(E.g., at the high point of the surface, the unit normal is k.) Define
G =VxF, where  F = (xz—1y’cosz)i+x3e*j + xyzeszrszrzz k.
Find {{; G - AdS.

Q[24](+): Let C be a circle of radius R lying in the plane x + y + z = 3. Use Stokes’
Theorem to calculate the value of

§ F.dr

C

where F = 2% + x?j + y%k. (You may use either orientation of the circle.)
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Q[25]: Let S be the oriented surface consisting of the top and four sides of the cube whose
vertices are (+1,+1, +1), oriented outward. If F(x,y,z) = (xyz, xy?, x>yz), find the flux of
V x F through S.

Q[26]: Let S denote the part of the spiral ramp (that is helicoidal surface) parametrized by
X =UCOSV, Yy =uUsinv, z =10 O<u<l1l 0<v<2m

Let C denote the boundary of S with orientation specified by the upward pointing
normal on S. Find

f ydx —xdy + xydz
C

» Stage 3

Q[27]: Let C be the intersection of x + 2y — z = 7 and x? — 2x + 4y? = 15. The curve C is
oriented counterclockwise when viewed from high on the z-axis. Let

F = (e"2 +yz) i+ (cos(y?) — x?) j+ (sin(z?) + xy) k
Evaluate §-F - dr.
Q[28](x):
(a) Find the curl of the vector field F = (2+ x>+ 2z, 0, 3+ x’z).
(b) Let C be the curve in R® from the point (0,0,0) to the point (2,0,0), consisting of

three consecutive line segments connecting the points (0,0,0) to (0,0,3), (0,0,3) to
(0,1,0),and (0,1,0) to (2,0,0). Evaluate the line integral

JF-dr
C

where F is the vector field from (a).

Q[29](+):

(a) Let S be the bucket shaped surface consisting of the cylindrical surface y* + z2 =9
between x = 0 and x = 5, and the disc inside the yz-plane of radius 3 centered at the
origin. (The bucket S has a bottom, but no lid.) Orient S in such a way that the unit
normal points outward. Compute the flux of the vector field V x G through S, where
G =(x,—zvy).

(b) Compute the flux of the vector field F = (2 + z, xz?, x cos y) through S, where S is as
in (a).

QI[30](+): Let

F(x,y,z) = (% ot a2 y1+?/2 , cos5(1nz))

(a) Write down the domain D of F.

(b) Circle the correct statement(s):
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(a) Dis connected.
(b) D is simply connected.
(c) D is disconnected.

(c) Compute V x F.

(d) Let C be the square with corners (3 + 1,3 + 1) in the plane z = 2, oriented clockwise
(viewed from above, i.e. down z-axis). Compute

JF-dr
C

(e) Is F conservative?

QI[31](*): A physicist studies a vector field F(x, y,z). From experiments, it is known that F
is of the form

F(x,v,z) = xzi + (axe’z 4+ byz) j + (v* — xe¥z%) k

for some real numbers a and b. It is further known that F = V x G for some
differentiable vector field G.

(a) Determine a and b.

(b) Evaluate the surface integral
f J F-AdsS
S

where S is the part of the ellipsoid x* + y? + }122 = 1 for which z > 0, oriented so that
its normal vector has a positive z-component.

QI[32](x): Let C be the curve in the xy-plane from the point (0,0) to the point (5,5)
consisting of the ten line segments consecutively connecting the points (0,0), (0,1),
(1,1),(1,2),(2,2),(2,3),(3,3),(3,4), (4,4), (4,5), (5,5). Evaluate the line integral

JF-dr
C

F=yi+ (2x—10)j

where

Q[33](%): Let F = (sinx?, xz, z%). Evaluate § F - dr around the curve C of intersection of
the cylinder x> 4+ y? = 4 with the surface z = x?, traversed counter clockwise as viewed
from high on the z-axis.

Q[34](+): Explain how one deduces the differential form

10H
E=-—-"=
Vo c ot

75



INTEGRAL THEOREMS 4.4 STOKES” THEOREM

of Faraday’s law from its integral form
fE-drz 1 d—f H-ndS
c dt
C S

QI[35](x): Let C be the curve given by the parametric equations:
X =cost, y = \@sint, z=-cost, 0<t<2m

and let
F :zi—i—xj—i—y323k

§F-dr
C

QI36](*): Use Stokes’ theorem to evaluate

Use Stokes’ theorem to evaluate

%zdx—{—xdy—ydz
C

where C is the closed curve which is the intersection of the plane x + y + z = 1 with the
sphere x> + y? + z? = 1. Assume that C is oriented clockwise as viewed from the origin.

Q[37](*): Let S be the part of the half cone

z=4/x2+1y%, y=0,

(a) Find a parametrization for S.

that lies below the plane z = 1.

(b) Calculate the flux of the velocity field
v=xi+yj—2zk
downward through S.

(c) A vector field F has curl V x F = xi + yj — 2z k. On the xz-plane, the vector field F is
constant with F(x,0,z) = j. Given this information, calculate

JF-dr,
C

x2+y2:1,z:1,y>0
oriented from (—1,0,1) to (1,0,1).
QI38]: Consider {§s(V x F) - idS where S is the portion of the sphere x? + y? +z* = 1 that
obeys x +y 4z > 1, i is the upward pointing normal to the sphere and F = (y —z)i +

(z — x)j + (x — y)k. Find another surface S’ with the property that {{(V x F) - AdS =
§5(V x F) - fidS and evaluate {§,(V x F) - A dS.

where C is the half circle
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Chapter 5

TRUE/FALSE AND OTHER

SHORT QUESTIONS

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

QI[1](*): True or false?

(a) V- (a x 1) =0, where ais a constant vector in R® , and r is the vector field
r=(x,y,2).
(b) V x (Vf) = 0 for all scalar fields f on R with continuous second partial derivatives.

(c) V- (fF) = V(f) -F+ fV -F, for every vector field F in R® with continuous partial
derivatives, and every scalar function f in R3 with continuous partial derivatives.

(d) Suppose F is a vector field with continuous partial derivatives in the region D, where
D is R® without the origin. If V - F > 0 throughout D, then the flux of F through the
sphere of radius 5 with center at the origin is positive.

(e) If a vector field F is defined and has continuous partial derivatives everywhere in R3,
and it satisfies V - F = 0, everywhere, then, for every sphere, the flux out of one
hemisphere is equal to the flux into the opposite hemisphere.

(f) If r(t) is a twice continuously differentiable path in R? with constant curvature «,
then r(t) parametrizes part of a circle of radius 1/«.

(g) The vector field F = (
without the origin.

y X . . . . . . . 2
T m) is conservative in its domain, which is IR%,

(h) If a vector field F = (P, Q) in R? has Q = 0 everywhere in IR?, then the line integral
§F - dr is zero, for every simple closed curve in IR?.

(i) If the acceleration and the speed of a moving particle in IR® are constant, then the
motion is taking place along a spiral.
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QI2](x): True or false?

(a) V x (a x r) = 0, where a is a constant vector in R? , and r is the vector field
r=(x,v,2).
(b) V- (Vf) = 0 for all scalar fields f on R? with continuous second partial derivatives.

(c) V(V -F) = 0 for every vector field F on IR? with continuous second partial
derivatives.

(d) Suppose F is a vector field with continuous partial derivatives in the region D, where
D is R® without the origin. If V - F = 0, then the flux of F through the sphere of
radius 5 with center at the origin is 0.

(e) Suppose F is a vector field with continuous partial derivatives in the region D, where
D is R® without the origin. If V x F = 0 then § F - dr is zero, for every simple and
smooth closed curve C in IR* which avoids the origin.

(f) If a vector field F is defined and has continuous partial derivatives everywhere in IR,
and it satisfies V - F > 0, everywhere, then, for every sphere, the flux out of one
hemisphere is larger than the flux into the opposite hemisphere.

(g) If r(t) is a path in R® with constant curvature «, then r(t) parametrizes part of a circle
of radius 1/x.

(h) The vector field F = (_xzyTyz , ﬁ , z) is conservative in its domain, which is IR3,
without the z-axis.

(i) If all flow lines of a vector field in R3 are parallel to the z-axis, then the circulation of
the vector field around every closed curve is 0.

(j) If the speed of a moving particle is constant, then its acceleration is orthogonal to its
velocity.

QI3](»):

(a) True or false? If r(t) is the position at time  of an object moving in R?, and r(¢) is
twice differentiable, then |r”(#)]| is the tangential component of its acceleration.

(b) Let r(t) is a smooth curve in R with unit tangent, normal and binormal vectors T(t),

A

N(t), B(t). Which two of these vectors span the plane normal to the curve at r(t)?

(c) True or false? If F = Pi + Qj + Rk is a vector field on R? such that P, Q, R have
continuous first order derivatives, and if V x F = 0 everywhere on R? , then F is
conservative.

(d) True or false? If F = Pi + Qj + Rk is a vector field on R3 such that P, Q, R have
continuous second order derivatives, then V x (V- F) = 0.

(e) True or false? If F is a vector field on IR? such that |[F(x,y,z)| = 1 for all x, y, z, and if
S is the sphere x? + > + z> = 1, then ([  F- A dS = 4.

(f) True or false? Every closed surface S in IR? is orientable. (Recall that S is closed if it is
the boundary of a solid region E.)
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Q[4

(a)

(b)

(©)

(d)

(e)

1(+):

In the curve shown below (a helix lying in the surface of a cone), is the curvature
increasing, decreasing, or constant as z increases?

z

W)

X

Of the two functions shown below, one is a function f(x) and one is its curvature
k(x). Which is which?

<

Xz

Let C be the curve of intersection of the cylinder x2 + z2 = 1 and the saddle xz = y.
Parametrise C. (Be sure to specify the domain of your parametrisation.)

Let H be the helical ramp (also known as a helicoid) which revolves around the
z-axis in a clockwise direction viewed from above, beginning at the y-axis when

z = 0, and rising 27t units each time it makes a full revolution. Let S be the the
portion of H which lies outside the cylinder x> + y*> = 4, above the z = 0 plane and
below the z = 5 plane. Choose one of the following functions and give the domain
on which the function you have chosen parametrizes S. (Hint: Only one of the
following functions is possible.)

(@) r(u,v) = (ucosv,usinv,u
(b) r(u,0) = (

(c) r(u,v) = (usinv,ucosv, u

(d) r(u,0) = (

Write down a parametrized curve of zero curvature and arclength 1. (Be sure to
specify the domain of your parametrisation.)

)
UCos v, usinv, v)
)

usinv, 1 cosv,v)
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(f) If V - Fis a constant C on all of R3, and S is a cube of unit volume such that the flux
outward through each side of S is 1, what is C?

(g) Let
F(x,y) = (ax + by, cx + dy)
Give the full set of 4, b, ¢ and d such that F is conservative.

(h) If (s) has been parametrized by arclength (i.e. s is arclength), what is the arclength
of r(s) betweens = 3 and s = 5?

(i) Let F be a 2D vector field which is defined everywhere except at the points marked P
and Q. Suppose that V x F = 0 everywhere on the domain of F. Consider the five
curves R, S, T, U, and V shown in the picture.

Which of the following is necessarily true?

(1) §sF-dr=§ F-dr

(2) RF-dr=(F-dr={,F-dr={,F-dr=0
() SgF-dr+ ( F-dr+ {;F-dr={ ,F-dr

(4) S F-dr={ F-dr+ { F-dr

() §yF-dr=0

(j) Write down a 3D vector field F such that for all closed surfaces S, the volume
enclosed by S is equal to
f f F-AdS
S

(k) Consider the vector field F in the xy-plane shown below. Is the k" component of
V x F at P positive, negative or zero?
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Q[5](#): Say whether the following statements are true or false.

(a) If Fis a 3D vector field defined on all of R?, and S; and S, are two surfaces with the
same boundary, but 5551 F-AdS # SSSZ F-fdS, then V - F is not zero anywhere.

(b) If F is a vector field satisfying V x F = 0 whose domain is not simply-connected, then
F is not conservative.

(c) The osculating circle of a curve C at a point has the same unit tangent vector, unit
normal vector, and curvature as C at that point.

(d) A planet orbiting a sun has period proportional to the cube of the major axis of the
orbit.

(e) For any 3D vector field F, V- (V x F) = 0.

(f) A field whose divergence is zero everywhere in its domain has closed surfaces S in
its domain.

(g) The gravitational force field is conservative.

(h) If F is a field defined on all of R3 such that SC F - dr = 3 for some curve C, then V x F
is non-zero at some point.

(i) The normal component of acceleration for a curve of constant curvature is constant.
() The curve defined by
11 (t) = cos(t*)1+ 3t4, —0 <t <o,
is the same as the curve defined by
15(t) = costi+ 3tk, —00 <t <
Q[6](*): Which of the following statements are true (T) and which are false (F)? All real

valued functions f(x,y,z) and all vector fields F(x,y,z) have domain IR? unless specified
otherwise.

(a) If f is a continuous real valued function and S a smooth oriented surface, then

gfdsz_ﬂfds

where ‘—S’ denotes the surface S but with the opposite orientation.
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(b) Suppose the components of the vector field F have continuous partial derivatives. If
§§s V x F-ndS = 0 for every closed smooth surface, then F is conservative.

(c) Suppose S is a smooth surface bounded by a smooth simple closed curve C. The
orientation of C is determined by that of S as in Stokes” theorem. Suppose the real
valued function f has continuous partial derivatives. Then

L[] () v

(d) Suppose the real valued function f(x,y, z) has continuous second order partial
derivatives. Then

(V) x(Vf) =V x(Vf)

(e) The curve parameterized by
r(t) = (2+4£, —,1-2F) —w<t<w

has curvature «(t) = 0 for all ¢.

(f) If a smooth curve is parameterized by r(s) where s is arc length, then its tangent
vector satisfies

¥ ()] =1

(g) If S is the sphere x* + 3 + z2 = 1 and F is a constant vector field, then {{s F- A dS = 0.

(h) There exists a vector field F whose components have continuous second order partial
derivatives such that V x F = (x, y, z).

QI7](+): The vector field F = P(x,y) 1+ Q(x,y)] is plotted below.
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In the following questions, give the answer that is best supported by the plot.

(a) The derivative Py, at the point labelled A is (a) positive, (b) negative, (c) zero, (d) there
is not enough information to tell.

(b) The derivative Q, at the point labelled A is (a) positive, (b) negative, (c) zero, (d)
there is not enough information to tell.

(c) The curl of F at the point labelled A is (a) in the direction of +k (b) in the direction of
—k (c) zero (d) there is not enough information to tell.

(d) The work done by the vector field on a particle travelling from point B to point C
along the curve C; is (a) positive (b) negative (c) zero (d) there is not enough
information to tell.

(e) The work done by the vector field on a particle travelling from point B to point C
along the curve C, is (a) positive (b) negative (c) zero (d) there is not enough
information to tell.

(f) The vector field F is (a) the gradient of some function f (b) the curl of some vector
field G (c) not conservative (d) divergence free.

Q[8](¥): Which of the following statements are true (T) and which are false (F)?
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(@) The curve defined by
11 (t) = cos(t?) 1+ sin(#?) j + 212k, —00 <t <
is the same as the curve defined by

1p(t) = costi+sintj+ 2tk, —0 <t <

(b) The curve defined by

11 (t) = cos(t?)1 4 sin(#?) j + 2t* Kk, 0

N
N
—

is the same as the curve defined by

1ry(t) = costi+sintj+2tk, 0<t<1

(c) If a smooth curve is parameterized by r(s) where s is arc length, then its tangent
vector satisfies

¥ (s)l =1

(d) If r(t) defines a smooth curve C in space that has constant curvature « > 0, then C is
part of a circle with radius 1/x.

(e) If the speed of a moving object is constant, then its acceleration is orthogonal to its
velocity.

(f) The vector field
Y

= i+ j+zk
22 2y

F(x,y,z)
is conservative.

(g) Suppose the vector field F(x,y, z) is defined on an open domain and its components
have continuous partial derivatives. If V x F = 0, then F is conservative.

(h) Theregion D = { (x,y) | x* +y* > 1 } is simply connected.
(i) The region D = { (x, — x?> >0} is simply connected.
& vy ply

(j) If F is a vector field whose components have two continuous partial derivatives, then

f VxF-AdS=0
S
when S is the boundary of a solid region E in IR>.
Q[9](*): Which of the following statements are true (T) and which are false (F)?

(a) If a smooth curve C is parameterized by r(s) where s is arc length, then the tangent
vector r'(s) satisfies |t/ (s)| = 1.

(b) If r(t) defines a smooth curve C in space that has constant curvature x > 0, then C is
part of a circle with radius 1/«.
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(c) Suppose F is a continuous vector field with open domain D. If

JF-dr:O
C

for every piecewise smooth closed curve C in D, then F is conservative.

(d) Suppose F is a vector field with open domain D, and the components of F have
continuous partial derivatives. If V x F = 0 everywhere on D, then F is conservative.

(e) The curve defined by
r1(t) = cos(t?) i+ sin(t?)j + 2k, —0<t<w
is the same as the curve defined by

ry(t) = costi+sintj+2tk, —owo<t<ow

(f) The curve defined by

11 (t) = cos(t?)1 4 sin(#?) j + 2t% Kk, 0

N
N
—_

is the same as the curve defined by

1y(t) = costi+sintj + 2tk, 0<t<l1

(g) Suppose F(x,y,z) is a vector field whose components have continuous second order
partial derivatives. Then V - (V x F) = 0.

(h) Suppose the real valued function f(x,y,z) has continuous second order partial
derivatives. Then V - (Vf) = 0.

(i) The region D = { (x,y) | x> + y* > 1 } is simply connected.
() Theregion D = { (x,y) | ¥y — x*> > 0 } is simply connected.

Q[10](*): Let F, G be vector fields, and f, ¢ be scalar fields. Assume F, G, f, g are defined
on all of R? and have continuous partial derivatives of all orders everywhere. Mark each
of the following as True (T) or False (F).

(a) If Cis a closed curve and Vf = 0, then {- fds = 0.

(b) If r(¢) is a parametrization of a smooth curve C and the binormal B(t) is constant
then C is a straight line.

(c) If r(t) is the position of a particle which travels with constant speed, then
v'(t)-t"(t) = 0.

(d) If C is a path from points A to B, then the line integral §- (F x G) - dr is independent
of the path C.

(e) The line integral {- f ds does not depend of the orientation of the curve C.
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TRUE/FALSE AND OTHER SHORT QUESTIONS

(f) If S is a parametric surface r(u,v) then a normal to S is given by

or or

ou’” ou

(g) The surface area of the parametric surface S given by
r(u,v) = x(u,v)i+y(u,v)j+z(u,v) Xk, (u,v) € D, is given by

H (14+(2)*+ (%)) dudo

(h) If F is the velocity field of an incompressible fluid then V - F = 0.
i) V- (FxG)=(V-F)G+ (V-G)F

Q[11](*): Say whether the following statements are true (T) or false (F). You may assume
that all functions and vector fields are defined everywhere and have derivatives of all
orders everywhere.

(@) The divergence of V x F is zero, for every F.

(b) In a simply connected region, {-F - dr depends only on the endpoints of C.
(c) If Vf =0, then f is a constant function.

(d) If V x F = 0, then F is a constant vector field.

(e) If V-F =0, then {{, F-fdS = 0 for every closed surface S.

(f) If {- F - dr = 0 for every closed curve C, then V x F = 0.

(g) If r(¢) is a path in three space with constant speed |v(t)|, then the acceleration is
perpendicular to the tangent vector,i.e. a- T = 0.

(h) If r(¢) is a path in three space with constant curvature x, then r(t) parameterizes part
of a circle of radius 1/«.

(i) Let F be a vector field and suppose that S; and S, are oriented surfaces with the same
boundary curve C, and C is given the direction that is compatible with the
orientations of Sy and S, . Then {{o, F-adS = {{,, F-adS.

(j) Let A(t) be the area swept out by the trajectory of a planet from time t = 0 to time ¢.
The %—‘? is constant.

Q[12](*): Find the correct identity, if f is a function and G and F are vector fields. Select
the true statement.

(@ V- (fF) = fV x(F)+ (Vf) xF
(b) V-(fF)=fV . (F)+F-Vf
(© Vx(fF)=fV-(F)+F-Vf

(d) None of the above are true.
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TRUE/FALSE AND OTHER SHORT QUESTIONS

Q[13](x): True or False. Consider vector fields F and scalar functions f and g which are
defined and smooth in all of three-dimensional space. Let r = (x, y, z) represent a
variable point in space, and let w = (w1, wy, w3) be a constant vector. Let Q) be a
smoothly bounded domain with outer normal . Which of the following are identites,
always valid under these assumptions?

(@ V-Vf=0

(b) FxVf=fV.F

(© V=V(V.f)

(d VxVf=0

@ (Vxf)+(Vxg)=VfxVg
) V.-VxF=0

(g) V-#:Oforr;«éo

(h) Vx(wxr)=0

@ fﬂfv.lzdvz—g Vf-FdVJr(ng-ﬁdS
!JfﬁdS:—JéUVde

Q[14](#): Determine if the given statements are True or False. Provide a reason or a
counterexample.

—
~"

i

[
~—

(a) A constant vector field is conservative on IR3.
(b) If V - F = 0 for all points in the domain of F then F is a constant vector field.

(c) Let r(f) be a parametrization of a curve C in R3. If r(t) and &F are orthogonal at all

points of the curve C, then C lies on the surface of a sphere x> + y? + z2 = a? for some
a > 0.

(d) The curvature x at a point on a curve depends on the orientation of the curve.
(e) The domain of a conservative vector field must be simply connected.
Q[15](*): Provide a short answer to each question.

(a) Compute V - (x2yi+ eV sinxj + e* k)

(b) Compute V x (cosx21 — 3z + xz k)

(c) Let
= 1+ Y

F j+22k

and let D be the domain of F. Consider the following four statments.

(I) D is connected
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TRUE/FALSE AND OTHER SHORT QUESTIONS

(II) D is disconnected
(III) D is simply connected
(IV) D is not simply connected
Choose one of the following:
(i) (II) and (II) are true
(i) (I) and (ITI) are true
(iii) (I) and (IV) are true
(iv) (I) and (IV) are true
(v) Not enough information to determine

(d) True or False? If the speed of a particle is constant then the acceleration of the particle
is zero. If your answer is True, provide a reason. If your answer is False, provide a
counter example.

Q[16](x): Are each of the following statements True or False? Recall that f € Ck means
that all derivatives of f up to order k exist and are continuous.

(a) V x (fVf) = 0 for all C? scalar functions f in IR3.
(b) V- (fF) =V f F+ fV -F forall C! scalar functions f and C! vector fields F in R3.

(c) A smooth space curve C with constant curvature x = 0 must be a part of a straight
line.

(d) A smooth space curve C with constant curvature « # 0 must be part of a circle of
radius 1/x.

(e) If f is any smooth function defined in R® and if C is any circle, then {- V£ - dr = 0.

(f) Suppose F is a smooth vector field in R® and V - F = 0 everywhere. Then, for every
sphere, the flux out of one hemisphere is equal to the flux into the opposite
hemisphere.

(g) Let F(x,y,z) be a continuously differentiable vector field which is defined for every
(x,y,z). Then, SSS V x F-1idS = 0 for any closed surface S. (A closed surface is a
surface that is the boundary of a solid region.)

Q[17](*): True or false (reasons must be given):

(a) If a smooth vector field on IR is curl free and divergence free, then its potential is
harmonic. By definition, ¢(x, y, z) is harmonic if (% + 227 + %)4)(3@ y,z) =0.

(b) If F is a smooth conservative vector field on IR?, then its flux through any smooth
closed surface is zero.

Q[18](#): The following statements may be true or false. Decide which. If true, give a
proof. If false, provide a counter-example.

(a) If f is any smooth function defined in R® and if C is any circle, then ScVf-dr=o0.
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TRUE/FALSE AND OTHER SHORT QUESTIONS

(b) There is a vector field F that obeys V x F = xi+yj + zk.
QI[19](): Short answers:
(a) Let S be the level surface f(x,y,z) = 0. Why is {- Vf - dr = 0 for any curve C on 5?

(b) A point moving in space with position r(f) at time ¢ satisfies the condition
a(t) = f(t)r(t) for all t for some real valued function f. Why is v x r a constant
vector?

(c) Why is the trajectory of the point in (b) contained in a plane?

(d) Is the binormal vector, B, of a particle moving in space, always orthogonal to the unit
tangent vector T and unit normal N?

(e) If the curvature of the path of a particle moving in space is constant, is the
acceleration zero when maximum speed occurs?

Q[20](+): A region R is bounded by a simple closed curve C. The curve C is oriented such
that R lies to the left of C when walking along C in the direction of C. Determine whether
or not each of the following expressions is equal to the area of R. You must justify your
conclusions.

(a) lf —ydx +xdy
2 Je

(b) lf —xdx+ydy
2 Je

© | vis
(d) J 3ydx +4xdy
C

Q[21](x): Say whether each of the following statements is true or false and explain why.

(a) A moving particle has velocity and acceleration vectors that satisfy |v| = 1 and
|a| = 1 at all times. Then the curvature of this particle’s path is a constant.

(b) If F is any smooth vector field defined in IR? and if S is any sphere, then

J V xF-AidS=0
S

Here fi is the outward normal to S.

(c) If F and G are smooth vector fields in R3 and if %F -dr = %G -dr for every circle C,
C C

then F = G.
Q[22](*): Three quickies:
(a) A moving particle with position r(t) = (x(t), y(t),z(t)) satisfies

a=f(r,v)r
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TRUE/FALSE AND OTHER SHORT QUESTIONS

for some scalar-valued function f. Prove that r x v is constant.

(b) Calculate {{¢(x3 —vyj+2z2k) - idS, where S is the boundary of any solid right
circular cylinder of radius b with one base in the plane z = 1 and the other base in the
plane z = 3.

(c) Let F and G be smooth vector fields defined in IR?. Suppose that, for every circle C,
we have §-F - dr = {{; G - i dS, where § is the oriented disk with boundary C. Prove
that G =V x F.
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Hints for Exercises 1.1. — Jump to TABLE OF CONTENTS.

H-1: Draw sketches. Don’t forget the range that the parameter runs over.

H-2: Find the value of t at which the three points occur on the curve.

H-3: The curve “crosses itself” when (sint, t?) gives the same coordinate for different
values of t. When these crossings occur will depend on which crossing you're referring
to, so your answers should all depend on ¢.

H-4: For part (b), find the position of P relative to the centre of the circle. Then combine
your answer with part (a).

H-5: We aren’t concerned with x, so we can eliminate it by solving one equation for x as a
function of y and z and plugging the result into the other equation.

H-6: To determine whether the particle is rising or falling, we only need to consider its
z-coordinate.

H-7: This is the setup from Lemma 1.1.3 in the CLP-4. The two quantities you're labelling
are related, but different.

H-8: See the note just before Example 1.1.5.

H-9: To simplify your answer, remember: the cross product of a and b is a vector
orthogonal to both a and b; the cross product of a vector with itself is zero; and two
orthogonal vectors have dot product 0.

H-10: Evaluate %\r(tﬂz.

H-11: Just compute |v(t)|. Note that (e + e"”)z = @2t 42 4 o2,

H-12: To figure out what the path looks like, first concentrate on the x- and y-coordinates.

H-13: Review §1.5 of the CLP-4 text. The arc length should be positive.
H-14: From Lemma 1.1.3 in the CLP-4 text, we know the arclength fromt =0tot =1
dr

will be .
fo a(t)' dt

The notation looks a little confusing at first, but we can break it down piece by piece:

% (t) is a vector, whose components are functions of . If we take its magnitude, we’ll get
one big function of t. That function is what we integrate. Before integrating it, however,
we should simplify as much as possible.

H-16: r(t) is the position of the particle, so its acceleration is r”(t).
H-17: Review §1.5 of the CLP-4 text.

H-18: Review §1.1 of the CLP-4 text.

H-19: (a) First parametrize x> + y* = 9.

H-20: If you got the answer 0 in part (b), you dropped some absolute value signs.
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H-22: The integral you get can be evaluated with a simple substitution. You may want to
factor the integrand first.

H-23: (b) .- + 1+ x is a perfect square.
(c), (d) Let

e r(x) be the position of the particle when its first coordinate is x,
e R(t) be the position of the particle at time ¢, and
e x(t) be the x—coordinate of the particle at time .

Then R(#) = r(x(t)). We are told |R(t)| = 9 for all ¢.
H-24: Given the position of a particle, you can find its velocity.

H-25: If r(u) is the parametrization of C by u, then the position of the particle at time f is
R(t) =r(u(t)).
H-26: By Newton’s law, F = ma.

H-27: Denote by r(x) the parametrization of C by x. If the x-coordinate of the particle at
time ¢t is x(t), then the position of the particle at time ¢ is R(¢) = r(x(t)). Also, though the

particle is moving at a constant speed, it doesn’t necessarily have a constant value of ?i—’t‘.

H-28: The question is already set up as an xy-plane, with the camera at the origin, so the
vector in the direction the camera is pointing is (x(t),y(f)). Let 6 be the angle the camera
makes with the positive x-axis (due east). The tangent function gives a clean-looking
relation between 6(t), x(t), and y(t).

H-29: Usng the Theorem of Pappus, the surface area and volume of this pipe are the
same as that of a straight pipe with the same length and radius.

H-30: A helix can be parametrized by r(8) = acos 81 + asinfj + bo k.

H-31: Define u(t) = ¢*49X(t) and substitute 4 () = e*'u(t) into the given differential
equation to find a differential equation for u.

L g a

Hints for Exercises 1.2. — Jump to TABLE OF CONTENTS.

H-1: You're asked to find the arclength of the curve froms =1tos = t.
H-2: The arclength will be 0 at P.
H-3: a(ty) and b(so) describe the same point on R.

H-4: On your way to finding the relationship between t and arclength, you should realize
that the curve has constant speed (with respect to t), though not constant velocity.

H-5: For which values of t is [r(t)| < 1? Check the domain of t — we're not starting at
Zero.

H-6: Be careful with the domain.

H-7: Remember v x? = |x|. You will need to consider cases for this one.
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Hints for Exercises 1.3. — Jump to TABLE OF CONTENTS.

H-1: The curve is a circle, so you don’t need to do any calculus.

H-2: Because r is a circle, you can parametrize it with respect to arclength without using
an integral. You found « in Question 1.

H-3: When t is large, does the spiral locally look like a circle of large radius, or small?
H4: & = [v()] = [¢(1)

B () _ ()
H-5:T = 71 = 1w

H-7: You can find the last two quantities by making use of the first three. Looking ahead,
the formula list in Section 1.5 might come in handy.

v(t) x a(t)|
)3

H-9: The maximum and minimum values of x(t) should be obvious from your formula
for «(t).

H-8: We can calculate ¥ = . We can also figure out what kind of a shape our

/N
QlQ—
~lwn

curve is.

H-11: For part (a), determine r(0), r(7r), r(27), r(377), and r(47), to help you map out the
motion. Also visualize the thumbtack as the wheel moves.

For part (d), use the fact that you only care about t = 71: where is this on your sketch?
What does that mean about the direction of N?

H-12: You should find that s = 0!

H-13: Since x(x) is never negative, x(x) is maximum when x?(x) is maximum. The latter
is easier to compute.

L g a

Hints for Exercises 1.4. — Jump to TABLE OF CONTENTS.

H-1: Use the right-hand rule to figure out how B is oriented.
H-2: Speed is the norm of velocity. Does that fit this equation?

H-3: Review Example 1.4.4 and remember that positive torsion indicates “right-handed
twisting.” You shouldn’t actually need to calculate anything.

H-4: (a) Show that the tangent vector T(s) is a constant.

(b) Guess the plane. To do so, first show that the binormal B(s) is a constant. Then show
that (r(s) — r(0)) - B is a constant.

(c) Guess the circle. To do so, first show that r.(s) = r(s) + ﬁN(s) is a constant.

H-5: It is not necessary to compute anything.
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H-6: Both parts of this question make use of the quantity %.
(v(t) xa(t)) - §

[v(t) x a(t)]?
H-8: Review §1.5 of the CLP-4 text.

H-7: t(t) =

H-9: The vector perpendicular to the plane containing the osculating circle is the
binormal vector, B.

H-10: (a) The tangent vector of the curve is also a normal vector for the specified plane.

(b) Review §1.5 of the CLP-4 text.

H-11: Remember a(t) = 3—?3(1?) T(t) +x(t) (%(t))zN(t). Remember also that B is

orthogonal to T and N, which are in the plane of C.

H-12: By Theorem 1.3.3 of the CLP-4 text, the tangential component of acceleration is

2
QT(t) = %

H-13: Use your answers to previous parts to calculate (d). Tangential and normal
components of acceleration are defined just before Example 1.3.4 in the text.

H-14: (a) All points on the curve obey an equation that contains x’s and y’s, but no z’s.
There is a standard way to get a nice parametrization of this equation, that doesn’t
involve using square roots.

(b) You don’t need to compute the constants for all points: only the given point.

H-15: For part (c), you only need to find N at a point, which is easier than finding it for
all t.

H-16: First parametrize x> + > = 1 in the standard way. You don’t need calculus for part

().
H-17: Review §1.5 of the CLP-4 text.

H-18: Since 0 < t < 1, you can simplify |t| = t.

H-19: For part (f), remember that you can write the equation of a plane easily once you
know a point it passes through, and a vector normal to it. The plane should touch the
curve when t = 0, and the plane should contain T and N.

H-20: It might be easier to find B before you find N, then use the formula
N(t) = B(t) x T(¢).

H-21: The osculating plane at r(ty) is the plane through r(ty) with normal B(t;). Also,
notice the points for parts (a) and (b) are not the same.

H-22: Since t > 0, we can simplify V2 = |t| = t.
H-23: In this context, “distance travelled” means “arclength.”

H-24: Use T and N to compute B.
H-25: (a) First find a parametrization (x(B), y(@)) for x> +y> = 1.
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H-26: You need to find the acceleration at (1,1,1). Think about what strategies are
available for computing the acceleration.

H-27: For part (a), T(t) will be a vector of the form T(t) = % where a and b are

nonzero constant real numbers.

For part (b), N(#) will be a vector of the form N(t) = (zjffizﬁz) where « and B are nonzero
constant real numbers.

For part (e), x(t) will be a function of the form x(f) = m, where 7 is a positive

constant real number.
H-28: Differentiate N = B x T with respect to s.

The vectors N, B, and T form a right-handed triple. Sketch them (the same way you
might sketch the x, y, and z axes) to figure out the signs of their cross products.

H-29: In part (b), note that a is the second derivative with respect to time (not 8). Exploit
a= %T + v?kN to find what you're asked for.

H-30: For part (d), what is the relationship between the y- and z-components of the
particle’s position? How can you use that to find a plane containing the particle at all
times t?

H-31: Rather than trying to wrangle trig identities, plug in § = 7t as soon as you can for
part (a). For part (c), remember that you need the chain rule if you want to make use of
your previous derivatives.

L o &

Hints for Exercises 1.6. — Jump to TABLE OF CONTENTS.

H-1: Your differential is ds, where s is arclength.

H-2: (a) You can parametrize the curve by r(6) = r(6) cos0i+ r(0) sinfj, 6; <0 < 65.

H-3: The top and bottom of the square can be easily paramerized using x as the
parameter. The other two sides can be easily paramerized using vy as the parameter.

H-4: Following Definition 1.6.1, set f(x,y,z) = =, x(t) = 313, y(t) = v/3t%, and z(t) = 3t.

z

H-5: Parametrize the circle in the usual way.

H-6: C can be parametrized as (1 +t,2+2t,3+2t) for 0 < t < 1.
Q. . . 1 . i — 1
H-8: Simplify! Also: g;{arcsect} NG=g

H-9: Newton’s law of motion is F = ma. The work done over a displacement dr is

W =F - dr.
H-

10: Sketch C and determine the normal vectors from the sketch. You can use x or y as
the integration variable in your integrals.

H-11: (c) How is x(t)? + y(t)? related to z(t)?
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(d) First, sketch (x(t), y(t)).

§cxpds

Scpds
straightforward applications of the power rule.

H-12: Remember ¥ = , etc. The integrals you evaluate should all be

L o &

Hints for Exercises 1.7. — Jump to TABLE OF CONTENTS.

H-1: Gravity pulls straight down, while the direction of the normal force depends on the
curve of the wire. There is not enough information to know the magnitude of the forces,
but you can approximate their directions.

H-2: This equation stems from F = ma. In that equation, a is what kind of derivative?

H-3: A thought experiment might help you avoid any calculations. If the wire were
perfectly vertical or perfectly horizontal, what would WN be?

H-4: The skater reaches their highest point when |v| = 0.

H-5: The highest vertical height occurs just as the skateboarder’s speed reduces to 0, at
YS = g

H-6: At the bottom of the culvert, all the skater’s energy is kinetic, not potential. That is,
in the equation E = Im|v|> + mgy, we have y = 0.

H-7: Equation 1.7.2 tells us the normal force exerted by the track is WN, where
W = mx|v|? + mgk - N. Equation 1.3.3 part (c) says a(0) = d92T +x < ) N.

H-8: When 6 = 137t/ 3, &5 = 0, which is handy for a quicker calculation.

¢ d92
Important equations: the normal force exerted by the track is WN, where

W = mx|v|? + mgj - N (Equation 1.7.2); a(f) = dng +x (3;) N (Equation 1.3.3, part
(©))

H-9: According to the equation in the text, the skiier will become airborne when:

[v] >

gA
oi-N

So, we need |v| to be greater than 4/£|j - N| for some point on the curve inside the range

l/e<t<e.

Note that g is given in metres per second, while the other quantities are in kilometres and
hours.

H-10: There are now three forces acting on the bead: one parallel to j (exerted by gravity),
one parallel to N (exerted by the wire), and one parallel to T (exerted by the jet pack).

Follow the reasoning in the sliding bead section of the text, focusing on the tangential
forces.
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H-11: If the snowmachine is moving at a constant speed, the tangential component of its
acceleration is zero. Part (a) is similar to Question 10.

H-12: Follow the discussion in the text.

It’s fine to leave part (b) pretty messy. Your answer for part (c) involves the root of a
cubic function, but you don’t need a high degree of accuracy to decide between the three
options give.

&> <&

Hints for Exercises 1.8. — Jump to TABLE OF CONTENTS.

H-1: Compute, for each angle 6, the dot product &,(6) - &,(6).
H-2: The curve can be parametrized by r(6) = f(6) [ cos 0 i+ sin6 j]

L o &

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

H-1: Not all blanks represent a single interval.

H-2: Write down all coordinates where v(x,y) -1 = 0 or v(x,y) -] = 0, and look for a

pattern.

H-3: If you know the speed and direction of an object, you can find its velocity.

i

H-5: When the twig is at (x, y) it has velocity v(x, y).

H-6: Whenever the twig is on the y-axis, its velocity is parallel to the y-axis. So it remains
on the y-axis for all time.

H-7: If you know the speed and direction of an object, you can find its velocity.
H-8: Set your face to be at the origin, (0,0,0).

If A is “inversely proportional” to B, then there exists a constant « such that AB = a.
That way when |B| goes up, |A| goes down, and vice-versa.

H-9: Start with the regions where v(x,y) -7 and v(x, y) - j are positive and negative. As
you move up/down/left/right, do the vectors get longer or shorter? More horizontal or
more vertical?

H-10: v(x,y) -1 is the distance from (x, y) to the origin, while v(x, y) - j is the distance
from (x, y) to the point (1,1).

H-11: Factor x* + xy = x(x +y) and y? — xy = y(x — y). Chop the plane up into eight
regions using the two coordinate axes and the linesy = x, y = —x.

H-12: What is the geometric interpretation of each summand?

H-13: (a), (c) Intrepret the vector field geometrically.

H-14: The constant G is the same for all masses, but M differs. The net force is the sum of
three force vectors.

98



H-15: For part a., make a triangle with P as one of its vertices that is similar to the
triangle made by the pole, the wall, and the ground. Its hypotenuse has length p; let its
base be b and its height be k. Find a way to translate between (b, /1) and (x, y).

For part b., use your answer from part a. Start by describing a point on a pole as its
distance from the lower end of the pole, p. Then, consider % and (%, %) separately. If
you're having a hard time simplifying your answer, note 1/x2 + y2 = v/3(1 — z) for any
point (x,y,z) on a pole when H = 1.

L o &

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

H-1: Review §2.2 in the CLP-4 text.

L g a

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.

H-1: Carefully consider the context that lead to each of these equations.
H-2: One of the three options will NEVER be true, for any F.
H-3: Modify ¢, the potential for F.

H-4: a. If F + G is conservative, what has to be true?
b. What if F and G are quite similar?
c. Find a potential for F + G.

H-5: Note that the domain is D = { (x,y) | x > 1 }. Compare to Example 2.3.14 in the
text.

H-6: A potential does exist.
H-7: Recall %bg x| = %
H-8: Try the screening test, Theorem 2.3.9.

H-9: f % dx can be evaluated by inspection, or with the substitution
X2+ y?+z
u=x>+y>+z%

H-11: For what values of the constants A and B does the vector field F pass the screening
test V x F = 0?

H-12: Review Example 2.1.2 in the CLP-4 text.

H-13: Following Example 2.3.3, the particle can never escape the region

{(xy2)|e(xyz)>-E}
where E is the energy of the system.

H-14: Example 2.3.3 tells us sm|v(t)[> — ¢(x(t),y(t),z(t)) = E is a constant quantity,
provided F is conservative with potential ¢(x,y, z).
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H-15: Find a potential ¢. Notice f, g, and & are functions of one variable each — this
simplifies things.

H-16: Write the points with curl 0 as multiples of a constant vector.

&> <&

Hints for Exercises 2.4. — Jump to TABLE OF CONTENTS.

H-1: Contrast Theorems 2.4.7 and 2.3.9.

H-2: Please don’t do any computation, especially not to find C!
H-3: Review properties of conservative vector fields.

H-4: Review Theorem 2.4.6 in the text.

H-5: Review Theorem 2.4.6 in the text.

H-6: Part (d) is a hint.

H-7: The last part of the question is a huge hint.

H-10: Parametrize the curve using y as a parameter.

H-11: Use Theorems 2.4.6 and 2.4.7 in the CLP-4 text.

H-12: (a) Use Theorem 2.4.7 in the CLP-4 text.

(c) You may parametrize the curve using x as the parameter. Exploit the fact that, for the
value of A found in part (a), F + AG is conservative.

H-14: Parametrize the path using sines and cosines. The work done is { F - dr
H-15: Is F conservative?

H-16: Is F = xy j conservative? Sketch C.

H-17: That the line integral is to be independent of path is a huge hint.

H-18: Note that

o y = 0 on the line segment from (1,0,0) to (0,0,1) and

o x = 0 on the line segment from (0,0,1) to (0,1,0) and

o z = 0 on the line segment from (0,1,0) to (1,0,0)
H-19: That F is conservative should be a dead giveaway.

H-20: To calculate the integral, it might be easier to find a potential for F and use
Theorem 2.4.2.

H-21: Your answer from (b) can help you in (c). Also, cos(1) = cos(—1), because cosine is
an even function.

H-22: Review §2.4.1 of the text.
H-23: Relate the integral of part (d) to the integral of part (c).
H-24: Write the integral of part (c) as §- G - dr. What is the difference between G and F?
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H-25: (d) How are G and F related?

H-26: (a) Start with % = y2e¥”.

(b) Use the result of part (a) to do part (b).

H-27: The integral in part (b) is path independent. That’s a big hint.
H-28: Part (a) is a hint for part (b).

H-29: The three parts of this problem are closely related.

H-30: We can rewrite x> +y? + z> = 2zas x> + y* + (z — 1) = 1.

H-31: (a) The curve can be easily parametrized by using x as a parameter.
(b) Don’t evaluate the integral directly.

H-32: Refer to Example 1.4.4 for a parametrization of a helix.

H-33: (b) Parametrize each side of the square by arc length, and make use of the plentiful
zeroes that arise.

H-34: Force is mass times acceleration, where acceleration is the second derivative of
position, r(t), with respect to time, . The work done by F between time a and time b is

Ss F-dr.
H-35: Note that the curve goes from (2,2) to (1,1) — not the other way around.

For part (b), one possibility is to look for a path consisting of the line segment from (2,2)
to (2,Y), followed by the line segment from (2,Y) to (1,Y), followed by the line segment
from (1,Y) to (1,1), with Y being a parameter to be determined.

H-36: One possibility is to look for a path consisting of the line segment from (0,0) to
(0,Y), followed by the line segment from (0, Y) to (2,Y), followed by the line segment
from (2,Y) to (2,0), with Y being a parameter to be determined.

H-37: Is F conservative?

H-38: On S, note z = 2 + x? — 3y2. Further, the vector field F(x,vy,z) = z? kis
conservative (with potential %23), SO SCI F.dr= SCZ F - dr for any two curves C; and C;
from P; to P,. Compare this to Questions 24 through 25.

H-39: Simplify the answer in part (a) as much as possible.
For part (c), start with f = xe3*" and gf = x? cos(x%z).

For part (d), notice the dlfference between the given vector field and the conservative
vector field of part (c). The resulting integral can be directly evaluated using methods
from integral calculus.

H-40: For (b), remember ¢ = ‘gf
Ts the vector field of part (c) conservative?

H-41: For part (d), what is the difference between | and SC F-dr?
For part (e), many parts of the integral are zero: find as many as you can.
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H-42: By Newton's law of motion, mr”(t) = F(t).

Recall k(t) = %

H-43: (a) Remember the arclength of the parametrized path r(t) fromt =atot =bis
given by Ss ¥’ (t)| dt. In this case, |t/ (t)| can be simplified considerably.

(b) Remember x(t) = %

(c) Gravity is conservative. Friction is not conservative.

(d) What are the tangential and normal components of acceleration?

&> <&

Hints for Exercises 3.1. — Jump to TABLE OF CONTENTS.

H-1: Your answer will have the form r(x,y) = 91 (x,y)i + a2 (x,y)j + ¥3(x, y)k.

H-3: First think about what properties r(u, v) has to have in order to be a
parametrization.

H-4: First think about what properties r has to have in order to be a parametrization.

H-5: First think about what properties r(u, v) has to have in order to be a
parametrization.

- -
Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-5: Review §3.2 in the CLP-4 text.

H-6: Review §3.2 in the CLP-4 text.

H-8: Let (x,y, z) be a desired point. Then

e (x,y,z) must be on the surface and
e the normal vector to the surface at (x,y, z) must be parallel to the plane’s normal
vector.

H-9: First find a parametric equation for the normal line to S at (xo, Yo, Z9). Then the
requirement that (0,0, 0) lies on that normal line gives three equations in the four
unknowns x, yo, zo and t. The requirement that (xo, yo, zo) lies on S gives a fourth
equation. Solve this system of four equations.

H-10: Two (nonzero) vectors v and w are parallel if and only if there is a ¢t such that
v = tw. Don’t forget that the point has to be on the hyperboloid.

H-11: (b) If v is tangent, at a point P, to the curve of intersection of the surfaces S and S,,
then v

e has to be tangent to S; at P, and so must be perpendicular to the normal vector to
Sqat P and

e has to be tangent to Sy at P, and so must be perpendicular to the normal vector to
S, at P.
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H-12: The angle between the curve and the surface at P is 90° minus the angle between
the curve and the normal vector to the surface at P.

&> <&

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-5: The total surface area of (b) (ii) can be determined without evaluating any integrals.

H-8: On S, (x,y) runs over the interior of X2+ y2 = 2x, or equivalently, the interior of
(x—1)2+y> =1

H-9: See Example 3.1.5 of the CLP-4 text for a parametrization of the torus.

H-10: Call the part of the sphere in the first octant S. By definition, the centroid is (¥, 7, Z)

with
t s xdS = sy ds §§5zdS
§fs ds §fs ds {fs dS

The integrals will be easy if you use spherical coordinates. You can reduce the number of
integrals evaluated by using symmetry.

X = zZ =

H-11: Before parametrizing the cylinder, express x> + y? = 2ay in cylindrical coordinates.

H-13: (a) The integral can be easily evaluated by using that the sphere has surface area
47a”.

(c) Use cylindrcial coordinates for the top part of the cone.
H-17: Beware of signs. Note that0 <z <1on §.

H-18: The z-coordinate of the centre of mass is the weighted average of the z-coordinate
over the cone. Since a density has not been specified, we assume that it is a constant. We
may take the density to be 1, so the z-coordinate of the centre of mass is {{;zdS/ {{. dS.

H-19: Use cylindrcal coordinates. Note that because of the symmetry of the cone, only
the z-component of the centre of mass requires an integral to be calculated. The
z-coordinate of the centre of mass is the weighted average of the z-coordinate over the
cone. Thatis z = {§,zdS/ {{¢ dS.

H-21: Review (3.3.2) in the CLP-4 text.

H-22: Don’t be afraid to tweak spherical coordinates so as to fit the condition
x = 4/y? + z% well. To do so, first use a sketch to develop a geometric interpretation of

X

H-23: The surface S may be parametrized by observing that, for each fixed y,
x? + 22 = sin’ y is a circle.

H-24: By symmetry, the centre of mass will lie on the z-axis. By definition, the
z-coordinate of the centre of mass is the weighted average of z over S, which is

[z p(x,,2) dS
Ss0(x,y,2) dS
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H-34: You can use the the cylindrical coordinates 6 and z to parametrize the hyperboloid.
H-35: (a) Review §3.2 of the CLP-4 text.

(b) Review §3.3.1 of the CLP-4 text.

H-36: (a) Review §2.4.1 in the CLP-4 text.

(b) Use Lemma 2.3.6 of the CLP-4 text to show that the integrand is identically zero.

L g a

Hints for Exercises 4.1. — Jump to TABLE OF CONTENTS.

H-2: Compute V x F for some simple vector fields.

H-3: For parts(a) and (b), write out the definitions of the left and right hand sides and
observe that they are equal. Part (c) can be done easily by using other, simpler, vector
identities.

H-6: (c) can be done efficiently by using (a) and (b).

H-12: (a) Find the magnitude and direction of the velocity vector. Then verify that () x r
has that magnitude and direction.

L g a

Hints for Exercises 4.2. — Jump to TABLE OF CONTENTS.

H-3: (b) The integral can be trivially evaluated by exploiting oddness and the fact that
1§, dV = Volume(V).

H-4: For part (a), use spherical coordinates.

H-5: (a) The integral is easier in polar coordinates.
(b) Since x is odd, {{{, xdV = 0.

H-6: (a) The integral is easy in polar coordinates.

(b) The volume of the solid can be easily computed by decomposing the solid into thin
horizontal pancakes. See Section 1.6 in the CLP-2 text.

H-7: The divergence theorem, of course.
H-8: It's easier to use the divergence theorem. But don’t forget the base of the silo.

H-9: The divergence theorem, of course. The integral can be easily evaluated by using
that, for any solid V in R3,

_ __ {ffyxdv — fyydv R\ E1:14
w dV = Volume(V) =G0y Y= Volume(Y)  ©~ Volume(V)

where (%, 7, 2) is the centroid of V.
H-10: The complexity of F is a hint that the flux should not be evaluated directly.

H-11: The specified surface is not closed.
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H-12: (a), (b), (c) Review warning 4.2.3 in the CLP-4 text.
(d) The divergence theorem can be used — with care.
(e) The equation can be made more understandable by completing a square.

H-13: (a) Use a suitable modification of spherical coordinate. Do not forget to specify the
range of the parameters.

H-14: Don’t evaluate the flux directly.

H-15: For practice, try doing this question twice — once using the divergence theorem
and once using direct evaluation.

H-16: The question highlights that the vector field has divergence 0. Thta’s a big hint.

H-17: As F looks complicated, it is probably wise not to try and evaluate the flux integral
directly.

H-18: As F looks complicated, it is probably wise not to try and evaluate the flux integral
directly.

H-19: The vector field F looks complicated. Try to avoid a direct evaluation of the flux
integral.

H-20: The divergence of F is a lot simpler than F itself. By default, we want the outward
flux.

H-21: The vector field F looks very complicated. That strongly suggests that we not
evaluate the integral directly.

H-22: The divergence of F is a lot simpler than F itself.

H-23: Note that F(x, y, z) is not defined at (x,y,z) = (0,0,0).

H-25: The surface S is not a closed surface.

H-29: The complexity of F is a hint that the flux should not be evaluated directly.

H-31: The flux can be calculated directly, but it is rather easier to calculate it using the
Divergence Theorem.

H-32: Use that y is odd to easily evaluate some integrals.
H-34: (a) Use cylindrical coordinates.

(b) The volume of the V can be easily computed by decomposing V into thin horizontal
washers. See Section 1.6 in the CLP-2 text.

H-35: Review the derivation of the heat equation in Section 4.2.1 of the CLP-4 text.
H-37: Make a judicious choice of parametrization.
H-38: Do not compute the integral directly.

H-39: Be careful about which normals to use in part (c). For practice, try to do part (c) in
two different ways, with one being direct evaluation.
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H-40: For part (b), do not evaluate the flux directly. In part (c), the flux can be related to
the volume enclosed by the surface, and the centre of mass of the volume enclosed by the
surface.

H-41: (b) We have several different methods for evaluating flux integrals. Think about
what would be involved in applying each of them before settling on which one to use.

(c) Be sneaky — don’t evaluate this integral directly.

H-42: For parts (b) and (c), write out carefully the integral that the divergence theorem
gives you.

H-43: Note that 22 + 2(12) +3(1)?> = 9 < 16 so that (2,1,1) is inside S,
while 3% 4 2(22) 4 3(2)? = 29 > 16 so that (3,2,2) is outside S.

H-44: Review §4.2.2 in the CLP-4 text.

H-46: Consider very small a’s.

H-47: Carefully draw a side view of S.

H-48: Both the divergence theorem and a vector identity in Theorem 4.1.4 of the CLP-4
text are useful.

H-49: x is an odd function.

H-50: You should be able to guess the centre of mass, (%, 7) of the disk D. Then the

integrals {{, x dxdy and {§, y dxdy can be found by using % S§§3 - dizdyy and i ngDy di);dyy :

L o &

Hints for Exercises 4.3. — Jump to TABLE OF CONTENTS.

H-2: Let r(s) = x(s) 1+ y(s) j be a counterclockwise parametrization of C by arc length.
Then T(s) = r'(s) = «/ (s)i+y'(s)] is the forward pointing unit tangent vector to C at
r(s) and A(s) =r'(s) x k = y'(s)7 — x'(s) j. To see that t'(s) x k really is fi(s), note that
y'(s)1=x'(s)]

e has the same length, namely 1, as ¥'(s) (recall that r(s) is a parametrization by arc

length),

e lies in the xy-plane and

e is perpendicular to r'(s). (Check that ¥'(s) - [y/(s)1 — x(s) j] = 0.)

e Use the right hand rule to check that r'(s) x k is fi rather than —#.

H-3: Use direct evaluation!

H-4: The functions - +y2 and J:/yz are not defined, let alone continuous or differentiable,
atx =y =0.

H-5: For practice, evaluate this integral twice — once directly and once using Green’s
theorem.

H-6: The siny? and cos y? in the integrand look hard to integrate. Try Green’s theorem.

\“\

-7: Don’t do the integral directly.
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s

-8: Don’t do the integral directly. Sketch the rectangle.

v

-9: Do not compute the integral directly.

H-10: Don’t do the integral directly. Sketch the triangle.

H-11: The integrand for direct evaluation looks complicated — don’t evaluate this
integral directly.

H-12: Direct evaluation is not the most efficient method available.

H-13: Green’s theorem must be applied to a closed curve; note that the curve C is not
closed.

Consider carefully the point (0,0) in your analysis.

You may use the fact that § 1%2 = arctan(t) + C.

H-14: If we were to try to evaluate this integral directly, then on the y = x? — 4x + 3 part

of C, the integrand would contain x2eY = x2e¥" =443 That looks hard to integrate, so try
Green’s theorem.

H-15: Beware the point (0,0).

H-18: It is possible to evaluate this integral by three different methods, one of them being
direct evaluation (though it requires some ingenuity). Try to find all three.

H-20: Write §-F-dr— A§- G -dr = §-(F — AG) - dr.
H-21: Note that F(x, y) is not defined at (x,y) = (0,0).
H-22: Note that F(x, y) is not defined at (x,y) = (0,0).

H-24: (a) All points on the curve obey an equation that contains x’s and y’s, but no z’s.
(b) Exploit conservativeness as much as possible.

H-25: Use Green’s theorem to convert the integral over C into an integral over the region
R in the xy-plane whose boundary is C. Consider the sign of the integrand of the integral
over R.

&> <&

Hints for Exercises 4.4. — Jump to TABLE OF CONTENTS.

H-1: First verify the vector identity V x [¢Vyp + V| =0

H-2: To parametrize the curve x? + y? = 1, z = y?, first parametrize the circle x> + y> = 1.
That is, find x(t) and y(t) obeying x(#?) + y(t)? = 1. Then set z(t) = y(t)>.

H-3: Apply Stokes’ theorem. Note that r(t) = x(t)1 + y(t)j + z(t) k obeys
x(t) +y(t) +z(t) = 3, forevery t, and that x(¢) 1+ y(t)j = (1 + cost) i+ (1 +sint) j runs
counterclockwise around the circle of radius 1 centered on (1,1).

H-4: The form of the integral should be quite suggestive.
H-5: The form of the integral should be quite suggestive.
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H-6: What's the title of this section?

H-7: We are to evaluate a flux integral of the form {{, V x F- A dS. Sure looks like one
side of Stokes” theorem.

H-8: The vector field F looks too complicated for a direct evaluation of the line integral.
So, try Stokes’ theorem.

H-14: All three vertices of part (a) lie in the plane of part (b).

H-15: The curve C is the boundary of a surface. To guess the surface express the z
component of r(t) in terms of the x and y components.

H-16: The fact that the surface is not completely specified is a big hint.

H-17: We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. (Sketch it!) That certainly suggests that we should not try to
evaluate the integral directly.

H-18: The integral looks messy. Compute the curl of F to help gauge if Stokes’ theorem
would be easier.

H-19: The form of the integrand is sugestive.

H-24: Let D be the disk in the plane x + y + z = 3 whose boundary is C. Suppose that, as
(x,y,z) runs over D, (x,y) runs over the ellipse D,,. We are told that the area of D is
7R?, but we are not told the area of D’. So it is easier to deal with the integral {,, dS than
with the integral {,, dxdy.

H-27: Given the form of F, direct evaluation looks hard.

The integral evaluations can be greatly simplified by using that the centroid (%, 7) of any
region R in the xy-plane is

X:SSRxdxdy _:SSRI/dXdI/
Area(R) 4 Area(R)
H-28: Part (a) is a hint for part (b). Sketch the curve in part (b).

H-29: For practice, evaluate the flux of part (a) twice — once by direct evaluation and
once using Stokes’ theorem.

H-30: By definition, D is connected if any two points in D can be joined by a curve that
lies completely in D.

By definition, D is simply connected if any simple closed curve in D can be shrunk to a
point continuously in D.

H-31: Review §4.1.2 in the CLP-4 text.

H-32: Considering that there are ten line segments in C, it is probably not very efficient to
use direct evaluation.

H-33: Direct evaluation looks hard.

H-34: Rewrite §- E - dr as a surface integral.
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H-35: What is x(t)? + y(t)? + z(t)? = 2? How is x(t) relatex to z(t)?

H-36: The intersection of the plane x + v + z = 1 with the sphere x*> + y?> +z> = lisa
circle. Use symmetry to guess the centre of the circle.

H-37: Sketch S.

H-38: You can avoid evaluating any integral by identifying S’ as a simple geometric
figure.

- -
Hints for Exercises 5. — Jump to TABLE OF CONTENTS.
H-2: Read (d), (e), (), (g), (h) very carefully.

H-3: Beware that in part (f) a surface is defined to be closed if and only if it is the
boundary of a solid region E. Even though that is not the usual definition, it is be used in
this question.

H-4: (b) In general, for which values of x is the curvature of y = f(x) zero?
(c) First parametrize x?+z22=1.

(d) First determine when r(u, v) has z = 0.

(e) What type of curve has curvature zero?

(f) What theorem relates the divergence of a vector field with flux integrals of the vector
field?

(g) What is the screening test for conservativeness in two dimensions?
(h) What is the definition of “parametrized by arclength”?

(i) What theorem relates line integrals to curls?

(j) What theorem relates flux integrals to divergences?

(k) Use Stokes’ theorem.

H-5: Read all of the statements very carefully. The details are critical.
(a) Note the word anywhere.

(b) If you have not learned about simply connected domains, skip this part. If you have,
read the statement very carefully.

(d) If you have not learned about Kepler’s three laws, skip this part.

(h) Read the statement very carefully. It does not specify that C is closed.
(i) Review §1.5 of the CLP-4 text.

H-8: Read all of the statements very carefully. The details are critical.
For part (d), note that the curve need not lie in a plane.

For part (g), note that the domain can have holes in it.
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For parts (h) and (i), by definition, D is simply connected if any simply closed curve in D
can be shrunk to a point continuously in D.

H-9: Read all of the statements very carefully. The details are critical.
For part (b), note that the curve need not lie in a plane.
For part (d), note that the domain can have holes in it.

For parts (i) and (j), by definition, D is simply connected if any simply closed curve in D
can be shrunk to a point continuously in D.

H-10: Read all of the statements very carefully. The details are critical.
(a) The integral {- f ds = 0 is not of the form {-F - dr.

(d) F and G can be any vector fields.

(e) Think about how { f ds is defined.

(f) Look at g—; X g—; very closely.

(g) The integral is completely independent of x(u,v) and y(u, v).
H-11: Read all of the statements very carefully. The details are critical.

(b) Read the statement very carefully. “simply connected” plays no role here. The vector
tield F is not required to be conservative.

(e) Recall that S is closed when it is the boundary of a solid region V.
(g) Assume that the constant |v| is not zero.

(j) If you have not learned about Kepler’s three laws, skip this part.
H-13: (g) Be careful. The power in the denominator is important.

(j) Beware the sign.

H-20: Review Corollary 4.3.5 in the CLP-4 text.

H-21:

(b) §§s V x F-ndS is a flux integral over the closed surface S.

(c) Consider §-F-dr —§- G -dr = §-(F - G) - dr.
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ANSWERS TO PROBLEMS
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Answers to Exercises 1.1 — Jump to TABLE OF CONTENTS
Al @r(y) =2 —y2i+yj0<y<a
(b) (x(‘P)IE/(‘P)) = (ﬂ Sin(P,—aCOS(p), I<p<m

2
(©) (x(s),y(s)) = (acos(5 —2),asin(5 - 2)),0<s < Za

A-2: (1,25), (—1/+/2,0), (0,25).

A-3: The curve crosses itself at all points (0, (7711)%) where 7 is an integer. It passes such a
point twice, 27tn time units apart.

A-4: (a) (a+ab,a) (b)(a+ab + asinb,a + acos0)

ABiz=-1\J1-% -

<

A-6: The particle is moving upwards from t = 1 to t = 2, and from t = 3 onwards. The
particle is moving downwards from t =0tot =1, and from t = 2 to t = 3.

The particle is moving faster when t = 1 than when t = 3.

A-7:

The red vector is (¢ + 1) — r(t). The arclength of the segment indicated by the blue line
is the (scalar) s(t + h) — s(t).

Remark: as h approaches 0, the curve (if it's differentiable at t) starts to resemble a
straight line, with the length of the vector r(f + /1) — r(t) approaching the scalar
s(t + h) — s(t). This step is crucial to understanding Lemma 1.1.3 in the CLP-4 text.

A-8: Velocity is a vector-valued quantity, so it has both a magnitude and a direction.
Speed is a scalar — the magnitude of the velocity. It does not include a direction.

A-9: ()
A-10: See the solution.
A-11: (d)
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A-12: velocity = —asinti+acostj+ck  speed = va2 + 2
acceleration = —acosti —asint]j

The path is a helix with radius a and with each turn having height 27c.

A-13: (@) T(1) = B2 (p) 1[53/2 ]

S V5
A-14:2

A-15: length = v/a2 + b2 T
A-16:1

A-17: (@) 20/3  (b) x(t) = =27t —2t, y(t) = —27t, z(t) = /3 + m°t
A-18: (a) r'(t) = (—3sint,3cost, 4) (b)5
A-19: (a) x(6) = 3cosb, y(0) = 3sinb, z(0) = 6cosf +9sinf, 0 <6 <27

(b) s = {3 /45 + 45 cos? § — 108 sin @ cos 0 df
A-20: (@) 5 (10v/10—1)  (b) &(10v/10—1)

. _ Bt
AL:s(f) = £ 41

8 91,m 3/2 9 m 3/2
A2 [ (2+56m) " - (24 3am) ]

A-23: (@) r(x) = xi+/xj+ 3232k (b)21 (c)6i+3j+6k (d)—6i—12j+12k

A-25: (a)r(u) = uli+3u’j+6uk ()7 (2 (A1
t3

A26: @ x(t) = (BL—5)i+ (t—sint)j+ (Je¥— )k @)t=r

(€ —mi+2j+ (2" —1) k
A27:(@)21  (b)6 (20+4j+4k () -8(2i+j-2k)
A-ng: X (H)—y(Hx'(1)

x2+y2
A-29: Volume: 5407t Surface area: 3607t
A-30: L ~ 5.3 cm

T/ 9+ 403712

—at A

A-31: x(t) = 19 — To-lyg + gl=re Tk

® a2

A 4

Answers to Exercises 1.2 — Jump to TABLE OF CONTENTS
A-1:t—1
A-2: (sin(1/2),co0s(1/2),+/3/2)
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A-3: A
A-4: (a) (3/4, —V3/a, =1/2)  (b) R(s) = (2sin’(s/3),2cos’(5/3),3sin(5/3) cos(+/3))

A2 0 g s (e (1) s (o (1)

A-6: (cosz, zsinz, z) for 0 < z < 71/2. The curve is (the first quarter-turn of) a spiral,
with width in the x-direction 2, and increasing width in the y-direction. The parameter z
is the height, as well as a radian measure for the spiral.

A-7:R(s) =
(% [(2\@—35)2/3 )] ,_% [(2\@ )2/3_1]3/2> when s < %(2\@ 1)
<% [(3S+2—2\/§)2/3— }’% [(35_{_2_2\/5)2/3_1}3/2) when s > %(2\/2—1)

L g a

Answers to Exercises 1.3 — Jump to TABLE OF CONTENTS

é—_Z:T(t) = (cost, —sint), T(s) = (cos(s/3), —sin(s/3)),
(t) = (—sint, —cost), N(s) = (—sin(s/3), — cos(s/3))

p

A-4: ds = /€2t +9 + cos? t

A-5: % = %(—sint—cost, —sint + cost)

\/Lz —sin (log (s/v/2)) — cos (log (s/v2))), —sin (log (s/v2)) + cos (log (s/v2)))

: See the solution.

G g

= \/e2 + (2t +1)2
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o ot 2t+1
D. T(t) = <\/62t + (2t +1)2" \Je2 + (2t + 1)2>

et|1 — 2¢|

E. K(t) = (€2t+ (2t+1)2)3/2
A-8: x(t) = \/%

b
A-10: () k(0) =232 (b) (x+2)2+(y—3)2=8

r(t) = (t —sint, 1 — cost)

' om A

(b) x(t) = m @4 (d(x—mn)?+(y+2)?%=16

A-12: x(s) = s
A-13: The maximum values occur at (x,y) = +(1/v/5, %5*3/4).

The limits limy_, + o x(x) = 0.

&>
Answers to Exercises 1.4 — Jump to TABLE OF CONTENTS

Al:

B points out of the page (towards the reader).
A-2: arclength

A-3: a(t) and b(t) have negative torsion, c¢(t) has zero torsion.
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A4
A5: (a), (b)

(c) The torsion is zero.
A6 (@)1 (t) = (ef +e )i+ (ef —e!)j+2k ¥'(t) = (¢ —e ") i+ (e +e "),

K(t) = —2_~_€2t1+672t

(b)ﬁ[e—%}

.3
A-7: g7

Q. () — itttk B itk ¢ _ —(28) i (1) j+ 2t )k
A8 T(1) V142444 B(t) V14482444 N(#) V1241441442444
A 1+482 44
) = grmepz T = T
A-9: When ¢ = 0, the plane is z = 1.
When ¢ = 1/5, the plane is (1/25)x + 3y — (30/¢)z = —10.
24/149249¢
A-10: (@) 2x+y+3z=6  (b)«x(t) = w

Al @2 () -Li-1j+Tk (@©B=:i-Bj+ Lk

A-12: (@) R(t) = (—1,0, %) +t(0,~1,27)  (b) ar(t) = -

A-13: (a) /5t (b) ar(t) = sinti+costj+2k (c) an(t) =tcosti—tsint]
(d) () = 5
A-14: () r(#) = [-1+3cosB]i+3sinfj+ [10 — 6cos O] k, 0 < 6 < 277

(b) At (2,0,4), T =j, N = =it2k B — 24k 4 () — 45

V5 V5
A 23 14K i— j—4k
A-15: (a) T(t) = % (b) (t2\—|/—§1)2 (C) = 3\/\/52()] =
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A-16: (a) One possible parametrization is r(8) = cos 81 +sinfj + (1 — cosf — sin §) k
with0 <6 <27

(b) k(0) = e

(c) maximum curvature = +/3 at \’f \f +(1-+v2)kand _\/LE — \/LE +(1+v2)k

. _1 A BTS 9
minimum curvature = 5 at — \[ \[ +kand ﬁ 7 +
2£21+2tj+k ¢ _2ti—(22-1)j-2tk o
A-17: T( ) T2 N(t) - 2t2+1 K(t) - (2£2+1)

A-18: (@) 3[2%2-1]  (b) _27 © 3

A-19: (@) v(t) = (1, -1, ¢) (b) %(t) =241 (c)a(t)=(0,0,1)

A

@r)=Fn  @NO)=Fe Oriy=3 (@12

A0 @) T(1) = BHEEE o)r() = 225 @x(0)=v2  @NO) =]

(e) B(0) = —i
A-2l: (@) x=1-2t,y=—-1+4+t,z=-1+3t (b)3x -3y —z= -1

A-22: () B (b)«(t) = &

Q|
<

A-23:(@)8 (b)T(1)=-1(1,1,0),N(1)=(0,0,-1) (c)«(1) =

A-24: (a) 3

) T(/s) = §( -3, %5,4), N(7/s) = (v3,1,0), B(v/6) = }(~2,2V3,-3)

ool

A-25: (a) r(#) = cosfi+sinfj + cos(20) k 0<6<2nr (bt
(c)z= V2x— ﬁy
(d) radius 1/x(7t/4) = 5 and centre ( —2v/2, —2v2, 0)

A-26: sG-4j+k)

A27: @) T(t) = HILSE ) N(H) = ALK (@ () —VBy+z=0

() k(t) = (1+4£2) 72

(f) The curvature x(t) achieves its maximum value at r(0) = (0,0,0).

(g) The curvature never achieves a minimum.

(i=Yj=Y"y3W o= VYW r(4) = fu 4 v
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The curve (a(t),b(t)) = (t,1?) is the curve y = x2. It is “curviest” at the origin, which is
consistent with part (f). It becomes flatter and flatter as |¢| increases, but never achieves
“perfect flatness”, which is consistent with (g).

A-28: See the solution.
A29: (@) T = 2:(0,2—v2), N = —15(6,1,v2), B = = (~1,2,2v2), x = Y32 = +®
b) @) § =22 @v=(0v2-1)
A-30: (a) v(t) = (—sint, cost, ccost), a(t) = (—cost, —sint, —csint)
2
(b)o(t) = V1+c2cos?t (o) pleoyt
(d) The curve lies on the plane z = cy.

A-31: (a) Y2 (b) A (@) 4y () (167, ~4, —4m) (iif) 417 7

<&

Answers to Exercises 1.6 — Jump to TABLE OF CONTENTS
A-l: fods

A-2: (a) See the solution. (b) 8

AL

Al 52 1)+ 5520 - 1)

A-5: kg

A-6: 26

A9 @x(t) =ti+ (1+5)j+sintk  O)r(/2) =Fi+ (1+5)j+k  ©

A1l (@) ——(—i—-mj+2rk)  (b) £[1+572)32-1]  ()z=x>+y>
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(412 92 4736
A-12: (ﬁ 557 693)

L 4

Answers to Exercises 1.7 — Jump to TABLE OF CONTENTS

Al:

WN

A

—mgj
A-2: time
A-3: positive
ﬂ y= mig — just like a circular culvert (if the culvert is high enough).
A-5:2940]
A-6: at least 54/9.8 m/s
A7 (=2 42352, - 354392, —2v2+3.136)

. 9.8 1\
A8 28 (1oo+ %) ~20m/s

A-9: |v| > 504 kph
A-10: U = mg %Y

A-11: @) M =mgj-T  (b) negative () —% ~ —1131.6 N

. _E 24(E-mgys)  _ e :
A-12: (a) ys = g (b) S =Amg | T——— (or equivalent)
(o+7(222)") 947(1472)
(c) The skateboarder makes it up to the ceiling, but falls off rather than making it all the
way around. Ouch.

1/2

A-13: (a), (b) See the solution.  (c) 2 [“Z;f’z n]
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&> <&

Answers to Exercises 1.8 — Jump to TABLE OF CONTENTS

A-l:(@)r =3,00=0 1rn=v260=% rn=106=F rn=+20==2=7
7’5:2,95:7'(

(b) Both &,(6) and &;(6) have length 1. The angle between them is 7. The cross product is

A

&,(0) x &(0) = k.

(c) Here is a sketch of (x;,y;), &-(6;), €9(0;) fori = 1,3,5 (the points on the axes)

69(71')

and here is a sketch (to a different scale) of (x;,y;), &-(6;), &(6;) for i = 2,4 (the points off
the axes).

er(F) Y| eo(7) e (%)

(—1,1)x ¥ (1,1)

eo(2F) 4

ISE

|£(0)2+27 (02— £(6)£(6))|

ﬁ K(G) - [f(G)ZJFf,(G)ZP/Z
. — 3 - 3
ﬁ x(6) = 23/2a3/1—cosb ~— 2,/2ar(6)
. &

Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS

>0 when >0 when|xe (-2,2)
A-l:v(x,y)-i{=0 when|x =0] v(x,y)-j< =0 when|xe {22}
<0 when <0 when|xe (—4,-2)uU(2,4)
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>0 when >0 when
A-2:v(x,y)-1{ =0 When v(x,y)-j{=0 when[y=rx]
<0 when <0 when

A-3:v(x,y) = \/x_ziiyz(x,y)

A4P>0 Q>0 <0 2>0

A-5: (a) (1.01,1.01)  (b)(0,0)  (c) (0, 0)

A-6: (0, —10)

A-7:v(x,y) = \/x_iiﬁ(x'y)

ﬁ If your face is at the origin, then v(x,y,z) = —m (x,vy,z) for some positive
constant «.
A-9:
y
A r S
— 1 r
— 7 7 2
o A
X
—~ s~ —
—~ v~ —
N ) VN T
~\ VoOoN o
A-10:
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A-11:
THXWyT
/ T
r%*xxx pas
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| X[X /o
) e
11 B
——— x{ffzf
1\ {/‘/
=[]
REeYY RRRRE
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—5G(xy)

3G(2—x,3—y)

7G(4—x,—y)

A-14: £(x,y) =

R (T LA (Pl

NN 7000
SSONNNNNY DL
SOGNNL N L1
SN AN B O AV i
SRRSO NN [ )
R \ N
S AR R
S AR
S MRRRRN
7 AN
POV %\\\\\\
A-13:
(a) , (b)
\ N\
™. NS e
T 7 AR NN
// .
/ \ N\
© .
DS NN
S 7N\
LT
EEENIL
NN SN Y
AN 2
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L ]

A-15: a. v(p) = ((1 -%)3 ) b. V(x,y,z) = (—%,-%,3) or equivalent

=

&> <&

Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

Al @5 =%+cC
(b)

A2 x =y z=¢Y

A-3: The field lines are y = C'x® with C’ a nonzero constant, as well as x = 0 and y = 0.

\ A

&> <&

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS

A-1: In general, false.
A-2:a.C b. B c.C d.B

A-3: Let ¢ be a potential for F. Define ¢ = ¢ 4 ax + by + cz. Then
V¢ =Ve¢+(a,bc)=F+(ab,c).

At

a. If F + G is conservative for any particular F and G, then by definition, there exists a
potential ¢ with F 4+ G = V¢.

Since F is conservative, there also exists a potential i with F = V.

Butnow G = (F+ G) —F = V¢ — V¢ = V(¢ — ¢). That means the function (¢ — )
is a potential for G. However, this is impossible: since G is non-conservative, no

124



function with this property exists.
So it is not possible that F + G is conservative. It must be non-conservative.
b. Counterexample: if F = —G, then F + G = 0 = V¢ for any constant c.

c. Since both fields are conservative, they both have potentials, say F = V¢ and
G =V¢. ThenF+G =V¢p+Vy =V (p+ ). Thatis, (¢ + ¢) is a potential for
F + G, so F + G is conservative.

. . . . . o y
A-5: Yes, F is conservative on D. A potential is ¢(x,y) = arctan =.

A-6: 9 = 3x* +xy = 3y

A-7: ¢ =log|x| — %
A-8: None exists: % = %x3, while %—1;3 = %x3 + 1, so F fails the screening test,
Theorem 2.3.9.

A-9: ¢ = Llog(x? +y? +2%)

A-10: (a) F is conservative with potential ¢(x,y,z) = %xz —y? + %zz + C for any constant

C.

(b) F is not conservative.

A-11: (a) A = 2, B is arbitrary.

() ¢(x,y,z) = xe=) 4+ By?z3 + C for any constant C.

A-12: v = mgig]z ¢ = ymIn(x? + y?) + C for any constant C

A-13: It can never escape the sphere centred at the origin with radius +/20.
A-14: V14

A-15: ¢ = f2(x) + g(y)h(z) is a potential for F, so F is conservative.

A-16: The line through the origin in the direction of the vector (2,1, 2).

&> <&

Answers to Exercises 2.4 — Jump to TABLE OF CONTENTS
A-l:a. A b. B c. A d.B

A-2:0

A-3:5

A-4:a=1,b=c=0

A-5: (a) Not conservative (b) Not conservative (c) Not conservative (d)
Conservative

A-6: (a) The (largest possible) domain is D = { (x,y,z) | x>+ y* # 0 }.
b)VxF=0o0nD (©) SC F-dr=4mr (d) F is not conservative.
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A-7: 93 for all paths from (1,0,—1) to (0,-2,3)
A-8:2(e—1)+ 5 4 3n
-9: (a) —1 (b) —1

A-12: @) A = -1 (b) ¢(x,y,2) = 2x3yz% — xyz + y* + K, for any constant K

A-17: The line integral is independent of path because it is of the form {-F - dr with F
being a conservative field. The value of the integral is 1 + 7.

A8}

A-19: rte”™

A20:@a=1B=7 (b)e—Ple+1)

A-21: (a) 0 (b) Yes. In fact F = Vf with f = sinx + 2y — cosy + ¢*. (c) —4

A-22: (a) V x F = 0. F is conservative. (b) - F-dr = 27

A-23:(@)a=-1,b=3  (b) f(x,y,z) = xye* + yz> + C works for any constant C

(© me™—2  (d) me™ — 32

A-24:(a) A=2,B=3 (b) ¢(x,y,z) = xy?e>* + x2y> is one allowed scalar potential.
(€)6+e—2[e—1] =8 —e ~ 52817

A-25:(@)a=rm, b=3 (b) ¢(x,y,z) = x*>sin(rty) — xe? — 3ye? + C for any constant C
@©@-8 (d-3%

A-26: (a) f(x,y,z) = ye¥* + y cos? x + C works for any constant C

(b) 2¢ — e~ — 1

A-27: (a) 0.

(b) F is conservative with potential ¢(x,y,z) = x> + y? + z2. So the integral is
¢(ai,a2,a3) — 9(0,0,0) = a-a.

A28:()VxF=0 (b)Z—1
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A-29: (a), (b) f(x,y) = ysin(x?) + cos(y) + C is a potential for any constant C. Because F
has a potential, it is conservative.

(c) =1 — Zsin(1)

A-30: (a) p =2, m = 2,n = 2,but q € Ris completely free (b) 4g

A-31: (a) 5[14%2 - 1] ~ 3426 (b)sinl+ 3 ~ 23415

A-32: 27T + %

A33: ()18 (b)3-e

A% @r() =ti+ (1+5)j+sintk O n=Zi+(1+5)j+k (©F -
A-35: (a) -5

N[ —

(b) One possibility is the path consisting of the line segment from (2,2) to (2, —3),
followed by the line segment from (2, —3) to (1, —3), followed by the line segment from
(1,-3) to (1,1).

Another possibility is the path from (2,2) to (1,1) along the parabola 27x> — 80x + 54.
A-36: One possibility is the path consisting of the line segment from (0,0) to (0,1),

followed by the line segment from (0,1) to (2,1), followed by the line segment from
(2,1) to (2,0).

Another possibility is the path tracing out the half ellipse (cos t+1, +sin t) , with ¢

Vs
running from 7t to 0.

A-37: See the solution.
A-38:a =14

A-39: (a) V x F = [—(b+2)xcos(x?z) + (b + 2)x>zsin(x?z)| j + (6 — a)x2e3 k
by a=6b=-2 (o) f(x,y,2) = xye¥ + sin(x?z) + C for any constant C
(d) 3¢ +sinl— 1

A-40: (a) 2 =153 (b) 5[14%2—1] ~ 3426  (0)sinl+ 3 ~ 2.3415

A-4l: (@) A=-4,B=-2  (b) ¢(x,y,2z) = —x*y?z + yz® + C with C being an arbitrary
constant. (c) —2 (d) —% ~ —1.5417 (e) %

A-42: () v(t) = (B, 8, ) b)) = (§ +1, 842, -L +3> (©) k(t) = ﬂ#

- (2+2)%2
(d) 2T* + T°

A4 @8 BF  (O-¥E-1)~-7744 (@ (0,0,-3)

* -

Answers to Exercises 3.1 — Jump to TABLE OF CONTENTS

A-l:r(x,y) = xi+yj + (T +xy)k
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A-3: (a) No (b) Yes (c) Yes (d) Yes (e) No

A-4: (a) No. (b) Yes. (c) No. (d) Yes. (e) Yes.

A-5: (a) No (b) Yes (c) Yes

A-6: (a) A, F (b) B, E ©G,]J (dH, L

A-7:(a) (x,y,z) = 2+ WCOSQ 2+ \[COSG 4+sinf),0 < 60 < 27
-

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

A-l: 2x+y+9z=2

A-2:2x+y+z=6
A3iz=-3x-3z+1

A-4: (a) 2ax —2ay +z = —a? (b)a = %
A-5:x+3y—-2z=1

A-6:y =2x -2

A-7: The tangent plane is %x - %y —z= —%.

The normal line is (x,y,z) = (-1,2,3) + (&, - &, —1).

A-8: £(1,0,-2)
-9 (\/LE’ -1, —%) and (—\%, 1, %)
A-10: +(3,-1,-1)
A-11: (@) (1,0,3)  (b)(3,3,-1) (9 r(t) =(1,1,3) +¢(3,3,-1)

A-12: 49.11° (to two decimal places)

<

Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

. 116
A-1: ﬁﬂf

A2: Z[(1+4a2)"?

— 1]

A-3: 527

A 4[9V3-8vZ 41

A-5: (a) F(x,y) \/1 + fx(x,y)2 + fy(x,y)? (b) (i) 577 de Sé dr \/4317 (if) 32 327

A-6: 255[ 271 ~ 1132.9
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A-13: (a) 47ta®3  (b)3abc  (c) %

—_
—
[«}]
~
AN Wl

A-17: 97

A-18: (@) 1(0,z) = 3(3—2z) cos0i+2(3—z)sinfj+zk

(b)1
A19: (0,0,4/5)
A-20: 27T

A-22; Y27

A-23: om

A-24: (0,0,2/3)
A-25: 4
A-26: 81

(b) %
() 3

A-27: (@) r(Y,0) =e'sinfi+Yj+e cosfk 0<Y<1,0<6<2r

z

2422 =¢Y

0<0<2rm,

N

N
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(b) 2 [(1 +e2)3/2 - 23/2} () (1 —é?)

A-28: 1271

A-30: —20 7t

A-31:3

A-32: 27

A-33: 27

A-34: 1927

A35 (@ x+y+z=1+m/4 (b)F[2v2—-1]

A-36: (a) Yes. See the solution for the explanation. (b) See the solution for the proof.

A-37: (a) (i) r(u,v) = (u, v, %(16—2u—4v)> k u=>0,v=>0u+2v<8

(a) (i) r(u,v) = (4cosusinv, 4sinusinv, 4cosv) O0<u<2m 0<0v<
(a) (iii) r(u,v) = (u, v, V1+u?+0?) u? + 0> <99
orr(u,v) = (ucosv, usinv, v1+ u?) 0<0v<2m 0<u<+v99

W

(b) 3271[1—%

A38: @5 () f+3
A-39: -3

L o

Answers to Exercises 4.1 — Jump to TABLE OF CONTENTS
Al (@A (BB (9C (@A (¢B

A-2: No.

A-3:

A4 @V -F=3VxF=0

b)YV -F=y?>—2>4+x2,V x F =2yzi —2xzj — 2xyk

(c)V-F:\/leTyz,VxF:O

(d)V-F:O,VxF:\/xny2

A5 (a) 2 (b) (xe¥ —2x)i+y(1—eY)j+zk
A6:()k=-3 (k=2 (Qk=-2
A7: @3 ()2r ()-2a (d32
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A-8:(a)a= -3 (b)a=4 (c)a=12

A-9: (a) F cannot have a vector potential.

(b) Two solutions are A = (22 — y?)xi — 3yz%j and A = $xz%1 + J(x2 — 22)yj.

A-10: (@) D = { (x,y,2) | x* +22 #0 } b)VxF=0onD ()V-F=1onD
(d) F is not conservative on the domain D of part (a).

Al @a=p=-

(b) Any function of the form g(x,y,z) = xyz + w(z) will work.

A-12: (a) See the solution

b))V x (Qxr) =20 V. (Qxr)=0 (c) 1095km/hr

A-13: See the solution.

L 4

Answers to Exercises 4.2 — Jump to TABLE OF CONTENTS
A-1: See the solution.

A-2: See the solution.

A3: (), (b)

A-4: (a), (b) 3 a3

A5 (a) -8lm  (b)2|V] ©2V|+8n

A-6: (a), (b) 27

A7:@z  (b)0

A-12: (a) V - F(x,y,z) = 0 except at (x,y,z) = (0,0,0), where F is not defined.

(b) 47 (c) No. (d)4m (e)0

A-13: (a) r(0, @) = sin ¢ cos 01 + 2sin ¢ sinfj 4 2 cos ¢ k 0<0<2mr, 0<g@p<m
(b) 167t (c) 1671, again
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A-18: 27

A-19: 37t

A-20: 2

A-21: 271

A-22: (a) %7( (b %7(

A-23: (a) V-F = 0if (x,y,z) # 0 and is not defined if (x,y,z) = 0.
(b)y4r ()0

(d) The flux integrals {{; F-fidS and {fs F-fidS are different, because the one point,

(0,0,0), where V - F fails to be well-defined and zero, is contained inside S; but is not
contained inside S».

A-24: 72
A-25:(a)3  (b)—14nm
A-26: —2F 35/2

A27: (@0  (b) Pr

A-28: 471

A-29: T

A-30: 127

A-31: 187 ~ 39.37

A-32: 571

A-33; [g - %} a3

A-34: (a) -8v2mr  (b)8V2m () 16127
A-35: See the solution.

A-36: See the solution.

A-37: (a), (b) 367

A38: §

A-39: (a) %(—1,—1,1) (b) ~Z% () -8l¢

A40: @V -F=2+2z  (b) n25° =479l

(c) Let S be an oriented surface that encloses a solid V and has outward pointing normal.
Ifz = —ﬁ — 1, where |V| is the volume of V and z is the z-component of the centroid

(i.e. centre of mass with constant density) of V, then {{; F-fidS = —9. One surface which
obeys this condition is the unit cube (with outward normal) centred on (O, 0, —%)

A41: (@) ¥E ()20 ()18
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A42: @) § + 7
(b) SXUW% F-fdS is zero if and only if d = —b.
(©) SSUWUS F-fAdSiszeroforalla,b,c,d.

A43: ()47 (b)O.

A-44: See the solution.

A-45: See the solution.

A-46: 3

A-47: 97143 + 971a?
A-48: See the solution.
A49: ()0 (b) Yr
A-50: 30 4247t

A 4

Answers to Exercises 4.3 — Jump to TABLE OF CONTENTS

A-1: See the solution.

A-2: See the solution.

A3 @1 ®1  (©0
A-4: See the solution.

A-5: —54

A-6:9

A-8: —6

A9: (a)

y )y =2 +4z+4

(b) -5
A-10: —3
A-11: 54
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. 10
A-12: 10

AB@-F ®F (©No.

A-14: 54

A-15:(a) L, =0 b)) =m QL=mr

A-16: (a) Qx — Py = 0 except at (0,0) where it is not defined.
(b) -2t (c) No. (d)o (e) —27
A7 @5 O F+3

A-18: 3%

.3
A-19: 37
A-20: A = -2
A-21: —7t
A-22: §C1 F-dr =0and §C2 F.-dr =27

A-23:(a) 4+ 5[5°/2-1] ~1.3484  (b) 3

A-24: (a) The projection of the curve on the xy-plane (i.e. the top view of the curve) is a
circle. See the solution for more details.

(b)®0  (b) (i) 0
A-25: 6x2 +3y* =1

A 4

Answers to Exercises 4.4 — Jump to TABLE OF CONTENTS
A-1: See the solution.
A2: (@)2mr  (b)27
A3

A-4: 81

A-5: 127

A-6: T

A-7:8

A-8:1

A-9: 47

A10: ()8 (D)4V3
A-11: (a)
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(2,0,0)

i

b)S={(xyz)|x*+y*+22=4,x>0,y>0,z>0} with
(6, ¢) = 2cosfsin ¢ i+ 2sinfsin ¢ j+2cos ¢ k, 0<6< %’ 0<¢<

and

fi = cos@sin @i+ sinfsingj+cospk = %r(@,(p)

(c) —4r

A-12: (a) —128m, (b) —1267t
A-13: 47

Ald @8 ()43

A-15: 51/4

A-17: -2

(b) - F-dr =10
A22: —7r

N[
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A-23: 247t

A-24: 2/371R?

A-25: 3

A-26:. —27T

A-27: 247

A-28:(a) V xF = (1-2xz)j (b) 20/3
A-29: (a) 187 (b) =187

A-30: (@)D = { (x,y,2) [x>0,y>0,2>0}

(b) The domain D is both connected and simply connected.
(0 V xF=(2x-1/x)k

(d)2In2 — 24

(e) No. F is not conservative.

AB3l:(@)a=2,b=-1 (b) &

A-32: —15

A-33: 127

A-34: Rewrite § E - dr as a surface integral. For the details, see the solution.

A-35: /27T

.2
A-36: 33

A-37: (a) One possible parametrization is r(r,0) = rcos i +rsinfj +rk with0 <r <1,
0<o<m.

(b) 7
. 4
&> )

Answers to Exercises 5 — Jump to TABLE OF CONTENTS
A-1: (a) True (b) True (c) True (d)False (e) True

(f) That depends. If k = 0, the curve is part of a straight line. If x > 0 it is part of a circle
of radius

(g) False. (h) False. (i) False.
A-2: (a) False (b) False (c) False (d) False (e) True (f) True
(g) False (h) False (i) False () True

A-3: (a) False. (b) N(t), B(t) (c) True. (d) False. (e) False. (f) True.
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A-4: (a) decreasing (b) f(x)is D

(0) 1(8) = cos i +sinfk +sinf coshj, 0 <0 <27

(d) We want parametrisation (d) with domain |u| > 2,0 < v <5.
(e) One possible answer is r(t) = 1,0 <t < 1.

HC=6 (g){ (a,b,c,d)|a,b,c,dallrealand b = c } (h) 2
(i) (1) True (2) False (3) False (4) False (5) False

(j) Any vector field whose divergence is 1 everywhere will work. One such vector field is
F = xi.

(k) negative

A-5: (a) false (b) false (¢) true (d) false

(e) true, assuming that the second derivatives of the vector field exist and are continuous.
(f) silly, but true (g) true (h) false (i) false (j) false

A-6: (a) False (b) False (c) True (d) True (e) True (f) True (g) True

(h) False
A-7:(a) P, <0 (b) Qx >0 (c) V x Fis in the direction of +k at A
(d) Scl F-dr>0 (e) SCZ F-dr<0 (f) F is not conservative

A-8: (a) False (b) True (c) True (d) False (e) True (f) False (g) False

(h) False (i) True () True
A-9: (a) True (b) False (c) True (d) False (e) False (f) True (g) True

(h) False (i) False () True
A-10: (a) False. (b) False. (c) True. (d) False. (e) True. (f) False.
(g) False. (h) True. (i) False.

A-11: (a) True (b) False (c) True (d) False (e) True (f) True (g) True
(h) False (i) False () True

A-12: (b)

A-13: (a) False. (b) False. (c) False. (d) True. (e) False. (f) True. (8)
False. (h) False. (i) True. (j) False.

A-14: (a) True (b) False (c) True, assuming that r(t) is not indentically 0.

(d) False (e) False

A-15:

(@) 2xy + €Y sinx + xe** (b) y*1—zj (c) (iii) (d) False.

A-16: (a) True (b) True (c) True (d) False (e) True (f) True (g) True
A-17: (a) True (b) False
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A-18: (a) True (b) False

A-19: (a), (b), (c) See the solution. (d) Yes
A-20: (a) yes (b) no (c) no (d) yes
A-21: (a) True (b) True (c) False
A-22: (a), (c) See the solution. (b) 87th?

(d) No
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SOLUTIONS TO PROBLEMS
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&> <&

Solutions to Exercises 1.1 — Jump to TABLE OF CONTENTS

S-1: (a) Since, on the specified part of the circle, x = y/a? — y? and y runs from 0 to 4, the
parametrizationis r(y) = 4/a? —y?i+yj, 0 <y < a.
(b) Let 0 be the angle between

e the radius vector from the origin to the point (a cos 6, asin ) on the circle and
e the positive x-axis.

The tangent line to the circle at (a cos 6, asin 0) is perpendicular to the radius vector and
so makes angle ¢ = 7 + 6 with the positive x axis. (See the figure on the left below.) As
8 = ¢ — 7, the desired parametrization is

(x(¢),y(p)) = (acos(¢p— F),asin(¢p— F)) = (asing, —acos¢p), F<p<m

Yy Yy (07 a)

¢ s~_(acosf, asinb)
22 442 = a2
(acosf,asinb)
6 6
x x
w2 42 = a?

(c) Let 6 be the angle between

e the radius vector from the origin to the point (a cos 0, a sin #) on the circle and
e the positive x-axis.

The arc from (0,a) to (acos 6, asinf) subtends an angle 7 — 6 and so has length
s =a(% —0). (See the figure on the right above.) Thus § = 5 — 2 and the desired
parametrization is

—
=
~—~
9}
?/
<
~
93}
N—
N—
Il
~/~
AN
(@)
]
»
VS
N
|
Q| »
——
N}
92]
—
=}
/~
N
|
| @»
N—
N——
(@]
9}
N
N[N
AN

5-2: We can find the time at which the curve hits a given point by considering the two
equations that arise from the two coordinates. For the y-coordinate to be 0, we must have
(t—5)2 =0,i.e. t = 5. So, the point (—1/+/2,0) happens when ¢ = 5.

Similarly, for the y-coordinate to be 25, we need (t — 5)? = 25, s0 (t —5) = +5. When
t = 0, the curve hits (1,25); when t = 10, the curve hits (0, 25).

So, in order, the curve passes through the points (1,25), (—1/+/2,0), and (0,25).
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S-3: The curve “crosses itself” when the same coordinates occur for different values of ¢,
say t; and tp. So, we want to know when sint; = sint; and also t% = t%. Since t; and ty
should be different, the second equation tells us t; = —t;. Then the first equation tells us
sint; = sinfy = sin(—#;) = —sint;. Thatis, sinf; = —sinty, so sint; = 0. That happens
whenever t; = 7tn for an integer n.

So, the points at which the curve crosses itself are those points (0, (71)2) where 7 is an
integer. It passes such a point at times ¢t = 7rn and t = —7n. So, the curve hits this point
27tn time units apart.

S-4: Pretend that the circle is a spool of thread. As the circle rolls it dispenses the thread
along the ground. When the circle rolls 0 radians it dispenses the arc length 6a of thread
and the circle advances a distance 6a. So centre of the circle has moved 6a units to the
right from its starting point, x = a. The centre of the circle always has y-coordinate a. So,
after rolling 0 radians, the centre of the circle is at position ¢(6) = (a + a6, a).

Now, let’s consider the position of P on the circle, after the circle has rolled 6 radians.

From the diagram, we see that P is a cos § units above the centre of the circle, and a sin 6
units to the right of it. So, the position of P is (a + a6 + asinf,a + acosf).

Remark: this type of curve is known as a cycloid.

S-5: We aren’t concerned with x, so we can eliminate it by solving for it in one equation,
and plugging that into the other. Since C lies on the plane, x = —y — z, so:

1=x2—%y2+3zzz (—y—z)z—iyz—i—?)zz

= Zyz + 427 4 2yz
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Completing the square,
_ 1, y\?
1=+ (22+)
2

Since y is small, the left hand is close to 1 and the right hand side is close to (2z)2. So

2
(222) ~ 1. Since z is negative, z ~ —% and 2z + % < 0. Also, 1 — % is positive, so it has a
real square root.

_ _y_z— z
1 2z +
1 yz Yy

— Al - —< =z

S-6: To determine whether the particle is rising or falling, we only need to consider its
z-coordinate: z(t) = (t — 1)(t — 3)2. Its derivative with respect to time is

Z/(t) = 4(t—1)(t — 2)(t — 3). This is positive when 1 < t < 2 and when 3 < t, so the
particle is increasing on (1,2) U (3,) and decreasing on (0,1) U (2,3).

If r(t) is the position of the particle at time ¢, then its speed is |r'(f)|. We differentiate:
1 .
r(t) = —e'1i— t—2j+4(t— 1)(t—2)(t-3)k
So, (1) =-1i—1jand r(3) = —61—3 i — 5. The absolute value of every component of r(1)

is greater than or equal to that of the corresponding component of r(3), so |r(1)| > |r(3)].
That is, the particle is moving more swiftly at t = 1 than at ¢ = 3.

2
Note: We could also compute the sizes of both vectors directly: |r'(1)| = \/ (%) +(-1)?,
2 2
and |[r'(3)| = \/(%3) + (—%) :

S-7:
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The red vector is r(¢ + 1) — r(t). The arclength of the segment indicated by the blue line
is the (scalar) s(t + h) — s(t).

Remark: as h approaches 0, the curve (if it’s differentiable at t) starts to resemble a
straight line, with the length of the vector r(f + /1) — r(t) approaching the scalar
s(t + h) — s(t). This step is crucial to understanding Lemma 1.1.3 in the CLP-4 text.

S-8: Velocity is a vector-valued quantity, so it has both a magnitude and a direction.
Speed is a scalar — the magnitude of the velocity. It does not include a direction.

S-9: By the product rule

d
a[(r xt') 1] =@ xt) "+ (ex1”) "+ (xrx1) 1"
The first term vanishes because ' x ¥ = 0. The second term vanishes because r x 1" is

perpendicular to 1. So

%[(rx v)-r"] = (rxr)-1"

which is ().

S-10: we are told that r(¢) L ¥/(t), so that r(t) - ¥'(t) = 0, for all . Consequently
d ,» d B S
SO = S0 ()] = 26(0) - £(1) = 0

So |r(t)|? is a constant, say A, independent of time and r(t) always lies on the sphere of
radius v/A centred on the origin.

S-11: We have R
v(t) =r(t) =5vV2i+ 5 j+ 5 k

and hence

v(t)| = [¥(t)| = 5|V2i+etj+e k| = 5v/2 + 10t 4 p—10t

Since 2 + e!% 4 ¢710F = (¢ + e_5t)2, that’s (d).

S-12: We are told that
r(t) =acosti+asintj+ctk

So, by definition,
velocity = v(t) = ¥'(t) = —asinti+acostj+ck

speed = ﬁ(i,‘) = |r'(t)] = Va2 + 2

dt
acceleration = a(t) = 1"(t) = —acosti—asintj

As t runs over an interval of length 27, (x, y) traces out a circle of radius 2 and z
increases by 27tc. The path is a helix with radius 2 and with each turn having height 27rc.
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S-13: (a) Since ¥'(t) = (2t,0,t?), the specified unit tangent at t = 1 is

- (2,0,1)
\/5

b) We are to find the arc length between r(0) and r(—1). As ds — /442 t4 the
( g dr

0
arc length = f VAR + 4 dt
-1

A

T(1) =

The integrand is even, so

1 1 1
arclengthzj Va2 4+ dt:J WA+ 2 dt = [%(4—1—1‘2)3/2]0: 1[53/2 _g]
0 0

S-14: By Lemma 1.1.3 in the CLP-4 text, the arclength of r(¢) from t =0tot = 1is
S(l) % (t)’ dt. We'll calculate this in a few pieces to make the steps clearer.

r(t) = (t, \Etz, t3>
%(t) = (1,v61,3¢)

B 0] = Vs (Ve s (30 = VI 69 = (o 1 =54
dr

a(t)‘dt:fo1 (32 +1)dt =2

[

S-15: Since
x'(t) = a[ cos® t —sin® t] = acos 2t
y'(t) = 2asintcost = asin2t
Z(t)=0b

we have

SO =\ UPR Y (02 + 202 = Va4 82

As the speed % (t) is constant, the length is just 9 T = /a2 + b2 T.

S-16: Since r(t) is the position of the particle, its acceleration is »”(t).

r(t) = (t +sint,cost)
' (t) = (1 + cost, —sint)
t"(t) = (—sint, —cost)

" (t)] = Vsin?t 4 cos? t = 1
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The magnitude of acceleration is constant, but its direction is changing, since r”(t) is a
vector with changing direction.

S-17: (a) The speed is

ds ,
S =)=

= \/(2cost—2tsint)2—|— (ZSint+2tcost)2+t4

=\V4+42 +t

=2+t

<2cost—2tsint, 2sint + 2tcost, t2>‘

so the length of the curve is

2 ds 2 B> 20
length —JO adt—L(Z—kt )dt = [2t+§]0_?

(b) A tangent vector to the curve at r(7) = (— 27, 0, 7/3) is
v () = <2cos7r—27rsin7r, 2sin 7t 4 27T cos 7T, 712> = (-2, =27, %)

So parametric equations for the tangent line at r(77) are
x(t) = —2m —2t
y(t) = =27t
z(t) = /3 + 2t

S-18: (a) As r(t) = (3cost,3sint, 4t), the velocity of the particle is

r'(t) = (—3sint,3cost, 4)

(b) As %, the rate of change of arc length per unit time, is

ds

(Y = (3 _
a(t)—\r(tﬂ—]( 3sint,3cost,4)| =5

the arclength of its path betweent =1and t = 2 is

2 ds 2
Ldta(t)—fl dt5=5
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S-19: (a) We can parametrize the circle x> +y? =9 as x() = 3cos 0, y(8) = 3sin 6 with 0
running from 0 to 271. As z = 2x 4 3y, the ellipse can be parametrized by

x(0) =3cosf, y(0) =3sinb, z(0) = 2x(0) + 3y(0) = 6 cosf +9sinfh, 0 <0 <27

(b) As

= X0+ 07+ (0

= \/9sin29—i—9c0529—|—36sin29—|—81c0526f10851r10cos€
— /45 + 45c0s2 6 — 108 sin 6 cos 0

the circumference is

27T

s = /45 + 45 cos2 @ — 108 sin 6 cos 6 d@
0
S-20: (a) As
¥'(t) = —sintcos® ti+sin® t costi + 3sin’tcost k = sint cost( — costi +sintj + 3sintk)
d
—S(t) = |sintcost\\/coszt—I—sin2t+9sin2t = |sintcos t|\/1+9sin’ t

the arclength fromt = 0tot = 7 is

/2 /2
f ds( t)dt = f sintcos V1 + 9sin? t dt

o dt 0
1
:ﬁ \fdu with u =1+ 9sin®t, du = 18sin t cos t dt
1 2 10
- 1w
18 L3 1

= 2%(10\50—1)

(b) The arclength fromt = 0to t = rris

ds

dt t)dt = J |sint cos t|\/1 + 9sin? t dt Don’t forget the absolute value signs!
0

/2 /2
:ZJ | sint cos t|V/1 4 9sin® dt—ZJ sin t cos tV/1 + 9sin? t dt
0

since the integrand is invariant under t — 77 — . So the arc length fromt = 0to t = 7T is
just twice the arc length from part (a), namely £ (10v/10 — 1).

146



S-21: Since

B 2t
1.
r'(t):t2i+tj~|—§k

ds,. _\/4 R 1_\/2 2, 1
SO =Y =B +P+ 7= <t+2> =4

the length of the curve is

)= [ Loau=[ (w2 =141

o dt 0 2 3 2
S-22: Since
r(t) = "1+ ")+ 22k
r’(t)—mtm 1l—|-mtm 1]_|_3 t3m/2 1k
m2
ji ¥ ()] = \/2m2t2m2 + 9Tt3m2 = mt" 1\ 2+ Ztm
the arc length is
b ds b 9
t)dt = 1N [2 4 Zpm dt
@ L mE ey
4 2+%bm 9 9
= - Vudu withu =2+ >t", du = 2 pm—1
9 2+%am 4 4
A2,
913 2+ 3am

gl ) )]

S-23: (a) Since y = y/x and z = 2xy = %x3/2,
r(x) =xi++/xj+ §x3/2f<

For the remaining parts of this problem we will also need
'(x) =1+ =] +Vxk
r(x) = f]
1 . 1
r(x) = x3/2 j+ NG

q/l—i———i—x— \FJ“F

k
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(b)

?ds ’ VI JE 2 32
ds = —dx—f < + > [ X+ =x } =3+18 =21
Jc o dx 2y/x 3 0

(c) Denote by

r(x) the position of the particle when its first coordinate is x,
R(t) the position of the particle at time f,

x(t) the x—coordinate of the particle at time ¢, and

s(x) the arc length of the curve from the origin to r(x).

We are told that |[R'(¢)| = 9 for all t. So

R(t) =r(x(t)) = R(t) = r’(x(t))%(t)

— 9= [R()] = T (x() 1 0) = (2 1(t)+\/x<t>>%<t>

In particular, if the particle is at (1, 1, %) at time 0, then x(0) = 1 and

1 dx dx
9 = (er\fl) 30 = 0 =6

so that q .
R'(0) = r'(1)d—f(0) = (i Ej 12) 6 = 6i+3j+6f<

(d) By the product and chain rules,

dx

Q.
~

2
) +7(+0) G )

) so that

Q.|Q~

We saw in part (c) that 9 = [R/(t)| = <2F+F>

dx 1 B
E(t) =9 (2m+«/x(t)>

Differentiating that gives

d>x 1 dx
() =-9 <2F+«/ ) ( 3/ZJFZX/X(T)>EU)

In particular, when t = 0, x(0) = 1 and 9¥(0) = 6

Sro-+() ()




R"(0) = (1) (6)> + ' (1)(—6) =36 (—Alzj—f— %k) —6 (i+ %j+f<>

= —6i-12j+12k

5-24: Given the position of the particle, we can find its velocity:
v(t) =1'(t) = (cost,—sint, 1)
Applying the given formula,
L(t) =rx v = (sint,cost,t) x (cost,—sint,1).

Solution 1: We can first compute the cross product, then differentiate:

L(t) = (cost + tsint)i+ (tcost —sint)j — k
L'(t) = tcosti—tsintj

IL'(t)| = \/ﬁz(sinzif—l—cos2 t) = Vi = |t]

Solution 2: Using the product rule:

L'(t) =1'(t) x v(t) +1(t) x v'(¢)

= (sint,cost,t) x (—sint, —cost,0)
=tcosti—tsint]

IL'(1)] = V2 cos? t + P2sint2 = |t]

S-25: (a) Since z = 61, y = & = 3u?and x = ¥ = i3,

(b)
r'(u) =3u?i+6uj+6k
v (u) = 6ui+6j

—(u) = |[¢'(u)| = V/9u* + 36u2 + 36 = 3(u® +2)

J ds:Jlgdu:f?)(uz—kZ) du = [u3+6u]1:7
c o du 0 0
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(c) Denote by R(t) the position of the particle at time ¢. Then

R(t) =r(u(t)) = R'(t) = r’(u(t))%

In particular, if the particle is at (1, 3, 6) at time #;, then u(t;) = 1 and

61+ 12) + 12k = R (1) = /(1) {1 (1) = (304 6]+ 6K) S (1)

which implies that 9% (#;) = 2.

(d) By the product and chain rules,

u u 2y
R'(t) = r’(u(t))% — R"(t) = 1" (u(t)) (d—>2 + r'(u(t))d—

In particular,

Simplitying

S-26: (a) According to Newton,

mr”(t) = F(t)  sothat  r’(t) = —3ti+sintj+2e* k

Integrating once gives
2 A
Y(t) = —352—c05t7+62tk+c

for some constant vector c. We are told that r'(0) = vy = ”72 i. This forces ¢ = ”72 i+j-k

so that

2 2
Y(t) = (%-%) i+ (1—cost)j+ (¥ -1)k

Integrating a second time gives

2 3
r(t) = (%t—%) i+ (t—sint)j+ (%eZt—t> k+c
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for some (other) constant vector ¢. We are told that r(0) = ry = % k. This forces ¢ = 0 so
that

i

r(t) = (T - 5) i+ (t—sint)

-
+
A/~
N| =
Q
Ny
|
-
~

>

(b) The particle is in the plane x = 0 when

So the desired time is t = 7t.

(c) At time t = 7, the velocity is

% 372

¥ () = (7_T> i+ (1—cosm)j+ (e*7—1)
= - i+2j+ (- 1)k

=

S-27: (a) Parametrize C by x. Since y = x? and z = %x3,
s 25 2 K
r(x):xz+x]+§ k
r'(x) =14 2xj+2x*k
' (x) =2j +4xk
d
S I(x) =1+ 42 +4xt =142

and
3

_ 2 317 _
fds f—dx—f 1+2x)dx—[x—|—§x}0—21

(b) The particle travelled a distance of 21 units in 4 time units. This corresponds to a
speed of 2 i /2

(c) Denote by R(t) the position of the particle at time ¢. Then

R(t) =r(x(t)) = R'(t) = r’(x(t))%

By parts (a) and (b) and the chain rule

_ds ds dx — (142x >dx . dx 6
T dt dxdt dt dt — 1+2x2
In particular, the particle is at (1,1, 3) at x = 1. At this time ‘é’t‘ = e +2X1 =2and
, dx R - N N .
R =r (1)dt (1+2j+2k)2=2i+4j+4k
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(d) By the product and chain rules,

R(1) :r'(x(t))% — R() = (x(0) (55) + ¥ (x(0) S

Applying & to 6 = (1 + 2x(t)?) 4X(t) gives
2 2

dx 5 dox
o_4x<dt> +(1+2) 55
In particular, when x = land ¥ =2,0 =4 x 1(2 ) 3)% gives % =~ and
R' = (2§ +4K)(2)°  (1+2] +2K) 5 = 5 (2 + ] 2K)

S-28: The question is already set up as an xy-plane, with the camera at the origin, so the
vector in the direction the camera is pointing is (x(¢), y(f)). Let 6 be the angle the camera
makes with the positive x-axis (due east). The camera, the object, and the due-east
direction (positive x-axis) make a right triangle.

camera x(t)

tan6 = 7
X

Differentiating implicitly with respect to t:

xy yx/
dt X2

2
do 2o (W —yx' _ x xy' —yx'\ _xy —yx
dt x2 WY X2 T 212

S-29: Using the Theorem of Pappus, we can calculate the surface area and volume of a
pipe with the same length and radius as this pipe. So, we need to find the length of the

pipe, L.

sec? 0

dr

T (Va1

ar ~ (vatl)

A Pl =41

dt

10

L:J (f+1)dt = 60
0
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A pipe with radius 3 and length 60 has surface area 60(27 - 3) = 3607 and volume
60(7T - 32) = 5407

S-30: In general a helix can be parametrized by

1(0) = acosfi+asinfj+ bk

Our first task is to determine a and b. The radius of the helix is 3 cm, so a = 3 cm. After
10 turns (i.e. 8 = 2071) the height, b6, is 1 cm. So b(2071) = 1 and b = ﬁcm/rad. Thus

1(0) = 3cos 01+ 3sinj + 5-0k.

With each full turn of the helix (i.e. each increase of by 277) the height of the helix
increases by 27tb = f—ocm. So if we can determine the length of wire in one full turn of the
helix, we can easily determine how many turns the helix goes through in total, and from
that we can determine the total height of the helix.

Ast'(0) = —3sin0i+3cos0j + -k we have &5 = [r'(0)| = /9 + So the length

of one full turn of the helix is

27T 1 1
L Vo 20072 99 =20\ 002

and 1000cm of wire generates

400 40072 "

1000

21y /9 + 400n2 n‘\/ 9+ 4007r2

turns. Each turn adds {5cm to the height, so the total height is

50 1 50
1 10 1
T\/9 + 10072 T\/9 + 1002

Remark. We can check that this answer is reasonable by taking advantage of the fact that
each coil adds only a very small height (relative to the radius). So we expect the length of
one coil to be about the same as the circumference of a circle of the same radius, namely

671. If we were making actual circles of the wire, there would be 1% of them. Stacking

up at 10 per centimetre, this would make a pile of height 617?0100 cm. Since this number is

also approximately 5.3cm, we feel our result is reasonable.

~ 53 m

S-31: Define u(t) = e*' %t (t). Then
du wdr wdr
T — (1) = ae® dt(t)+e W(t)

_ dr s o dr
= ae dt(t) g’k — ae dt(t)

= —ge'k
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Integrating both sides of this equation from t = 0to t = T gives

aT _ 1,
u(T) —u(0) = —g=—k
so that . .
efT—1. dr e —14 e*t —14
u(T) = u(0) - & k= F0) - g" Tk =v g~k
Substituting in u(T) = €49 (T) and multiplying through by e=*7 gives

dr 1-e®
dt - «

Integrating both sides of this equation from T'= 0 to T = t gives

—at

e e 1,

-1 A
r(t) —1(0) = ——vo — gEk +g —2 k
so that
—ab 1—at—e
r(t) =19 — ¢ vo+ ng
-

Solutions to Exercises 1.2 — Jump to TABLE OF CONTENTS

S-1: You're asked to find the arclength of the curve from s = 1 to s = t. However,

arclength is given by s. So you're asked the length of the curve from the point where its

arclength is one, to the point where its arclength is t. That is, t — 1.

S-2: The arclength from P to P will be 0, so P is the point where s = 0. That is, r(0), or

(sin(1/2),cos(1/2),v/3/2).

S3:

Solution 1: We consider the situation geometrically. If we plot R in space (of the relevant
dimension), regardless of its parametrization, the derivative at a point will give a

vector tangent to R, in the direction the curve moves when the parameter is
increasing. Since a(tp) and b(sg) describe the same spot on the curve, a’(ty) and
b/(sg) will be parallel! — they’re both tangent to the same piece of curve.

Furthermore, as t increases, so does s, so the direction of increasing ¢ is the same as

the direction of increasing s. Therefore, A. holds.

1  Since we specified the derivatives are nonzero, there’s no messiness about vectors being parallel to a

zero vector.
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tangent direction

a(to) = b(So)

R

Now we consider the magnitudes of the vectors, to rule out E. Recall |a’(#)] is the
speed at which the curve changes relative to ¢; this could be any (nonnegative)
number. By the same token, [b’(s)| = 1. So, b’(sg) is a unit vector, while a’(ty) may
or may not be. Then the two vectors are not necessarily equal (although they could
be).

So, the best answer is A.
Solution 2: The chain rule gives us a relationship between b’(s) and a’(t).
db d da dt
e &[a(t(s))] =~ 3 ds

So, the vectors 4 I b and g‘;‘ differ only by the scalar function dt So, at any point

along the curve, these vectors are parallel.

Furthermore, we know that f and s are positively correlated: as t increases, so does

s, because we’re covering more arclength. So L is nonnegative. Furthermore, since

the derivatives are nonzero, gt is nonzero. So, b’ (sp) and a’(ty) are positive scalar

multiples of each other. That is, they are parallel, and pointing in the same

direction. However, unless % =1 (thatis, t(s) = s + C for some constant C), the
vectors do not have the same magnitude, and hence are not equal.

So, A is the best solution.

S-4: (a) The velocity vector is

r'(t) = (6sin?(t) cost, —6sintcos?(t), 3cos® t —3sin’ t)
= 3(sintsin(2t), — costsin(2t), cos(2t))

In particular, since sin(7t/3) = sin(271/3) = @ and cos(7r/3) = —cos(27/3) = 3,
r'(7t/3) =3(3/4, —V3/4, —1/2)

and the specified unit tangent vector is

o (3/4, —V3/4, —1/2)

= (3/4, —V3/4, —1/2)
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(b) The speed is
ds _
dt
= 3\/sin2(2t) + cos?(2t)

()] = ?;\/sin2 t sin?(2t) + cos? t sin?(2t) + cos2(2t)

So s = 3t and the reparametrized form is

R(s) = (2sin®(s/3),2cos®(s/3),3sin(s/3) cos(s/3))

S-5: (a) We have |r(t)| = ¢/ <1 for t < 0. So the part of the spiral contained in the unit
circle is the part of the spiral with —o0 <t < 0. As

r'(t) = ¢'(cost,sint) + e'(—sint,cost) = e’ (cost —sint, sint + cos t)

the speed
% = |1 ()] = et\/(cos t —sint)2 + (sint 4 cost)? = v/2¢!
and the arclength from t = —oo to r(t) is

s(t) = t %(E) df = Jt V2e! dFf = v/2¢!

In particular the length of the part of the spiral contained in the unit circle is s(0) = /2.

(b) The inverse function of s(t) = /2¢! is t(s) = log (\%) So the reparametrization is

R(s) = e(cost, sint)‘t_log< = iz (cos <log (\%)) , sin <log (\%)))

)
S-6: Using arctant = z, and so t = tan z:

r(t) =

( 1 arctan t

g ol NG =l arctant)

- 1 z

 \ W1+ tan?z \/1—i—cotzz,Z
- 1 z

N (\secz|' ]cscz]'z)

= (| cosz|, z|sinz|, z)

Since 0 < t,and arctant < 7t1/2 we have 0 < z < 71/2, so cos z and sin z are both
nonnegative.

= (cosz, zsinz, z)
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If we didn’t have the restricted domain, this would make a spiral going up: z is both the
height of the spiral and a radian measure. The i-component of the spiral stays between
—1 and 1, while the j-component increases. So, our spiral gets increasingly “wide,” while

staying the same “thickness.”

Due to the restricted domain, our actual curve is only one-quarter of a “turn” of this
spiral, indicated in red above.

The parameter z is a measure of height, and it is also a radian measure as the spiral turns.

-S;Z.‘
(1) = (32 1)
¢(1) = (1)
|

i (H)| = VEE+t =tV +#2

t t 2
—xv'1 d hent <0
s(t) :f x| 1+ x2dx = 561 X +x2 X t i when
1 § —xvV14+x2dx + {;xv/1 4+ x2dx  whent >0

Letu =1+ x2, %du = xdx

- ;”2 %\/ﬂdu when t <0

N {_ Sé %\/ﬁdu + S}Hz %\/ﬂdu when t > 0

B _%u3/2|%+t2 when t <0
{_%ME%/ZG + %u3/2|%+t2 when t > 0

B ¥_%(1+t2)3/2 when t <0

_{_%—F%—i—%(l—i—tz)g’/z when t > 0
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Solving for t in terms of s:
e (2¢/2 — 3s)%/3 when t <0
(35 +2—2+v2)%/3 whent >0
2 (22 —3s5)%/3 -1 when t <0
(35 +2—-2v2)23—-1 whent >0

Remembering that v/12 = [t|:

. ~/(2v2 3621 whent <0
\/(3s+2—2ﬁ)2/3—1 when t > 0

Noting that t = 0 when s = $(2v2 — 1), we find our reparametrization of (3t2, 3#%).

[(2v2-35)%3-1)], -1 [(2v2—35)?/3 — 1}3/2> when s <
[(3s+2-2v2)** 1], 4 [3s +2-2v2)*° ~1]*)  when's >

(2v2-1)

1
R(s) = <i
2 (2v2-1)

"~
Remark: after a computation with this much detail, it’s nice to find a few points to check,

to verify that our answer is reasonable. For instance, when s = 0, t should be —1, and
vice-versa. Also, we found that t = 0 corresponds to s = %(2\@ —1). So, we should be

able to verify that r(0) = R (%(2\/5 — 1)) and r(—1) = R(0).

W= W=

L o &

Solutions to Exercises 1.3 — Jump to TABLE OF CONTENTS

S-1: The curve is a circle of radius 3, centred at the origin. So, the “circle of best fit” is just
the curve itself. T is the unit vector tangent to the circle in direction of increasing t, and N
is the unit vector pointing towards the origin.

The radius of the (osculating) circleis 3, so p = 3 and x = % =

Q=

S-2: The arclength of r(t) traced out by an interval of ¢ of length 6 is 3. That is, s = 3t.

Our reparametrization of the circle in terms of arclength is
R(s) = (3sin(s/3),3cos(s/3)).
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We can calculate the vectors tangent to the circle, then normalize them (i.e. make them
length one) to find T.

v(t) =1 (t) = (3cost, —3sint) T(s) = R'(s) = (cos(s/3), —sin(s/3))
T(t) = ;:Eg (3cost, 3—351nt) (cost, —sint)

Note R'(s), because it’s parametrized in terms of arclength, has derivative vectors of
length one. So, we don’t need to normalize them (although if we did, it wouldn’t change
anything).

Note also that we can check out answers using Question 1. In that question, we found T
was i when t = s = 0; this fits with the vectors we just found.

As in Question 1, k = % So, using Theorem 1.3.3 Part (b):

dT -
S (8) =x(s)N(s)
1 . B 1
(_§ sin(s/3), cos 5/3) = 5
(—sin(s/3), —cos(s/3)) = N(s
Remember s = 3t. Using Theorem 1.3.3 Part (c):
dT ds .
(—sint, — cost) = %(3)N(t)

(—sint,—cost) = N(f)

S-3: As t increases, the arms of the spiral “flatten out,” looking like a circle of bigger and

bigger radius. So, we would expect the curvature to decrease: 11m x(t) = 0.
t—o0

S-4: & = |v(t)| = |[r'(t)] = |(e!,3, cos t)| = V2 +9 + cos? t
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Ao v(t) B r'(t)
T = o1~ o)

We use the chain rule to differentiate r(t).
(e'(cost —sint), e'(cost+sint))

/e (cost —sint)? + ¢2(cos t + sin t)2

= ——(cost—sint, cost+sint)

N
dT— 1 (—sint —cost sint 4 cost)
dr V20 B a

Since R(s) is parametrized with respect to arclength, |R'(s)| = 1.

T(s) = R'(s)
Making ample use of the chain rule, and setting U(s) = (log (s/+/2)), we have
w(s) = L

S

T(s) = \% (cosU(s) —sinU(s), cosU(s) +sinU(s))
(3—: = ﬁ (—sinU(s) —cosU(s), —sinU(s)+ cosU(s))

S-6: The circle of radius r centred at (0,7) is x* + (y — )? = r%. The bottom half of this
circle is
y=g8(x) =r—vrr—x?

So
§x) = —5— §'(0)=0

1 x? ) 1
r2 — x2 + [r2 — x2]3/2 8'(0) = r

§"(x) =

As f(x) and g(x) have the same second order Taylor approximation at x = 0,
f1(0) = g"(0) = 5.
We may parametrize the curve by r(x) = xi+ f(x)j. So

Y =it f(0)] YO =it f(0)]=i

Y= W) 0) = £0)]

oy PO P Q) )i,
O="per ~ w Y

So x(0) = f”(0) = 1 and r is indeed the radius of curvature of y = f(x) at x = 0.
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A v(t) =7 (t) = (e, 2t + 1)
B. a(t) =1"(t) = (¢',2)
C. & = |v(t) = /e2 + (2t +1)2

D. T(t) = vt (L2t+1l) ! 2t +1

| VOl Ve @12\ Ve 4 (20 +1)27 /e (2t 1 1)2
E K(t) — |V(t) X a(t)| _ ’(etlzt-l- 1) X (etlz)‘ _ €t|1 —2t|

| (%)3 VAT Rir12 (e (2t +1)2)32
&8_;

Solution 1: Note that (cost +sint)? + (sint — cost)? = 2 for all t. So, the points (x,) on
our curve obey x? + y?> = 2. That is, we have a circle of radius v/2. So, x = \/LE

Solution 2: We use the formula k = , remembering that v(t) = r'(t),

a(t) =1r"(t), and % = |r'(¢)].

v(t) =1'(t) = (—sint + cost, cost + sint)
a(t) =1"(t) = (—cost —sint, —sint + cos t)
v(t) x a(t) = [(—sint + cost)? + (cost +sin t)*| k = 2k

ds dv
- = || = a1 2 . 2:
TRl \/( sint -+ cost)2 + (cost + sint)2 = v/2
o |v(®) xalt)| _ 2k | 1
= = = —
d 2

5-9: For the given ellipse

r(t) =acosti+bsintj

(t)

(t) = —asinti+bcost]

V()| = Va2sin? t + b2 cos? ¢
t) =

a(

A\

—acosti—bsint]j
1 j k .
v(t) x a(t) =det | —asint bcost 0| =abk
—acost —bsint 0

K(t) = |V(|t‘),(>;)e|13(t)| _ ab

. 2
[a2 sin® t + b2 cos? t]3/
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Hence the maximum (minimum) curvature is achieved when the denominator is a

minimum (maximum) which is the case when sint = 0 (cost = 0). S0 kKmax = b‘Z—Z and

Kmin = 2

S-10: Parametrize the curve by r(t) = ti+ ¢'j. Then

PR i ds _ _ S e V() 146l
vty =i+ej v(0)=i+] T =B =V1it+e T(t)_|v(t)|_>/@
ay =i a0)=j T)=v2 1(0) - 2. - 1

(a) We're given y in terms of x, so let’s use Part (e) of Theorem 1.3.3:

2
3/2 3/2
1+ (87 [1+ ()]
_ 1 e

(b)
e The radius of the circle we want is p = % = 23/2 If its centre is at (a, b), then the
circle will have equation (x —a)? + (y — b)? = 23. So, we will find its centre.

e The unit vector N points from our point (0, 1) towards the centre of the circle. Since

the radius of the circle is 23/2, the centre of the circle will be at (0,1) + 23/2N. So,

-]
V2

we'll find N.
e Since N is a unit vector perpendicular to T = 1%, we know N will be either
or it
i

e Using Part (1.3) of the proof of Theorem 1.3.3:

2
R:\/Li(iJrj)xN
o —it]
N =

V2

So, the centre of our circle is at point (0,1) + pN = (0,1) + 23/2 ;ZJ = (-2,3). Then

the equation of the circle is (x +2)? + (y — 3)> = 8.
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S-11: (a) Think of

r(t) = (t,1) — (sint, cost)
The (t,1) part gives the position of the centre of the wheel at time ¢. The other part gives
the position of the thumbtack with respect to the centre of the wheel. In particular,

o attimet =0,r(0) = (0,0). The thumbtack is on the ground (i.e. at y = 0).

o Attimet = 71, r(7r) = (71,2). The thumbtack is at its highest point (i.e. at y = 2)
and is above the centre of the wheel at x = 7.

o Attime t = 27, r(271) = (271,0). The thumbtack is back on the ground (i.e. aty = 0)
and is below the centre of the wheel at x = 271.

o Attimet = 37, r(371) = (37,2). The thumbtack is again at its highest point (i.e. at
y = 2) and is above the centre of the wheel at x = 3.

o Attimet = 47, r(4m) = (47,0). The thumbtack is back on the ground (i.e. at y = 0)
and is below the centre of the wheel at x = 4.

Here is a sketch of the curve.
r(t) = (t —sint, 1 — cost)

(b) Since

r(t) = (t—sint, 1 —cost)
v(t) =1'(t) = (1 —cost, sint)
%(o _ [v(t)] = V2= 2cost
a(t) = v'(t) = (sint, cost)
i i k A
v(t) x a(t) = det [1—cost sint 0| = (cost—1)k
sint cost 0

the curvature
lv(t) xa(t)]  |cost—1| 1

) = = =
<(t) lv(t)[3 (2—2cost)3/2  23/2,/1 —cost

(c) The radius of curvature at time t = 77 is

1 1
A R VSN R

(d) At time 71, the tack is at r(71) = (71,2), which is at the top of its trajectory. Looking at
the sketch in part (a), we see that, at that time N(7r) = —j. So the osculating circle at time
t = 7 has center

() + o(m)N(7r) = (71,2) +4(0, 1) = (71, -2)
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and radius p(7) = 4. So the equation of the osculating circle at time 77 is

(x —m)*+ (y +2)* = 16

S-12: The velocity vector is

v(0) = x'(0)i+y/(6)] = cos (376%) i + sin (376%) ]
Consequently the speed
ds
@(9) =v(f)|=1 = s(0) =0+5s(0)
Since s(0) is zero when 6 = 0, we have s(0) = 6 and hence

A

T(s) = v(s) = cos (37s?) 1 + sin (3 715%) j

so that
dt

Kk(s) = % —(s)| = | - 7ssin (A7s?) i + 7s cos (3 71s?) j| = 7s

-13: The curve is y = y(x) = *°/3. Since y(x) = x? and y”(x) = 2x, the curvature is

() = %(x)\ I 24

1+ (o] e

3/2

We’d like to find the critical points of x(x), but differentiating it looks messy. Since x(x)
has only nonnegative values, its maxima correspond the the maxima of the function
x2(x). So, we find the critical points of x?(x) instead, to save ourselves some
computational toil.

d , d o 4x? 8x 16x° 8x(1 + x*) — 3 x 16x°
0 d—K(x) =5 5 = =—3 = .
x X (1+x%) (1+ x%) (1+ x%) (1+x%)
~ 8x(1—5x%)
(1+x4)*

Note that x(0) = 0 and x(x) — 0 as x — 0. So the maximum occurs when x = +1/+/5.

&> <&

Solutions to Exercises 1.4 — Jump to TABLE OF CONTENTS

S-1: T is tangent to the curve, while N is perpendicular to it.
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Using the right-hand rule and B = T x N, B points out of the page (towards the reader).

To see this, point the fingers of your right hand in the direction of T, and curl them
inwards until they are in the direction of N. To do this, your thumb must be pointing
towards you, not away from you. Your thumb shows the direction of T x N.

5-2: In this equation, s stands for arclength.
When we take a very small interval from ¢ to ¢ + }, the change in arclength s(t + h) — s(t)
is approximately |r(t + h) — r(t)|, because our curve is approximated by a straight line.

So, S =s(t) o 0] Jeading to 45 = 4| = |v(1)].

The magnitude of velocity is speed; in this text we generally call this v. That is,
v = |v(t)|. This leads to the potentially confusing (but standard) convention that s stands
for arclength, while v stands for speed.

S-3: Solution 1:
Curves a and b are the same curve, just parametrized differently (replace t with —t to
convince yourself if the picture isn’t enough). So, they ought to have the same torsion.

As in Example 1.4.4, we imagine that the curve is the thread on a bolt. Take a look at your
right hand. If your thumb is pointing up (corresponding to the +z direction), and you're
looking at the tip of your thumb, your fingers curl anticlockwise. Imagine a screw has
threads matching the curves a and b, and we turn it anticlockwise. The screw would
move down — not in the same direction as our thumb. So these curves are not
right-handed helices, so they have negative torsion.

The curve csits entirely in a plane (the plane x = 0) so its torsion is zero everywhere.

Solution 2:
Here is the conventional computation for both a(t) and b(¢). (The upper sign is for a and

165



the lower sign is for b.)

cost, F2sint, +1/2)
—sint, F2cost, +1/2)

(t) = (
(1) = (
a(t) = (—cost, +2sint, 0)
(1) = (
() = (

S-4: (a) If k(s) = 0, then % = x(s)N(s) = 0'so that T is a constant. As aresult $(s) = T
and r(s) = sT + r(0) so that the curve is the straight line with direction vector T that
passes through r(0).

(b) If T(s) = 0, then 948 = —7(5)N(s) = 0 so that B is a constant. As T(s) L B,
ds

d PO N
4 (+(s) - (0) - B=1T(s)- B=0
and (r(s) — r(0)) - B must be a constant. The constant must be zero (set s = 0), so A
(r(s) —r(0)) - B = 0 and r(s) always lies in the plane through r(0) with normal vector B.
(c) Parametrize the curve by arc length. Define the “centre of curvature” at s by
1 -

rc(s) = r(s) + @N(s)

Since x(s) = g is a constant and 7(s) =0,

d - 1 A - 1. .. R
grc(s) =T(s) + p. [T(s)B —x(s)T] = T(s) + pos [0B —xT] =0

o>

Thus r(s) = r. is a constant and [r(s) — r.| = Kl—o lies on the sphere of radius Klo centred on
r.. Since 7(s) = 0, the curve also lies on a plane, so it is a circle.

S-5: (a), (b): T points in the direction of the curve; N is perpendicular to it, in the same

plane, pointing towards the centre of curvature. Using the right-hand rule in the picture,
we see B is pointing to the left.
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T

(c) The torsion is zero, since the curve lies in a plane (the plane x = y).

-_6: (a) As
/ t —t\ 2 P AP ) ds / 2t 2t _
f(t)=(e"+e )i+ (e —e ") j+2k a(t):\r(t)]:\/4+2e +2e V2 (e +
'(t)= (' —e )i+ (e +e7")j Y(t) x () = —2(e' +e )i+ 2(e —e!)j+4k
the curvature
K(t) = v(t) x a(t)]  2v4+2e% +2e 2 1
= ((31_)3 [4 + zeZt + 2e—2t]3/2 2+ et + o2t

(b) The length of C between r(0 ) and r(1) is

tds f t i 1
Cgndi= \f el e dt:fz[e e }O:ﬁ[e—ﬂ
S-7: The point (2,4, 8) occurs when t = 2.
v(t) = (1,2t,3t?) v(2) = (1,4,12)
a(t) = (0,2,6t) a(2) = (0,2,12)
ﬁ(t):(om) %(2)2(006)
dt T dt T
v(2) x a(2) = (24,-12,2)
v(2) x a(2)| = 2V181

Now, we use a formula for torsion:
d
INCCELOR 10
v(t) x a(t)[?
(24,-12,2)-(0,0,6) 3
(24/181)2 181

T(2) =
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S-8: For the specified curve

. 2, P

r(t) = ti+ §]+§
v(it)="r(t) =i+ t2f<

a(t) =1"(t) =j+

i j k

(t) x a(t) =det [1 t ¢

01 2t

= 1?1 -2tj + k

(1) = ) i+tj+12k
v(t)  VIFE2 4
v(t) xa(t)] V144824t

W=TNor T arerape

()  ti-2tj+k
()] Vi+42+4#4

T VIRV taR A

|

i ] k
2 -2t 1

1 t 2

—(t+283)14+ (1 —-tYj+ (2t + )k

VI+2+83V1+42 + 4

_(v(t) xa(t)-al(t) 2

(t) = v(t) xa(t)2 1442+t

S-9: First, some preliminaries:

r(t) = (t3, t, e"t) r(5) = (53,5,656)
v(t) = (31,1, ce) v(5) = (3-5%,1,ce™)
a(t) = (6t,0,c% ") a(5) = (6-5,0,c%)
d—"t‘(t) — (6,0, ) %(5) — (6,0,%%)
v(5) x a(5) = (c%e>,15¢e> (2 — 5¢),

—30)




Second, we figure out what value of ¢ makes 7(5) = 0.

(v(5) x a(5)) - % (5)
0=10) = E <P
0= (v(5) x a(5)) - (5)

If c = 0, then r(t) = (#3,t,1), and so the entire curve is contained inside the plane z = 1.
(Its torsion is zero everywhere — not just at t = 5.)

Consider the case ¢ = % When t = 5, our curve (and its osculating circle) passes through
the point r(5) = (5%,5,¢). The normal vector to the plane of the osculating curve is the

binormal vector B(5) = % Since we don’t need the normal vector to the plane to

be a unit vector, we can take as the normal vector to the plane simply v(5) x a(5), or
(e/25,3e,—30). Then, an equation of the plane containing the osculating circle is
(e/25)x + (3e)y — 30z = —10e. An equivalent equation for this plane is

(1/25)x + 3y — (30/e)z = —10.

S-10: (a) Since ¥'(t) = (2t,1,3t?), we have r'(1) = (2,1,3). So the normal plane must pass
through r(1) = (1,1,1) and be perpendicular to (2,1,3). The equation of the normal
plane is then

2c-1D)+(y—1)+3(z-1)=0 or 2x+y+3z2=6
(b) As

d
v(t) =1 (t) = (2t,1,38) S V142 19

dt
a(t) =v/(t) = (2,0,6t) v(t) x a(t) = (6t,—6t%,—2)

a(t)]  2v1+92 49t
3 1 +4r24+9H)p/2

-11: First some preliminaries.

v(t) = r'(t) = —sinti+costj + k
r

a(t) =

(a), (b) From v(t) we read off




From a(t) = S5 (1) T(t) + x(¢) (%(t))zN(t), and the fact that % = 0, we read off that

a

k(t) = <—(t)) la| = % N(t) = Tl = —costi—sint]j

So radius of curvature is % = 2 and the centre of curvature is

1 . A e aa A e n
{r(t) + @N(t‘)L_ﬂ/6 = [(COStl +sintj+ tk) 4+ 2( — cos t1 — smif])]t:ﬂ/6
= [—costi—sintj—i—tf(}
t=m/6
V3, 1, ma
——71—§]+€k
(c) From
i i k A
v(t) x a(t) =det | —sint cost 1| =sinti—costj+k
—cost —sint 0
[v(t) x a(t)]? =2
we read off
N v(t) x a(t) 1 . .. 1 .
B(t) = = —sinti— costj+ —Kk
D= ey = vz T 0
so that
1 V3 1 .
B(7/6) = —1———j+—=k
(/6) =5 5t 5t 5

S-12: (a) The velocity vector is
' (t) = (—sin(t), cos(t),2t)

So a tangent vector at t = ris T = (0, —1,27) and a parametric form for the tangent line
is

R(t) = r(m) +tT = (~1,0, %) + £(0, —1,27)

(b) The speed is

% = (1) = V1+48
By Theorem 1.3.3 of the CLP-4 text, the tangential component of acceleration is

d%s d 4t
t) = — = —/1 42 = ——
IIIT( ) dtz dr + ﬁ—kéltz
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S-13: (a) The velocity vector of the particle at time ¢ is

r'(t) = (cost —cost + tsint)i+4 (—sint +sint + tcost)j+ 2tk
= tsinti+tcostj+2tk

so its speed at time 1 < t < o0 is

d
d—i = /(1) = VE2sin? t + 2 cos? t + 412 = /5 ¢

(b) The unit tangent at time ¢ is

1 A
o \—@(sinti—l—costj—|—2k)

So the tangential component of acceleration at time ¢ is

2
ar(t) = %(t) T(t) = sinti+costj+2k

(c) The (full) acceleration is

() = %r’(t) = (sint+tcost)i+ (cost—tsint)j+2k

So the normal component of acceleration at time ¢ is
an(t) = a(t) —ar(t) =tcosti—tsint]

(d) Another formula for the normal component of acceleration is () (% (t))ZN(t). So the

magnitude of the normal component of acceleration is x(¢) (£ (t)) ? and, by part (c),

2
x(t) (%(t)) = |tcosti—tsintj| =t

Consequently, by part (a),

k()= —1 -1

<%(t)>2 5t

S-14: (a) If the point (x,y, z) is on the curve, it obeys both z = x2 + y2 and z = 8 — 2x and
hence is also obeys

Py =8-2x or (x+1)2+y*=9
So the curve C is also the intersection of

(x+1)%*4+y*=9 and z=8-2x
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(x + 1) + y? = 9 is the circle of radius 3 centred on (—1,0) and can be parametrized by
x(0) = —1+3cosb,y(f) =3sinf, 0 < 0 < 27. So C can be parametrized by

x(0) = -1+ 3cosb
y(0) = 3sin6
z(0) =8 —2x(0) =10 — 6¢cosO
orr(f) = [-1+3cosf]i+3sinfj+ [10 — 6 cos O] k

with 0 < 6 < 271.

Remark: if we tried to parametrize the equation as (x,y,z) = (x, V8 — 2x — x2,8 — 2x),
then we would miss the negative y-values.

(b) Note that r(6) is (2,0,4) when 6 = 0. As

v(0) = r'(0) = —3sinfi+3cosfj+ 6sinfk v(0) =3j
a(f) = v/(#) = —3coshi—3sinfj+ 6cosfk a(0) = —3i+ 6k

the unit tangent vector at (2,0, 4) is

G
and, since v(0) x a(0) = 9k + 184, the unit binormal vector and curvature at (2,0,4) are

a(0) 2i+k <(0) = v(0) xa(0)] _9v5 5
~ [v(0) xa(0)] 5 - vOPp 33

<
—~

(=)
~—

X

and the unit normal vector N at (2,0, 4)

N(0) = B(0) x T(0) = \%(2”12) xj = \%(Zﬁ—i)
S-15: We have
v(t) =7 (t) = Pi+V2tj+ k V() = V22 +1 =2 +1
a(t) =v/'(t) = 2ti+/2j
(a) The unit tangent vector is
T(h) = v(t) _ 21 +2t7+k
lv(t)| 241
(b) Since
i ] k A
v(t) x a(t) =det [2 2t 1| = —V2i+2tj -2k
2t V2 0
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The curvature is

o) = v(t) xa(t)]  vV2+424+2t2 V2
O VOP (241 (2+1)?

(c) Note that r(2) is (§,2v/2,2).
Solution 1: Since

A N 24 AT
(1) = 2tl—|—\/§]_2tt i+2tj+k

2+1 (2 +1)
. 47 4++/27 414227+ k
(2) = z+\f]_4 14+2v27+
5 25
 471-3v2j -4k
N 25
5v/2
T'(2)| = ==
'T'(2)] 75

the principal normal vector N at (%, 2v2,2) is

T(2)  4i-3v2j-4k
@) 52

Solution 2: Perhaps we’d rather not differentiate T (t).

t “ . ~
vt)xalt) v KB«
X a

By = I <20 _ ELT WA (v 4R)

T(2) = % (4i+2\f2j+f<>

J(2) = B(2) x T(2) = % (—i+2\f2j—4f<> x % <4i—|—2\/§f+f<>
- (55 (3)+ (35

S-16: (a) The curve x% 4+ y? = 1 is a circle of radius 1. So we can parametrize it by

x(0) = cos6, y(0) =sinf, 0 < 0 < 27. The z-coordinate of any point on the intersection
is determined by z = 1 — x — y. So we can use

r(0) = cosfi+sinfj+ (1 —-cosh—sinf)k 0<6<2r
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(b) As

v(0) =r'(8) = (—sin6,cosf,sin6 — cosb)
a(0) =v'(0) = (—cosb,—sinb,cos b +sinb)
we have
ds 2 2 - 2
36 - = [r'(9)| = \/sm 6 + cos? 0 + (sin@ — cos 0)

= /2 —2sinf cos 0
= 4/2 —sin(26)
v(0) xa(f) = (1,1,1)

and the curvature

_Iv(®) < a(6) V3
(%)3 [2 —sin(26)]3/2

(c) The curvature is

o a maximum (minimum) when 2 — sin(26) is a minimum (maximum),
o which is the case when sin(20) = 1 (sin(20) = —1),
o which in turn is the case when 6 = 7, 5” 0 = 3,71,

EXa
So
V3 i j R
maximum curvature = ——————— = /3 at — 4+ -+ (1-V2)k
217 SRR
L
and ——- "=+ (1+V2)k
AR +(1+v2)
V3 1 A B
ini ture = ———— == t —— 1+ L4k
minimum curvature (P2 3 a 7 + i +
P .
and ————=+4k
V2 V2
S-17: For r(t) to be well-defined, we need t > 0 (because of the In t.)
v(t)=r’(t)=2ti+2j+%f< jj \/4t2+4+1/t2—2t-|—1

The unit tangent vector is

r(t)  2ti+2j+1k 22142+ k
@l 2l 2241
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so, from §1.5 of the CLP-4 text,
ds

45+ 27 2127+ 2tj+k  Ati+ (—4t2+2)j— 4tk
iy jtk_ j

SN =) = 52
_ 2 (212 -1)j -2tk
(222 +1)°
Since the length of 2¢7 — (2t — 1)j — 2tk is

+17% (22 + 1)

\/4t2+(2t2—1)2+4t2 =82+ 44 — 42 +1=/4t4 + 42 +1

=4/(22+1)2 =2 +1

we have
con 2T (22 -1)j -2tk
N(t) = 22 +1
and
T/(1)] 2t22+1 2t
k() =3 = 1= 2
@) 2t+1 (2241)
S-18: (a) Since
2, .
(t) =1+ = 5 =] —I— k
r(t) =tj+ 12k
d
S =) = Ve =t/1+ 2

dt
the length of the curve is

1
ds f W1+ 2dt = [ 1+ £ 3/2] - 1[23/2 1]

,art

(b) For the specified curve
r(t) = cos(t)i +sin(t)j + t k
Y'(t) = —sin(t)i+cos(t)j+ 1
f—l—

f) - _sin(t)i+2s(t)

/(1) = fcos(t)\i/; sin(f) ]
T (rja) =

oy T i
NC/) = ] ~ s
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ds

(c) Recalling, from §1.5 in the CLP-4 text, that
(1) S (N ()

T(t) =

we have, by part (d),
o Tl 1/v2 1
U = e T e 2
5-19: (a), (b), (c) We have
r(t) = (t+2,1-t,1/2)
v(t)=r(t)=(1,-1,t)
CH =l =vaie
a(t)=v'(t)=(0,0,1)
(d) By §1.5 of the CLP-4 text, the curvature
- MO a0l Lo V2
($(1)° R+ 4P
(e) Since $(¢) = V2 + t2, we have i—ii(t) = ﬁ and
d?s . ds\ 2.
ST +x(1)(5;) N

(0,0,1) =a(t) = Tl

t L -1Y ﬁm (V2 + 2)°N(t)

V22 V242 24

V2o (t, —t, 12)  (~t,t,2)
2+tzN(t)_(o,o,l)— o 2
which implies
N = et 2)
22+ 12)
() Att =0
r(0) = (2,1,0)
< (1,-1,0)
T(0) =
N(0) = (0,0,1)
. N - 1 1
B(0) = T(0) x N(0) = \—5(1,—1,0) x (0,0,1) = \—@(—1,—1,0)
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The osculating plane is the plane through r(0) which is perpendicular to B(0), which is

1
\—ﬁ(—l,—l,O).{(x,y,z)—(Z,l,O)}:0 or x+y=3
(g) The osculating circle has centre
1 . 1
r(0) + —K(O)N(O) = (2,1,0)+1/5(0,0,1) = (2.1,2)
S-20: First some preliminary computations.
£, »
t)=—i+-——=j+tk
r'(t) = Pi+V2tj+k () =Vt 22 4+1 =141
() = 2t1 + V2]
i ] Kk
Y(t) xr"(t) =det |2 2t 1| = —V2i+2tj— V2P k
2t V2 0

(a) The unit tangent vector is

r(t)  Pi+2tj+k

T(t) = i) 2+

(b) The curvature is (see §1.5 of the CLP-4 text)
) <) |- V2i+2t] V22K V2 4+ 42 4218

) ¥ (£) (2 +1)° (2+1)°
2
(241
(c)Att=0
x(0) =2

For ease of computation, we’ll find B first, then use it to find N.
(e) Att = 0, the binormal vector is (see §1.5 of the CLP-4 text)
/ /" oY)
(O):r(O)xr(O): i_
¥(0) x"(0)] V2
(d) At t = 0, the principal normal vector is (see §1.5 of the CLP-4 text)
N(0) =B(0) x T(0) = -ixk=]j

A
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S-21: The curve has

r(t) = (t, t, %)
v(t) =7 (t) = (2, 1, 3t%)
a(t)=1"(t) = (2,0, 6t)

(a) In particular, a (non unit) tangent vector at r(—1) = (1, -1, -1) is¥'(-1) = (-2,1,3).
So the tangent line to the curve at (1, -1, —1) is

(x,y,z) —(1,-1,-1) = t(-2,1,3)

or
x=1-2¢
y=—-1+1¢
z=-1+23t

(b) Atr(1) = (1,1,1),
v(l)=r(1) =(2,1,3)
a(1) =1"(1) = (2,0,6)
v(1) x a(l) = (6,—6,—-2)
So the unit binormal vector is
N _v()xa(l)  (3-3-1) 1
B0 = (1) xa)] = 16,3, 1] ~ V19

An equation for the osculating plane is

(3,-3,-1)
3,-3,-1)- (x—-1,y—-1,z—-1)=0 or 3x —3y—z=-1
y 4

S-22: (a) For this curve

r'(t) = tsinti+tcostj+ 2tk

ds ,
T =Y ()] = V51

so the length of the curve fromt =0tot = T is

T ds \/5 712
i (1) dt = xff tdt = =

(b) The unit tangent vector is

(sinti+ costj +2k)




so that
dT 1

(t) a(t) N(t) = E(t) = —5(Cost1—smt])
which implies that
E(0)
1 A n 1 1
k(t) V5t = %](costz—smt])‘ =7 — x(t) = =

S-23: (a) For the specified curve

42 55 42
r(t) = (Ttm,Ttm,t(z— t))
v(t) = (2v2t172,2¢/211/2,2 — 2t)

V] = \/8t+ 8t +4 — 8t + 412 = \ [4(1 + 2t + £2) = 2(1 + 1)

The rocket is at z = 0 when t = 0 and when t = 2. So the distance travelled is
2 2 12 2
f |v(t)|dt:J 2(1+t)dt=2 {t—i——} =8
0 0 2]

(b) The rocket is at its maximum height when % =2 —2t = 0. Thatis, when t = 1. Its
velocity then is (2v/2,2v/2,0). A unit vector in this direction is T(1) = % (1,1,0). Thatis
the unit tangent vector.

At general t, the unit tangent is

v(t)  (V2t12,32t12,1 — 1)

() = V()] 1+t
So
F0p) — (V2t7V2/2,72t712/2, 1) (V2t1/2,/2t1/2,1 — 1)
(H) = 1+t - (1+41)2
(1) = (vV2/2,42/2,-1)  (v/2,4/2,0)
- 2 B 4

= (0,0, -1/2)

So the principal unit normal vector is




(c) As

dT d
SO =00-12) 1) =v(1) =4
the curvature
T 1
"= = s

S-24: (a) For the specified curve

t) = (cos3 t,sin3t,2 sin? t)

t) = (—3cosztsint 3sin? t cos t,4 sin t cos t) = sintcost(—3cost,3sint,4)

T

v

(
(

v(t)| = sin t cos /9 cos? t + 9sin? t + 16 = 5sin f cos t

So the distance travelled is

/2 /2 5 /2 5
J |v(t)|dt:f 5sintcostdt = = sin t‘ =
0 0 2 2
(b) Since
v(t) = sint cost(—3cost,3sint,4) |v(t)| = 5sintcost
we have
<o) 1 , - 1/ 333
T(t) —W—g(%’)costﬂsmt,é}) T(7/6) _§<7§’T’ )
YN Py iy 1,333\ 3
T'(t) = 5(351nt,3cos t,0) T'(7/6) = 5(7’ E,0) = ﬁ<\@' 1/0)
T’ ﬂ/6 1 A . A
l( 4,4V/3,-6)

S-25: (a) The curve x? + y2 = 1is a circle of radius 1. So we can parametrize it by
x(0) = cosf, y(0) =sinf, 0 < 0 < 27. The z-coordinate of any point on the intersection
is determined by z = x?> — y?. So we can use the parametrization

r(0) = cos0i+sinfj + [cos? 6 — sin® 0] k
—cosfi+sinfj+cos(20)k  0<6<2m
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(b) Note that r(8) = (1/+v/2,1/+/2, 0) when 6 = Z. For general 6, the velocity and
4 8 y
acceleration are

v(0) = r'(0) = —sinfi+ cosfj —2sin(20) k

a(8) = v/(0) = —cos0i—sinfj —4cos(20) k
In particular,

1, 1, .
1, 1,

d

(74 = v(m/4) = 5

(7'[/4)><a(7'c/ ) = —V2i++2j+k
\v(rt/4) x a(r/4)| = /5

So the curvature \v(r/4) x a(rt/4)] 1
v(7T X a(7t
N 72V -

(c) The binormal to C at (1/\@, 1/4/2, 0) is

v(rt/4) xa(n/4)  —V2i++2]
v(rt/4) xa(m/4)| V5

So the osculating plane to C at (1/+/2,1/v2, 0) is

(—\@,\@,1)-(x—l/\@,y—l/\fZ,z—O):O or
z=v2x—2y

B(m/4) =

(d) From the computations in parts (b) and (c), we have

oty = 2D AUV

R v(r/4) xa(m/4)  —V2i+V2j+k
B = Ny cateml = s
N(r/4) = B(7t/4) x (n/4):_i[;’

So the osculating circle has radius 1/x(7w/4) = 5 and centre

r(7/4) = x(7/4) + % = (1/v2,1/v2,0) =5(1/v2,1/v2, 0)

= (-2v2, -2v2,0)
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S-26: We'll solve this problem twice, using two different strategies. (The second strategy
will be much more efficient than the first one.) Both strategies use that F = ma. Since we
are told that m = 2, we just have to find the acceleration a at (1,1, 1).

Strategy 1: In the first strategy, we'll find the position r(t), as a function of time ¢ and
then differentiate twice to get the acceleration a(t).

o First we’ll find any old parametrization. We are told that, on the path, z = x and
z = y%. So let’s use y as the parameter. Then x = z = 2. So the parametrization is
R(y) = v?i +yj + y* k. (We'll save the notation “r(t)” for the parametrization with
respect to time.)

o Next we'll reparametrize to get the time ¢ as the parameter. Since

dR
— =2yi+j+2yk

= 4y 2yi+j+ 2y k| = /1 + 812

We are told that the speed % = 3 for all . So, choosing our zero point for time to
coincide with our zero point for s, we have s = 3¢, or t = 5/3 so that

dt 1
~4/1+8
dy 3 +8y°
We could now integrate to get t as a function of y. But that looks quite messy.
Fortunately we only need the acceleration at one point, namely (1,1,1). We'll now
see that that saves quite a bit of work. Pretend that we have integrated to get t as a
function of y and call the answer #(y). Call the inverse function, which gives y as a

function of ¢, y(t).
o We now have r(t) = R(y(t)). So, by the chain rule,

r'(t) =R'(y(t) y'(¢)
r'(8) = R'(y(6)) y"(£) + R" (y(1)) v/ (1)
We're only interest in the time, call it f, at which y(tp) = 1. The acceleration at time
to is
r"(to) = R'(y(t0)) y"(to) +R"(y(t0)) ¥'(to)”
=R'(1) y"(to) + R"(1) ¥ (t)?
= [28+] +2k] y'(to) + [22+2K] ¥/ (to)’
so we just have to find y'(tp) and y” (o).
o We know that g—; = %\/W So by the inverse function theorem
d 3
FriChvies o2
d’y ., 13(16y(1)y (1))
a2 =2 sy
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In particular

, 3 3
t — = :1
v (to) T+ 8y (k)2 118
_ 24y(to)y'(te)  24x1x1 8

(R T8 A (RE R

o Finally, the force is
2" (tg) = 2[2i +j+2Kk] y"(to) +2[27 + 2Kk] ¥/ (tp)?
16 A A A~ ~ A
::—§{m+4+2k}+2pz+2ﬂ
4. 16, 4.

=—-1-—j+-k
CHCR
Strategy 2: The second strategy will be based on (see §1.5 in the CLP-4 text)
d?s - ds\2..

In this problem, we are told that % = 3 for all ¢, so that j—jg = 0 and
a=9%N

So we just have to find the curvature, x, and unit normal, N, at (1,1,1). We have already
found one parametrization of the path in strategy 1, namely

R(y) =y*i+yj+y°k
Note that R(1) = (1,1,1). Since
R'(y) =2yi+j+2yk
R'(y) _ 2yi+j+2yk

T =R~ ites

2i+2k 16y 2yi+j+2yk

T'(y) =
V1482 2 [1+8y732

_ 2842k 2i+j+2k  2i-8j+2k

3/
) 3 8 27 27
we have (again see §1.5 in the CLP-4 text)
(D)
k(1) =
W R)
. T/(1
N(l) — A/( )
T'(1)]
. (1) 2i-8j+2k
F=ma=2x9(1)N(1) =18 =18
(LNG) [R'(1)] 27V1+8x 12
4 .
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r(t) = 26 + 3] + /3t%k
v (t) = 21 + 2tf + 2+/3tk
the unit tangent vector is

A

T(h) = i+tj++/3tk  i+1tj+ 3tk

i+ 4+ VBtk] V1482

(b) Since

Q(t) _j+3k _4ti+tj+\/§tf< _ —4fi+j++/3k
dt VI+42 (14427 (1+42)%7

the unit normal is

—4fi+j++/3k  —4ti+j++/3k
| — 4t +j + /3K 24/1 + 4f2

N(t) =

(c) The unit binormal is

=

—/3(1 4 4t2)j + (1 + 41?)
2(1 + 412)
V3, 14

= *T]—F 21(

which is 3.

(d)dThe.plane contains the point r(0) = 0 and is perpendicular to the vector —‘/ng + %f(
and so is

—V3y+z=0
(e) The curvature is
:‘ ‘ ‘ _|—4tl—|—]+\fk\ 1
dt (1+412)%% 28 +24] +2V/3tK|
4 + 16t2 1 B 1

(1+42)%22V1+42 (14 42)%?

(f), (g) The denominator (1 + 411f2)3/2 of x(t) is a minimum at t = 0 and grows without
bound as |t| increases. So the denominator never achieves a maximum. Consquently, the
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curvature x(t) achieves its maximum value when t = 0 and so at r(0) = (0,0,0). The
curvature never achieves a minimum.

(h) Since vV3v+w =4kandv— 3w =4j,

i_g . V- 3w

Sinceu = 2iand v =j +/3Kk,

4 N 4

r(t) =tu+t?v=a(t)u+b(t)v+c(t)w  witha(t) =t b(t) =1t>, c(t) =0

The curve (a(t),b(t)) = (t,12) is the curve y = x2. It is “curviest” at the origin, which is
consistent with part (f). It becomes flatter and flatter as |¢| increases, but never achieves
“perfect flatness”, which is consistent with (g).

Y

S-28: The three unit vectors T, N and B are mutually perpendicular and form a right
handed triple.

B

N
T
So
N=BxT NxT=-B BxN=-T
and
dN dB . dT G an 8 A
E:ExT—i—BxE:—TNXT—l—BX(KN):TB—KT

S-29: (a) Parametrizing the curve by 0 gives
r(0) = (sin(20),1 — cos(26),2cosb),
v =r1'(0) = (2cos(20),2sin(20), —2sin6),
a=1"(0) = (—4sin(26),4cos(26), —2 cosb).
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At the point P, we have 0 = 71/4, giving instantaneous values

r=(1,1,v2), v=(0,2-v2), v=|v[=v6 a=(-40-V2).

= noar = 75 (—V2,2v2,4) = =(-1,2,2V2), since
i ] k
vxa=|0 2 —v2|=(-2v24v2,38) v x a] = V104 = 21/26
—4 0 —v2
This leads to
SRS B LA S I B L (61,12
N=BxT=—1|-12 2v2|=-——=(6v2,v2,2) = ——(6,1,V2).
N N L )= O

Finally,
vxal _ 226 _2V2V13_ VI3 _ V3

© (Vo) VB 33 9

(b) Now parametrize the curve by time, ¢, and write v =r'(¢), v = |f'(t)| and a = ¢ (¢).
Note that in part (a) we used v, v and a with different meanings We use the dot product
to extract the tangential and normal components of a = d 7 0T 4 2« N:

a-T:<%T+UZKN)-T
:%T.m(v%m.f

Since T is a unit vector, T- T = |T||? = 1; since T and N are perpendicular, T- N = 0.

_do
- dt

This gives us a nice way to compute %, the rate of change of speed.

do

5 =2 T=(23 —24/2) - f(oz —/2)
1
— Lorerg=_2u
Similarly, a - N = 02k, so
1« 9 -1 9% 13
2__ . = =
v'=_a-N= \ﬁ\ﬁ( 2,3,-2v2)- (6,1,v2) = —5— =3

Hence |v| = +/3; since v = |v|, v = /3. Then
v=v[T =0T = ¥2(0,2,-v2) = (0,v2,-1).
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S-30: (a) The position, velocity and acceleration are

r(t) = (cost, sint, csint)
v(t) =1'(t) = (—sint, cost, ccost)

a(t) =r"(t) = (—cost, —sint, —csint)

(b) The speed is

v(t) = |v(t)] = V14 c?cos?t

(c) By Theorem 1.3.3.c in the CLP-4 text, the tangential component of the acceleration is

d?s . d \/m_ —c?sintcost
drr  dr V14 c2cos?t

(d) y(t) = sint and z(t) = csint obey z(t) = cy(t) for all ¢. So the curve lies on the plane
z=cy.

S-31: (a) For the specified curve r(71) = (—4,0, 1) and

r(0) = (4cosf, 2sinb, %cos(29))

/ : 1.
v(f) =1(0) = (—4sm0, 2cos @, ~5 sm(29)>
a(9) =1"(0) = (—4c059, —2sinf, —Cos(20))
v(m) = (O, -2, 0)
a(m) = (4,0, 1)
v(m) x a(m) = (2,0, 8)

v(m) xa(m)| _ 1(2,0,8)] _ V17
M= TRmE . T 0, 20F 4
(b) The radius is
1 4
k(m) V17

(c) Set R(t) = r(t?). Then

R/(t) = 2t ¥ ()
R"(t) =27/ (#?) + 421" (1)
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In particular,

1
R(va) = (4,0, 5)
R = 2vv() (0, 447, 0
speed = [R'(v/71)| = 4/t
acceleration = R"(v/71) = 2v(m) +4ma(r) = (1671, —4, —4n)

The normal component of the acceleration has magnitude

(L) = Y sy = a7

L g a

Solutions to Exercises 1.6 — Jump to TABLE OF CONTENTS

S-1: We want to add up all the tiny pieces of arclength ds along a curve C. So, the integral
would simply be . ds.

To see this another way, if we define r = (x(t), y(t),z(t)) for a < t < b to be the equation
of C, we could calculate the arclength as:

Jb ['(£)|dt = fb \/X’(t)2 +y'(1)2 +2/()2dt

This fits the form of Definition 1.6.1 with f(x,y,z) = 1, so we write it as a line integral as
§c 1ds, which is equivalent to { ds.

S-2: (a) The curve is r(0) = x(0)i+ y(0)j with x(8) = r(6) cos6, y(0) = r(0) sind and
61 < 6 < 6,. On this curve
v(f) = j; (0) = x'(0)i+y'(8)] = [r'(6) cos 6 — r(0) sinb]i + [r'(0) sin 6 + r(6) cos 0]]

j; (8) = \/['(8) cos 8 — r(8) sin 6] + [/(6) sin + 7(6) cos ]

= /7" (0)2 4 1(0)?
Hence

62 ds
J Feeras = | F(xt0).y(e) g5 a0

0, . dr 2
— glf(T(G)COS 0,7(0) sme)\/r(f))z + <@(9)> 0

(b) In this case f(x,y) =1,7(6) =1+ cos, 6; = 0and 6, = 27,
27T 27T
f ds:f \/[1+c089]2+[—sin9]2d9:J A/2(1+ cos ) de
C 0 0
27T 0 27T
=J q/4c052—d9:2f
0 2 0

0 & 0 9"
cosi‘d9—4fo cos§d9—851n§ =8
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S-3: The square has four sides, each of which is a line segment.

e On the first side, y = 0 and dy = 0. That is, we may parametrize the first side by
r(x) =xiwith0<x<1.

e On the second side, x = 1 and dx = 0. We may parametrize the second side by
r(y) =i+yjwith0 <y <1.

e On the third side, y = 1 and dy = 0. We may parametrize the third side by
r(x) = xi+ j with x running from 1 to 0.

e On the final side, x = 0 and dx = 0. We may parametrize the fourth side by
r(y) = yj with y running from 1 to 0.

dy=0

<
Il

0,1) _»2t  (1,1)
dx=0 dx=0
z=0 Y A z=1

(0,0) ay=0 (1,0)

So

1 1 0 0
szyzdx+x3ydyzf x2><02dx+f 13><ydy+f xlezderf 0% x ydy
c 0 0 1 1
1

N =
QW =

S-4: Following Definition 1.6.1:

)= /(555 Varp v

4 1

2 ) 4 2
= L (?@ t4) (2t +3)dt = m(f -1)+ ?@(25 -1)

S-5: We parametrize the unit circle as (cost,sint), 0 < t < 27r.

A tiny slice of the hoop with length ds has mass (x? kg/m)(ds m) = x*ds kg. So, the
entire hoop has mass:

27T 27T
f x*ds = J cos? t\/(— sint)? 4 (cost)?2dt = J cos? tdt
C 0 0

27T : 2r
B f 1+ C(Z)S(Zt) 4 = F n sm(Zt)} kg
0

274 |,

For an efficient, sneaky, way to evaluate S(Z)” cos? t dt, see Example 2.4.4 in the CLP-4 text.
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S-6: To parametrize C, we note the vector between the two points is

(2—-1,4-2,5-3) = (1,2,2). So, the line is (1,2,3) + £(1,2,2) for 0 < t < 1. That s,
x(t) =1+t y(t) =2+ 2t,and z(t) = 3 + 2¢.

1

[y +2ds = [ (+ 0@+ 20 +(3+20) VI + 2+ 2

0

1
:f 3(5+ 6t +2t%) dt =26
0

S-7: (a) In this case r(t) = ti + t%j, so that v(t) = %(t) =1+ 2tj and % = +/1 + 4t2. Hence

! 1(1+482)?
Jf(x,y,z)ds:f x(t)cosz(t)éd :J (cos0)V1+4t2dt = 1(A+4e)7
c 0 dr 0 8 3/2 |,
5%/2 —1
12

(b) In this case r(t) = (t, 3t32,t), so that v(t) = ¥(t) = (1,¢1/2,1) and &£ = V2 + 1.
Hence

2 x(t) + y(t) ds 244 2p3/2 (2 +1)3/2)
,y,z)ds = Zdt=| =2 V2ttrdt=1
JoFmwaras= | G £§t3/2+t * 72|,
8 —3%?

5-8: In the figure below, we construct a triangle with 6 = arcsec t; the hypotenuse has
length t, while the side adjacent to 0 has length 1. By the Pythagorean Theorem, the

A2 —
remaining side has length v#2 — 1, so sin 6 = sin(arcsec ) tt L

e

Remember %{log t} = % and %{arcsec t} = |t|\/1th1' In our range, 1 < t < /2, we have

t| = t.
2 1 2 1\2
f sinxds = sin (arcsect) ( ) + (—) dt
C 1 Vi —1 t

(&

o (Vrve- 1 1y,
_J 1) ¢
V2
= 1dt 1log2
J1
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5-9: (a) Since the particle has mass m = 1, Newton’s law of motion ma = F simplifies to
() =j—sintk
Integrating once gives A
¥ (t) =tj+costk+C
for some constant vector C. To satisfy the initial condition that '(0) = vy = 1 + k, we
need

i+k=r0)=k+C = C=1i
So R
Y(t) =i+tj+costk
Integrating a second time, and imposing the initial condition that r(0) = j, gives

2 2
r(t) =ti+ —]+smtk—l—]—t1—l— (1—l— )}—l—smtk

(b) The particle has x(f) = w/2 when t = 71/2. So
2
7T T\ 5 ¢
(c) The work done is

7r/2
Work = J t) dt

7r/2 .
J (j —sintk) - (i4tj+ costk) dt
0

/2
=J (t—sintcost) dt
0
2 1 /2
= 5 + E CcOS t}
2 1
-8 2
S-10: Here is a sketch of the rectangle R.
Yy n
(07 1) L3 :T (37 1)
L, __h
A
T
i R L2
0~ I ’i (3,~1)
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Its boundary consists of four line segments.

o Ly from (0,-1) to (3,-1), with i = —J
o Ly from (3,-1) to (3,1), withA =1
o Lz from (3,1) to (0,1), with i =
o Ly from (0,1) to (0, —1), with i = —1
So
fF.ﬁds:f F-(—j)ds+J F-ids+f F-(j)ds+f F. (—i)ds
C L1 Ly L3 Ly
y x y ds x ds
3 A T —— 2 0 —— — -1 2/—/%
= | U e | O vy [0 e T+ |0 9 )

= -1+ [P (-1)°] + [ -1] +0
— 268

The trickiest part of this computation is getting ds correct on Lz and L4 (remembering
that ds is the arc length traveled and so is positive, while dx < 0 on L3 and dy < 0 on Ly).
To make a more detailed computation of SL3 F - (j) ds, parametrize L3 by

r(t) = (3,1)+t{(0,1) - (3,1)} = (3-3t,1) 0<t<l
so that r(0) = (3,1) is the initial point of L3 and r(1) = (0, 1) is the final point of L. Then

)= (30 S(W=IF0)=3

and

y(B)e D dep)

1 1 N 1
J F-jds = J F(r(t)) j%(t) dt = f B3 T3 T dt= ¥ =1
L3 0 0 0

S-11: (a) Since r(t) = tcosti+ tsintj + 2k
r'(t) = (cost —tsint)i+ (sint+tcost)j+2tk

ﬁ:\r’(t) :\/(cost—tsint)2—|—(sint—|—tCOSt)2+(2t)2
dt
= /14582
r(n) = —i-nj+2rk
. r'(t) 1 . -
= e = Vissal I

(b)

f«/x2+y2ds f«/ t) +y2( d— :Lt\/1+5t2dt { 1+5t2)3/2}

[(1 +572)%/2 1]

0

15
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(c) For every t, the coordinates x(t) = tcost, y(t) = tsint, z(t) = t* obey

x(t)% 4+ y(t)? = t> = z(t) and so the curve lies on z = x? + y2.

(d) First concentrate on (x(t), y(t)). As t runs from 0 to 77, the curve (rcost, rsint)
sweeps out half of a circle of radius r. Our (x(t), y(t)) does something similar, but the
radius r = t increases from 0 to 77. Thus our (x(t), y(t)) sweeps out the beginning of a
spiral. At the same time z(t) increases from 0 to 7r%. So the curve C looks like

z

T
Y
_ Scxpds _
5-12: We use the centre of mass formulae ¥ = [ pds’ etc. To make the working clearer,
— C
we’ll break these calculations into several steps.
1
x(t) = t+§t2 X'(t) =1+t
1
y(t) = t—itz y(t)=1—t
4
z(t) = =13/2 Z'(t) = 2Vt

3

\/x’(t)2+y’() F (12 =142+ 241242+ 4t = 4/2(2 42t +1) = V2(t+1)
x(t) +y(t) _ (E+12/2) + (t—12/2)

p(x(t),y(t),z(t)) = > = > =t
des J EV2(t+1)dt _2 ;1[
xpds (t-l— t2>t\ft+1 )dt = xff < - t3+t2)d
2(2 6) _2°-103V2
5 15

22 4 3
fypds (t——t2>t\ft+1 )dt = ff (—t—+t2—|—t2>d

2_9 26 . 2°.23V2
5 B 15

+
22
zpds ( 3/2>tft+1 )dt = 4\[[ t7/2 4 t5/2>dt

4
3

210 28 _219.37V2
< )_ 7.33

193



§xpds %ﬁ 412

X = = = ~75

23.11,/2
{pds 3\f 55
o dypds _ ERE e
7 §pds 2211v2 55 '
3

210.37./2

- _ §zpds 3~ _ 4736 ~ 68

fpds — 241v2 693

After these long calculations, it’s nice to do a sanity check. Using 0 < t < 4, we see our
wire takes up space in the following intervals: 0 < x <12, -4 <y < 1/2,and

0 < z < 32/3. The coordinates of our centre of mass all fall in these intervals, which
doesn’t guarantee our answer is correct, but it is a nice sign. If, say X had been negative,
or z were greater than 11, we would have known there was something wrong.

L g a

Solutions to Exercises 1.7 — Jump to TABLE OF CONTENTS

S-1: We don’t have enough information to gauge the size of the vectors, but we can figure
out their direction. Gravity pulls straight down, so the vector —mgj points straight down.
The normal force will be normal to the curve.

WN

/
l

—mgj

S-2: This equation stems from F = ma. In that equation, a is acceleration — the second
derivative of position with respect to time. So, v is the derivative of position with respect
to time.

We previously used v as the derivative of position with respect to the parameter we use
to define our position — which was often called t, but was not the necessarily time. So
this is a good point to keep straight.

S-3: Solution 1:

For large, negative values of x, the wire is closer and closer to a vertical line. If the bead
were sliding down a vertical wire, it could do so without even touching the wire, so the
force exerted on the bead would be zero. As x approaches 0 from the left, the wire
approximates a horizontal line. If the bead were sitting on a horizontal line, the wire
would be pushing up to counter gravity. So, we imagine the magnitude of the force

exerted by the wire might increase as x increases. That is, %—V! > 0.
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Solution 2:
The net force exerted on the bead is

F =ma=WN — mgj
We dot both sides with N.

A, A A

WN - N —mgj -

Z
I
3
<]
Z

Using th i = ot (&) K
gtheequationa(t) = S5T+x () N,

2
= mgcosf + mx (a)

where 6 is the angle between j and N.

As x moves from a highly negative number to zero, 6 moves from nearly 7/2 to nearly 0.
Therefore cos 6 increases from nearly zero to nearly one. Then mg cos 0 is increasing.

Furthermore, as x increases, we see from the picture that the curvature x increases, and
speed % increases as well (kinetic energy is increasing as potential energy decreases).

So, ‘é—";f > 0.

S-4: Equation 1.7.1 defines E = %m\v|2 + mgy. The skater reaches their highest point
when |v| =0, so when y = mig. This is the same equation as a sufficiently large circular

culvert: it’s the height where all the kinetic energy has been converted into potential
energy. That's why we never even used the equation y = x?!

S-5: The skateboarder starts going back down at ys = mig, so we solve 3 m = m to

find E = 2940 X62° — 29407

Remark: we needed the diameter to be greater than 3m for the skateboarder to not be
going all the way around the culvert, but choosing r = 5 leads to an answer no different
from, say, r = 50.

S-6: From the text, the skateboarder will make it all the way around when 3(5) < mig.
ﬁrgy Eisgivenby E = %m!v|2 + mgy, the sum of the kinetic and potential energy of

the system. At y = 0, all the energy is kinetic, so E = %m|v|2, where |v| is the skater’s
velocity at the bottom of the culvert.
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So, we solve:

25 _ E _ gmP
2 " mg m-98
lv] > 5v9.8

So, a speed of 51/9.8 m/s or higher is needed. (That’s about 56 kph.)

S-7: Equation 1.7.2 tells us the normal force exerted by the track is WNA, where
W = mx|v|?> + mgk - N. (Note in our problem, the vertical direction is k, not j as in the
text.) So, we ought to find x and N.

r(6) = (3cosf,5sinb,4 +4cos0)
V(B) = (—3sinf,5cosf, —4sin )

v(0)| = d@ = 1/9sin20 + 25c0s2 0 + 16sin0 = 5

a(f) = (—3cosf, —5sin 6, —4 cos 0)
v xa=5(—4,0,3)
lvxal 25 1

0) = = ===
de
Since 39 = 0, we use the following theorem to find N:
d%s ds
T
a(f) = gL tx (d@) N
2
(—3cosB,—5sinb, —4cosh) =0+ 55N

4
N(0) = <—§ cos6, —sin#, g cos 6)

Using the given quantity |v(t)| = 5 at the specified point,
W’ = mx|v|]* + mgk -N
O=rm/4
39.2

5,2
N - (5 392) (——cos(rc/4) —sin(n/4),—§cos(n/4))

~(553) (s )

3 5
— 42352, — — 4392, —2v/2+3.136
V2 V2 )

()‘llb#

(1) 52+198 ( n/4>—5—

Il
/‘\
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S-8: Equation 1.7.2 tells us the normal force exerted by the track is WN, where
W = mx|v|® + mgj - N. So, we need to find x and j - N at the point 6 = 137

Note that 0 is the parameter used to describe the track, but it is not time. So |v(0)| = %
is not the same as |v|, the speed of the bead.

r(0) = (sinf,sinf — 0) v(0) = (cosB,cosf —1)

v(0)] = 39 —1/2c0s260 —2cosf+1 a(f) = (—sinh, —sin0)
: lv x al | sin 6|
‘vxa| |Sln | K( ) (ds>3 (2c0526—2C059+1)3/2
dé
d?s sinf(1 —2cos6)

dez — V2cos?20 —2cosf + 1

Equation 1.3.3 part (c) gives us the relation a(f) = d92 LT+« (gg) N. We use this to find
j-Nat 6 = 1371/3 without differentiating (actually, without even finding) T.

a(137/3) = (—x@/z,—\fsm)

2

S

x(1371/3) = V6
ds
d0(137r/3) =1/v2

R d?s .. ds\? .\ .
20)-= <0192T+ (E) N)']
—§=0+\@(1/2)N j

1

V2

Now we can find the speed |v| of the bead when |W| = 100 and it breaks off the track.

~>

W = mx|v|]> + mgj - N

+100 = <91f8> VoIVl + % <_\%)

9.8 1
v| = 100—{——)%20m/s ~ 72 kph
v f( - p

(Because |v| > 0, the equation above has no solution for W = —100.)

Quite fast! 100 N is a lot of force for such a light object.
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-9: According to the equation in the text, the skier will become airborne when:

[v] >

A 109

i-N|

We'll use the equation of the curve to find x and N.

Note that g is given in metres per second, while the other quantities are in kilometres and
hours. Converting, 9.8 m/s? is the same as

2
(9.8m> (160k0mm> (3?({’(1)1.5) —08.6% % —025.34 .72 %

152

r(t) = (logt,1—1t)

¢(t) = v(t) = (7, 1) &y =viTre
r'(t) = a(t) = (—t7%,0)

K(t):]vxa] t=2 |t] B t

<ds> m3 - (1+t2)3/2 _ (1 +t2)3/2

Note ¢ is positive in the interval in question.

= v() 1 1 1 —t
T = (B v1+t—2(t V= (¢1+t2’¢1+t2)

v
R —t -1 A 1
T'(t) = T ()| =
() < 1+ )3/2/ (1+t2)3/2> | ()| t2—|—1
T/(t
A

(1) —t -1
() <\/1+t2'\/1+t2)
\/1+7t2

Now, we have all the pieces we need to find the “escape velocity” of the ground.

v] = (1+12)32  Jg(1+412)
1+t2 1)z t

Since the skier can take off anywhere on the hill, we just need their velocity to be larger
(1—|—t )

than the smallest value of when 1/e < t < e. To find that minimum, we find the

1+t

location of the minimum of the simpler function g(t) = . Using first-semester

calculus, we find it to occur when t = 1. So, the minimum value of 4/ £ Ht (that is,
smallest speed to achieve lift-off) occurs at t = 1. We therefore need a m1mmum speed
greater than:

¢(1+412)
|t]

=./2¢ =V/26.34.72 =2%.32.7 = 504 kph
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(It seems unlikely that one could reach this speed on skis. The skier is probably
earth-bound until they find a curvier hill.)

S-10: We now have three forces acting on the bead, rather than the two in the text. The
wire still exerts a normal force WN on the bead to keep it on the wire; gravity still exerts
a force —mgj straight down. Now our jet-pack force also exerts a force parallel to the
direction of the bead’s motion, i.e. parallel to T. This force is UT.

WN

A

ur

—mgj
The net force acting on the bead is the sum of these three forces:
F=ma=UT+ WN —mgj

To focus on the force in the direction of T, we dot both sides of the equation with

T(s) = (%, %) . (Recall 1(s) was parametrized with respect to arclength, so T(s) = &
everywhere.) Since the speed of the bead is constant, the tangential component of its
acceleration, a - T, is 0 (see Theorem 1.3.3.c).

0=UT+WN-mgj) T
=UT T)+ (WN-T) —mgj- T

_ dy

=Uu+0 mg 4
dy
U=mggs

S-11: (a) There are three forces acting on the snowmachine. If it’s not accelerating, then

F = ma = 0: that is, the forces all cancel out.

A

WN

A

MT
—mgj

So, we have the equation

ma = WN + MT — mgj
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To isolate M, we dot both sides of the equation with T. Remember T is a unit vector, and
it is perpendicular to N.
ma-T=WN-T+MT T-mgj T
=0+M—-mgj-T

Since the speed of the snowmachine is constant, the tangential component of its
acceleration, a- T, is 0 (see Theorem 1.3.3.c).

0=M-mgj-T
M=mgj T

(b) We would expect, from looking at the situation, that the engine would have to
provide a “backwards” force to slow the acceleration due to gravity. So, we would expect
M < 0. Indeed, if T points downhill, then the y-component of T is negative, so

M = mgj - T is negative.

(This is the purpose of driving downhill in a low gear: the friction inside the motor
provides a force opposing the direction of motion, slowing the vehicle.)

(c) To use the equation M = mgj - T, we'll need to find j - T.

r(x) = (x,1+ cosx) ¥ (x) = (1, —sinx)
Y (x)] = V1 +sin’x T(x) = —— (1, —sinx)
1+ sin®x
T(3r/4) = (@—\%)
So,
M = (200 kg) (9.8 m/s?) (—\% m) = —% N~ 11316 N

S-12: We begin with the usual computations.

r(6) = (4cosb,3(1+sinb))

v(0) =1'(0) = (—4sin6,3cos0) v(0)] = % = 1/16sin20 + 9 cos2 6 = /9 + 7sin2 0
a(f) = (—4cosf,—3sin0)

[v(6) x a(6)] 12
0) xa(f)| =12 x(0) = =
dé
N —4sin 6,3 cosf A 36 cos 6,48 sin 6
(o) = <0 6) (g = %€ mf)
V9 + 7sin” 6 —(9cos? 6 +16sin”0)
A 12 A 3cosf,4sinf
()| JE—— N(9) = — ?
9cos* 0 + 16sin” 0 ~v/9¢c0s26 + 16sin2




We want to find the height ys where |v| = 0, and the height y4 where W = 0. Remember
that v in these equations is the derivative of position with respect to time, and is not the
same as v(6).

1
Equation 1.7.1: E = §m|v]2 + mgy
E

If [v| =0: E:mgy5:>y5:m—g

This answers part a.

Equation 1.7.2: W = 2x(E — mgy) + mgj - N
IfW=0: 0 =2x(E —mgya) +mgj-N
_ 24(E—-mgya) mg <4 sin 0 )

T (9+7sin?0)3/2 /9 + 7sin2 9

Using y = 3 + 3sin6:

-3
_ 2A(E-mgya) . "5
3/2
(547 (452) VJo+7(452)
So, for part b., we can write (say)
-3
24 (E—mgya) s
35 = dmg

Now, suppose the skater’s speed at the bottom of the culvert (y = 0) is 11 m/s. Then
their energy is E = 3m(112) 4 0, or 2} joules, where m is their mass. Then

Yys = mig = % ~ 6.2. Since the half-way height of the culvert is at height y = 3, the

skater makes it onto the ceiling of the culvert. Now the question is: did they make it all
around, or fall off the ceiling?

For this, we need to find y 4. If they go airborne on the ceiling, they fall; butif y4 > 6,
then they never lose contact with the culvert, and they go all the way around.
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24 (E —mgy,) L

= 4mg
Vo7 (153

(9+—7(yA 3>2)3/2 \/94-7(1%;§>2

To simplify to a more standard form, we multiply both sides by (9 +
Yy

7 (2)") "
(s u) = (457) (7 (7))

7797
7 4 - —
9yA Ya+48ya— g

Now, we simplify to

Now, solving for y 4 involves solving a cubic function, which is no small task. We could
ask a computer, but we can also get an idea of its root(s) by plugging in numbers and
using the intermediate value theorem. In particular, we need to know whether y 4 is
greater than 6 (the skater makes it!) or between 3 and 6 (they fall off the ceiling).

Let f(y) = 5y — 7y* + 48y — 7227 Note f(4) = —1292!, which is negative, and

f(5) = 1434617, which is positive. So by the intermediate value theorem, there is a root of

f(y) betweeny =4 and y = 5. That is, y 4 is between 4 and 5, so the skater falls off the
ceiling somewhere between these heights, rather than making it all the way around.

5-13: (a) By Newton’s law of motion
E) = & [Dnlv() + mgr(t) - &| = mv(t)-v/(1) + mgv(1) &
= v(t)- [N(x(t)) — mgk] + mgv(t) -k
=0

since v(t) - N(x(t)) = 0. So E(t) is a constant, independent of t.
(b) By part (a),
E(t) = E(0) = Im|v(t)]* + mgbO(t) = mg(2tb) = |v(t)[* = 2gb(2m — 0(t))
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(c) We wish to determine the time it takes to go from 6 = 27 to 6 = 0. We'll first

determine gf

_ dr dr@
T dt dedt

— VP = [+ 7] (jf)

do v 12 2¢b(27 — 0)1"/2
= — = — = — -
dt a2 + b2 a2 + b2

. deo
= (—asinb, acos@,b)a

We have chosen the negative sign because § must decrease from 27t to 0. The time
required to do so is

2 211/2 o
Jdt (" ﬂde_—[” ”’] J ;mde
Jor do 2¢b 27 (27-[_ 9)
211/2 on

_ [a*+ b ] J R

L Zgb 0 27'( 9 (2r—0)1/2

- 1/2 1/2
— M [ 2 20T — 9 1/2} -9 a2+b2n

| 2gb 0 gb

<

Solutions to Exercises 1.8 — Jump to TABLE OF CONTENTS

S-1: (a) Recall that the polar coordinates r, 0 are related to the cartesian coordinates x, y,

by x =rcos6,y =rsinf. Sor = 4/x2 + y? and tan 6 = £ (assuming that x # 0) and

(x1,y1) = (3,0) = r1 =3, tanf; = 0 = 67 = 0 as (xq,y1) is on the positive x-axis

(x2,12) = (1,1) = rn=+2,tanhh=1=— 6, = % as (xp,y>) is in the first octant

(x3,y3) = (0,1) = r3=1, cosf3 =0= 03 = g as (x3,y3) is on the positive y-axis

(x4,y4) = (-1,1) = r4 =2, tanfy = -1 — 60, = ?%r as (x4, y4) is in the third octant

(x5,y5) = (-2,0) = r5s =2, tanfs = 0 = 05 = m as (x5,y5) is on the negative x-axis

(b) The lengths are

18,(0)] = V/cos26 + sinf = 1
18g(0)| = \/(—sinQ)2 +cos26 =1

é,(0)-&9(0) = (cosf)(—sin@) + (sinb)(cosf) =0
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the two vectors are perpendicular and the angle between them is 7. The cross product is

i i k]
é,(0) x &(0) =det | cosf sinf 0| =k
—sinf cos® O

(c) Note that for 6 determined by x = rcos6, y = rsin®,

e the vector &,(6) is a unit vector in the same direction as the vector from (0,0) to
(x,y) and

e the vector &y(0) is a unit vector that is perpendicular to &.(6).

e The y-component of &;(0) has the same sign as the x-component of &,(6). The
x-component of &(0) has opposite sign to that of the y-component of &.(6).

Here is a sketch of (x;,y;), &(6;), &(0;) for i = 1,3,5 (the points on the axes)

and here is a sketch (to a different scale) of (x;,y;), &-(6;), &(6;) for i = 2,4 (the points off
the axes).

er (%) Yl eo(3) er()
(—1,1)> v (1,1)
3 S
eo(T) iz
T
S-2: Think of 6 as a time parameter and recall that x(6) = %. The given curve has
x(0) = f(0) cosb
y(0) = £(0) sin6
r(0) = f(0)[cos0i+sinbj]
v(0) =r(0) = f'(6)[cos0i+sinbj| + f(0)[ —sinB i+ cos b ]|
a(0) =1"(0) ={f"(0) — f(0)}[cosOi+sinbj| +2f(0)[ —sinhi+ cosbj]
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The efficient way to compute |v(6)| and the cross product v(6) x a(6) is to observe that

v(60) = £'(6) &(0) + £(6) &(6)
a(0) = {f"(6) — f(0)} &-(6) +2f'(6) &(6)
where &,(0) and &y(0) are the vectors of Q[1]. As &,(6) and &,(6) are mutually

perpendicular unit vectors obeying &, () x &(0) = k and
&,(0) x &.(0) =ey(0) x &(0) =0,

V(O)P = v(6) - v(8) = ['(6):(6) + F(6) &(6)] - [£'(8) &:(6) + £(6) &(6)
= F/(8)%&,(8) - &,(6) + £(8)* &4(6) - (6) +27'(8) £(0) &(6) - &9(6)
= F(6)* + £(6)?
v(8) = /f()2 + £(0)?

So

_[v(8) xa(8)] _ [f(0)2 +2f'(6)*— F(6)£"(6)]
MOl ()2 + f1(0)2]2

S-3: By the Q[2] with
f(0) =a(l—cosb)  f'(0)=asinf  f"(0) =acosb

we have
oy O 202 50)0)
77+ F @27

_ |a* —2a% cos 0 + a? cos? 6 + 2a* sin® 6 — a? cos B 4 a2 cos? 6|

B [a2 — 242 cos 0 + a2 cos2 O + a2 sin? §]3/2

_ 3a*—3a%cos® 3 3

242 — 222 cos 0]3/2 ~ 23/2g\/1 —cos®  2+/2ar(6)

- -

Solutions to Exercises 2.1 — Jump to TABLE OF CONTENTS

S-1: The vectors are pointing to the right when x > 0, to the left when x < 0, and are

vertical when x = 0. So:
>0 when
v(x,y)-i{ =0 when|[x=0]
<0 when
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The behaviour of the y-values is more complicated. Vectors in one vertical line seem to be
all pointing up, or all pointing down. So, the sign of v - j depends only on x, not on y
(although the magnitude of v - j depends on both). Roughly, the vectors are pointing:

e Down when x < —2;

e horizontally when x = —2 (remember the vector is positioned with the base of
v(x,y) at (x,y);

e upwhen -2 <x <2;

e horizontally when x = 2;

e up when2 < x.

Since we’re assuming there’s nothing surprising happening between the samples
pictured,

>0 when|xe (-2,2)
v(x,y)-j$ =0 when|xe {-2,2}
<0 when|xe(—4,-2)u(2,4)

S-2: To start out, we find the places where v(x,y) -7 = 0 (vertical vectors) or v(x,y) -j = 0
(horizontal vectors). Remember the vector v(x, y) has its tail at (x,y).
)

A

We see the vertical vectors (those with v(x,y) -1 = 0) occur at every point along the line
y = —x, while horizontal vectors (those with v(x,y) - j = 0) occur at every point along
the line y = x.

Indeed, below the line y = —x, vectors point to the left, while above the line y = —x they
point to the right. Similarly, vectors point down when they’re above the line y = x, and
the point up when they’re below the line y = x.

Y
RIGHT

AV
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>0 when >0 when
So, v(x,y) i =0 when and v(x,y)-j<{=0 when
<0 when <0 when

S-3:
Since all conveyors point towards the origin, the direction of motion of an object at

location (x,y) is (\;;—_Tiz Its magnitude is y, so v(x,y) = \/x_z—yTyz(x,y).

S-4: The arrows near the point A are pointing to the right, indicating that P > 0, and
upward, indicating that Q > 0. Moving from left to right near A, the vertical component
of the arrows is decreasing, indicating that % < 0. Moving vertically upwards near A,

the vertical component of the arrows is increasing, indicating that % > 0.

S-5: (a) At time 0 the velocity of the twig is v(1,1) =1 +j. So at time ¢t = 0.1, the position
of the twig is approximately

(1,1) +0.01(1,1) = (1.01, 1.01)

(b) At time 0 the velocity of the twig is v(0,0) = 0. So at time ¢ = 0.1, the position of the
twig is
(0,0)+0.1(0,0) = (0, 0)

(c) At time 0 the velocity of the twig is v(0,0) = 0. So it is stationary and its velocity
remains zero for all time. The position of the twig at time 10, and in fact at all times, is
(0, 0).

S-6: The velocity of the fluid at all points of the y-axis is —j. So the twig will remain on
the y-axis and will consequently have velocity —j for all time. The position of the twig at
time 10 will be

(0,0) +10(0,-1) = (0, —10)

S-7:

Since all conveyors point towards the origin, the direction of motion of an object at

: o (Cx—y) ; ' =Y
location (x,y) is Nk Its magnitude is y, so v(x, ) W(x,y).

S-8: Set your face to be at the origin of our coordinate system, (0,0,0). A bee at position
(x,y,z) is a distance of \/x? + y? + z? from your face, heading in the direction

(—x, —y, —z). So, the unit vector indicating the direction of one friendly bee is
\/ﬁw (x,y,z). Now all we need to find is the length of this vector, i.e. the speed of

the friendly bee.
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The speed of the friendly bee is inversely proportional to 4/x2? + y? + z2, its distance from
your face. (Bees that are farther away are buzzing towards you more excitedly.) So,

speed is given by ——%—— for some constant «.
p & Y i 2

-1

The bee velocity has the direction of the unit vector (x,v,z) with length

x24y2+22
44 Tyl .
Vi for some positive constant a. That is,
) F— —
,]/r - xz +y2 +22 ly/
5-9: Beginning as in the text, we note
>0 x#0 >0 y>0
X
V(x,y)-i:xz{_o _o ad  vixy)j=yy=0 y=0.
- N <0 y<0

That leads to the following picture:
Yy

LT L

- r

This gives us a general idea to start with. Refining, we notice that when x? > |y/|, then the
vector v(x, y) will be more horizontal than vertical. As we move away from the y-axis in
a horizontal line, the difference between x? and |y| grows, so the vectors get more and
more horizontal. However, for a fixed value of x, vectors farther from the axis will be
more vertical than vectors closer to it.
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S-10:

Although ultimately we’ll sketch only unit-length vectors, we can still find the direction
of v(x,y) by finding its x- and y components.

Note v(x,y) -1 is the distance from (x, y) to the origin, while v(x, y) - j is the distance
from (x,y) to the point (1,1). Both these numbers are always nonnegative. This leads to
the following sketch:
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When (x,y) is far from the origin, its distance from (0, 0) is almost the same as its
distance from (1,0). So, we expect v(x,y) to be approximately a scalar multiple of (1,1).

At (0,0),0(0,0) -1 = 0, so our vector is horizontal; similarly, v(1,1) - j = 0 so this vector is
horizontal. Vectors very near to (0,0) are nearly horizontal, while vectors near to (1,1)
are nearly vertical.

Y

S
ST o s
ST o L e
ST A o a
[ 1 7 e
A A R A A
A A 4

For the direction field, we normalize our vectors to have unit length.

Y

S
SO s
S S o s
VA A A A R
I T /[ 2 o~
rr 07 2o
A A AV AV AV

S-11: The sign of v(x,y) -1 = x(x + y) depends on the signs of x and x + y. When they
have the same signs, v(x,y) -1 is positive, so v(x, y) points to the right; when they have
different signs, v(x,y) points to the left.
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Similarly, the sign of v(x,y) -] = y(y — x) depends on the signs of y and y — x.

Oy Y =X
W
D
x
All together:
o y=x
<o *«—>
*«—> « —>
x
e —> T—)
*«—> <o
y=-x

Refining, we notice that as we move straight up or down, |v(x,y) - i| has its minimum
along the lines y = —x and x = 0. So, the vectors become more strongly vertical as we

211



approach y = —x and x = 0 from above or below.

Similarly, [v(x,y) - j| has its minima along the lines y = x and y = 0, so the vectors
become more strongly horizontal as we approach y = x horizontally.

7
fT% /A
27T S
AT XT A
] s

5-12:

The field v(x, y) is the sum, scaled by 1/3, of the unit vector pointing away from the
origin and the unit vector pointing away from (1,0). This tells us about a few regions:

e Along the x axis between (0,0) and (1,0), the vectors away from these points are
pointing in opposite directions (and have the same length), so they cancel each
other out. That is, v(x,0) = 0 for all x € (0,1).

e v(0,0) and v(1,0) are not defined.

e Along the x-axis outside of [0, 1], the vector pointing away from the point (0,0) is
the same as the vector pointing away from the point (1,0). So, v(x,0) = (-2/3,0)
for x < 0and v(x,0) = (2/3,0) for x > 1.

Yy

e As the distance from (x, y) to the origin grows, the vector pointing away from (0, 0)
looks more and more like the vector pointing away from (1,0). So, our vectors far
away from the origin look like vectors of length about 2/3, pointing away from the
origin.
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S-13: (a) The vector field v(x,y) = xi+ yJ is the same as the radius vector. It points
radially outward and has length growing linearly with the distance from the origin.

Yy
\E\‘///
2 D

VAN

(b) The vertical component of v(x,y) = 2xi —j is always —1. Its horizontal component is
2x, so that

e v(x,y) is rightward pointing when x > 0 and leftward pointing when x < 0, and
e the magnitude of the horizontal component grows linearly with the distance from
the y-axis.

It is sketched in the figure on the left below.
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(c) For every (x,y) the vector v(x,y) = v

ViERE

is of length 1 and

is perpendicular to the radius vector x1 + yj.

v(x,y) is rightward pointing when y > 0 and leftward pointing when y < 0, and
v(x,y) is downward pointing when x > 0 and upward pointing when x < 0.

It is sketched in the figure on the right above.

S-14: A particle of unit mass at position (x, y) has distance D; = 4/x? + y? from the 5kg

mass, so that mass exerts a force of magnitude xffy)z on the particle. This force has

direction (—x, —y). So, the force exerted by the 5kg mass is f;(x,y) = ﬁ (x,y).

Similarly, the 3 kg mass at (2, 3) exerts a force of f,(x,y) = ((x—Z)Z—E(C];/—?))Z):’VZ (2—x,3-y);
and the 7 kg mass at (4,0) exerts a force of f3(x,y) = ———2C—r (4 — x, V).

((x—4)2+y2)3/2
The net force on a unit mass is therefore
f(x,y) = fi(x,y) + f2(x,y) + f3(x,y)

_ —5G(x,y) 3G(2—x,3—y) 7G(4—x,—y)
S22 (0224 (¥ —=3)2)%2 T ((x —4)2 +y2)3/2

S-15:

a. Consider a point P on the pole that is a distance p away from the bottom end. Use this
point to make a smaller right triangle, as in the picture below.
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Using similar triangles:

_y
h=ZH

y

If P is at position (x,y), then:

_p_PF
y=h= 2H
dy _pdH _ p
dt 2 dt 4
When H =
dy P
Therefore,

V() = (

dx dy
dt’ dt

om0

For our model, we set the domain of this function to be [0, 2].

1
Dy

-4)

. Let’s start by seeing what we can salvage from our work on part a. As in parta.,
consider a point P on one of the poles, p metres from the bottom end.

(0,0,H)




Let P have position (x, y,z). Noting that C}i—lf is now positive, not negative, if we stick
to this two-dimensional slice,

YL P
Vp)=((1-%)—=, =
(p) (( 2)2\@’ 4)
where the second coordinate is z and the first coordinate refers to the (horizontal) line
in the direction of the vector (x,y,0).

> IN

(0,0,H)

- (x,9,0)
So, we know % = E, and we know %, % = (x,y)c for some negative
constant ¢ with |(x, y)c| =(1-5) 4 NG Since we have the direction and the magnitude

of the vector, we can find the vector:
dx dy
dt” dt /|y

We want our equation to be in terms of x, y, and z, so we need to get rid of p. Using

'4324 H”;CZW When H=1,then1— % —Vjiz;y So:

dx dy 1
(G )], = st

_ (dx dy dz B 1 1 1
Vixy.z) = (dt dr’ dt> - (_Ex’ G Ez)

Not all values of (x, v, z) are on the frame. But, for those values of (x,y, z) that are on
the frame, this equation holds.

~(oype=— 0D
! 2\F\/m

similar triangles, £ =

Finally:
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Solutions to Exercises 2.2 — Jump to TABLE OF CONTENTS

S-1: (a) The field lines of F(x,y) = Vf = yi+ xj obey

dx dy B x2 P
?_7 — xdx =ydy < 7_7+C
for any constant C.
(b) The sign data
>0 ify>0 >0 ifx>0
i-Flx,y)=y<=0 ify=0 j-Flx,y) =x<=0 ifx=0
<0 ify<0 <0 ifx<0

is visually displayed in the figure on the left below. The arrows in the figure on the left
2
gives us the direction of motion along the field lines "2—2 = 7 + C (inred) in the figure on

the right below. Some equipotential curves xy = C are also sketched (in blue) in the
tigure on the right below.

Y

S-2: The field lines obey
dx dy  dz

xR @ ifx,y #0
In particular
dx _ y*dy _ 9.3 Lo 14
Z_ » :>xdx—2ydy:>§x—§y+c

Sincey = 1whenx =1,C = 0. So x = y* and

dy dz
— . Vdy =dz — 7z =Y
R e/dy = dz z=¢e"+D

Since z = ewheny = 1, D = 0. So the field line is

x=y> z=¢
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S-3: The field lines obey

dx dy )
7—@ lfx,y?éo
— 3In|x|=In|y|+C
— [x> = “Jy]

— y=te x°

—— y:C’x3

with C’ a nonzero constant. x = 0 and y = 0 are also field lines, since on the y-axis F || j
and on the x-axis F || 1.

L o &

Solutions to Exercises 2.3 — Jump to TABLE OF CONTENTS

S-1: False, in general.

In the context of Equation 1.7.1, the only forces acting on the particle are gravity, —mgj,
and the normal force, WN.

We make no such constraints on the force in Example 2.3.3. Certainly F could arise from
gravity and the normal force of a track, but there’s nothing saying it has to. For example,
suppose ¢ is an equation that does not depend on m and/or g. Alternately, suppose the
y-coordinate of our three-dimensional system is not “up.”

S-2: Remember that the screening test can only rule out conservativity — it can never, by
itself, guarantee conservativity. So, A is never the case.

a.

F=xi+42f —i—yR
oF5  0F

vore (BB (B By (-

= (1-1)i+(0—-0)j+ (0-0)k =0

This field passes the screening test. That means the screening test doesn’t rule out the
possibility of F being conservative. So, we have option C.
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F =y’ + x°zj + x*yk
vapo (Do fByy (SR, (0B SRy

oy 0z oz ox ox oy
= (2% — x2)i + (y* — 2xy)j + (2xz — 2yz)k # 0

So, F fails the screening test — it’s not conservative. That’s option B.

F=(ye +1)i+ (xe" +2z)j + (% +y) k

=(1-1)i+(0-0)j+ (¥ (xy+1) —e¥(xy+1))k =10

F passes the screening test, so it may or may not be conservative. That is Option C.

F = ycos(xy)i + xsin(xy)j
bk,
ox
OF,
a
OF,  OF
T oy

F fails the screening test, so it is not conservative. That is Option B.

= xy cos(xy) + sin(xy)

= —xysin(xy) + cos(xy)

S-3: Let ¢ be a potential for F. Define ¢ = ¢ + ax + by + cz. Then
V¢ =Veo+(abc)=F+(ab,c).So,F+ (a,b,c) is also conservative.

S-4:

a. It F + G is conservative for any particular F and G, then by definition, there exists a
potential p with F + G = V.

Since F is conservative, there also exists a potential i with F = V.

Butnow G = (F+G) —F = Vg — V¢ = V(¢ — ¢). That means the function (¢ — )
is a potential for G. However, this is impossible: since G is non-conservative, no
function with this property exists.

So it is not possible that F + G is conservative. It must be non-conservative.
b. Counterexample: if F = —G, then F + G = 0 = V¢ for any constant c.

c. Since both fields are conservative, they both have potentials, say F = V¢ and
G =Vi¢. ThenF+G =V¢p+ V¢ =V (p+ ). Thatis, (¢ + ¢) is a potential for
F + G, so F 4+ G is conservative.
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S-5: Set ¢(x,y) = arctan Y (using the standard arctan that takes values between —% and
7)- Note that ¢(x,y) is well-defined, with all partial derivatives continuous, on D since
x > 1 there. Then

e T2 Y
op 1 x
—(x,y) =

TR TG

sothat F = V.

S-6: If ¢ is a potential for F, then:

& =x+y,50 9 =12 +xy+1(y)

« B =x-ys09=xy-1P+s(x)

So, for instance, ¢ = 3x% + xy — y2 is a potential for F.

S-7: If ¢ is a potential for F, then:

0
o ¥ =1-15s0¢=loglx|-%+y(y)
o ‘3_5:% 0 ¢ = —3 + Pa(x)

So, for instance, ¢ = log |x| — % is a potential for F.

S-8: None exists: aFZ = %x while

Theorem 2.3.9.

3F3 _

3 = 1x3 4+ 1, so F fails the screening test,

5-9: If ¢ is a potential for F, then:

0
¢ o= w50 ¢ = 3log(x + 7 +2) + ¢i(y,2)

0

© o = w50 9 = 3log(x? + 17 +2%) + ¢a(x,2)
0

o &= orprm 50 @ = 3log(x + 1 +2%) + a(x,y)

So, for instance, ¢ = § log(x* + y2 + z2) is a potential for F.

S-10: (a) We shall show that F(x, y, z) is conservative by finding a potential for it.
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¢(x,y,z) is a potential for this F if and only if

dg _
E(x,y,z) =X

¢ _
a—y(x, y,z) = -2y

g _
E(x, y,z) =3z

Integrating the first of these equations gives
2

o(x,y,2) = 5+ f(1,2)

Substituting this into the second equation gives

%(%Z) = -2y

which integrates to
fy,2) = -y’ +3(2)
Finally, substituting ¢(x,y,z) = %2 —y? + g(z) into the last equation gives

§'(z) =3z
which integrates to

g(z) = ;zz +C

with C being an arbitrary constant. So, F(x, y, z) is conservative and

@(x,y,z) = 2x* — y* + 322 is one allowed potential.

(b) The field F = F; i + F, j can be conservative only if it passes the screening test

oF _oh

(3y_§
In this case
@_@_( e
oy oy\x2+y*) (22 +y?)

is different from

(9132_8_( -y )_ 2xy
ox  ox\x2+y?2)  (x2+y?)

for all (x,y) with x and y both nozero. So F is not conservative.

S-11: By Theorem 2.4.7 in the CLP-4 text, the field F = Fji+ FKj+ F; k is conservative
only if it passes the screening test V x F = 0. That is, if and only if

B R0 0Bk
dy  ox 0z  ox oz 0y
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or,

j—y(e<z2>) — S—x(szf) — 0=0
%(e(zz)) = j—x (sze(zz) + 3By*z?) — 2z¢(#") = Aze®)
%(ZByzg’) = j—y(sze(Zz) + 3By*z?) = 6Bye*) = 6Bye(?)

Hence only A = 2 works. We shall see in part (b) that any B works.
(b) When A = 2, and B is any real number.

F=c(®)i42Byz2f + (2xze(22) +3By*z?) k

¢(x,y,z) is a potential for this F if and only if

L (xy,2) =l
e _ 3
3y (x,y,z) = 2Byz
og

E(x, y,z) = 2xzel®) + 3By*z?

Integrating the first of these equations gives

o(x,y,2) = xe®) + f(y,2)

Substituting this into the second equation gives

of — opy,3
oy (y,z) = 2Byz

which integrates to
fly,2) = By'z’ + 3(2)
Finally, substituting ¢ (x,y,z) = xe(*") + By2z3 + g(z) into the last equation gives
2xzel®) +3By?22 + ¢'(z) = 2xze®) +3By*22  or ¢(z)=0
which integrates to
gz)=C

with C being an arbitrary constant. So, for each real number B, ¢(x,y,z) = xel®) 4 By
is one allowed potential.
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S-12: In each second 27tm cm? of fluid crosses each circle of radius r (and hence
circumference 27tr) centred on the origin. So the speed of flow at radius r is 7. As the
direction of flow is radially outward




¢(x,y) is a potential for this F if and only if

op B X
a(x/y) _mx2+y2
&%

ay(xly) mx2+y

Integrating the first of these equations gives

¢(x,y) = 3mIn(x*> + ) + f(y)

Substituting this into the second equation gives

y / _ Y / _
mx2_|_y2 +f(y)_mx2+y2 or f(]/) 0

which integrates to
fly)=¢

with C an arbitrary constant. So one possible potential is

¢ = ymin(x’+y?)

S-13:

Following Example 2.3.3, the particle can never escape the region
{(x,y,2) : (x,y,z) = —E}. So, we should find E, then figure out the region.

The kinetic energy of the particle is 3m|v|?, so the total energy of the system (also the
kinetic energy when the potential energy is 0) is 5 (10) (22) =207.

Therefore, a region it can never escape is

{ (xy,2) | o(x,y,z) =20}
that is,
{(x,y,2) | P +y*+22 <20}

So, it can never escape the sphere centred at the origin with radius +/20.

S-14: Example 2.3.3 tells us 3m|v(t)|? — ¢ (x(t),y(t),z(t)) = E is a constant quantity,
provided F is conservative with potential ¢. So, it would be nice if F were conservative.

If F = Vg, then

« % =0509=11(y2)

. a—9":1,sogo:y+1/J2(x,z)

o 0 =321/3,50 9 = 3243 + 3(x,y)
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We can choose ¢(x,y,z) =y + 2z*/3. So, m|v(t)|> — ¢(x(t),y(t),z(t)) = E is a constant
quantity, as desired. Using the information that the particle has mass 1/2, and speed 1
when it is at the origin:

So, at the point (1,1, 1), the particle has speed V14.

S-15:

We can start with the screening test, Theorem 2.3.9.

= (FWH(E) -gWH(2)i+ (0-0)j+ (0-0)k=0

So, it’s possible that the field is conservative. Remember, this test alone isn’t enough to
tell us it’s conservative. (Had the test come out differently, though, we’d be done.)

Suppose F = V¢(x,y,z). Then:

. g—f = 2f(x)f'(x). By inspection, we see ¢ = f2(x) + 91 (y, z). (We could also find
this by evaluating { 2f(x) f'(x)dx with the substitution u = f(x).)

o S =g y)h(z),50 9 =gWh(z) + (%, 7).
o« &L =g(y)(z),50 ¢ =gy)h(z) + a(x,y).
All together, we can choose ¢(x,y,z) = f2(x) + g(y)h(z).

S-16: Following Definition 2.3.8, The curl of a vector field is defined by

When F = (xy, xz,y> + z),
VxF=2y—-x)i+(0-0)j+(z—x)k

When the curl is 0i 4 0j 4 0k, we have x = 2y and x = z. That is, our points are of the
form (2¢, ¢, 2c) for any constant c. So, the region in question is the line through the origin
in the direction of the vector (2,1,2).
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Solutions to Exercises 2.4 — Jump to TABLE OF CONTENTS

S-1: Every F in this problem is defined and has continuous first-order partial derivatives
on all of IR? or IR3. The characterization in Theorem 2.4.7 tells us that our fields will be
conservative if and only if they pass the screening test, i.e. have curl 0.

a.
F=xi+zj+vyk
oFs  O0F\. oF, OF3\, oF, O0F\ ¢
F=[—- — — -
v X (0}/ az)hL((?z (9x> <(3x (9y>k
= (1-1)i+(0-0j+(0-0k=0
This field passes the screening test. Since F is defined and has continuous first-order
partial derivatives on all of IR?, it is conservative. So, we have option A.
b.
F = 1%z + x*2j + x*yk
_ (0F  0R\, (0F 0R\, (0Fh O0F\4
VXF_(ﬁy 82)1+<8z 8x>+<&x 8y>k
= (x® = x2)i + (y* — 2xy)j + (2xz — 2yz)k # 0
So, F fails the screening test. So, it’s not conservative. That’s option B.
C.
F=(xe" +1)i+ (yev +2)] + (% + y) k
oFs  O0F\., oF, OF3\, oF, O0F\
F=(—- - = — - —)k
v x <6y 6z>1+<8z (?x> ((%c (7y>
=(1-1)i+0-0)jf+ (¥(xy+1)—xye¥(xy +1))k =0
F passes the screening test. Since F is defined and has continuous first-order partial
derivatives on all of R3, it is conservative. So, we have option A.
d.
F = ycos(xy)i + x sin(xy)j
F
ao“xz = xy cos(xy) + sin(xy)
F
5;_; = —xysin(xy) + cos(xy)
oF,  0OF
oy

F fails the screening test, so it is not conservative. That is Option B.
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S-2: Since F is conservative, {- F - dr = 0 over any closed curve C. The given curve is
closed, so the integral is simply zero.

5-3: Since F is conservative, and A and B start and end at the same points, by
path-independence {, F-dr = §, F-dr = 5.

S-4: By Theorem 2.4.6, the condition that “§- F - dr = 0 for all closed paths C” is

equivalent to the condition that “F is conservative”, which, since F is defined on all of R3,
is equivalent to the condition that F pass the screening test

i j k
0=V xF=det| & g—y 2| =-bi—cj+ (ae*cosy —e*cosy) k

e*siny ae*cosy+bz cx

which is the caseif and only if b =c =0and a = 1.

5-5: (a) Consider the circle C in the figure (a) on the left below, oriented clockwise. The
vector field F is in the same direction as + at every point of the curve. So F - dr > 0 at

every point of C and C is a closed curve w1th §¢ F-dr > 0. As a consequence F is not
conservative.

@ . ®
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(b) Consider the square in the figure (b) on the right above, oriented counterclockwise. It
consists of the four line segments Lj, Ly, L3 and Lys. On all of Ly, Ly, L3 we have that
F(r(t)) - r'(t) = 0 because the vector field is perpendicular to the line segment. On Ly we
have F(r(t)) -¥'(t) > 0. So

j{;F-dr:J F-dr—I—f F-dr+J F-dr+f F.dr
Ly Ly Ly Ly

C

=0+0+0+J F-dr>0
Ly
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So C is a closed curve with §C F - dr > 0 and F is not conservative.

(c) Consider the square in the figure (c) on the left below, oriented counterclockwise. 1t
consists of the four line segments L1, Ly, L3 and L4. On L and L3 we have that the dot
product F(r(t)) - '(t) = 0 because the vector field is perpendicular to the line segment.
On L, we have F(r(t)) - '(t) < 0 while on Ly we have F(x(t)) - ¥'(t) > 0. The vector field

F is longer on L4 than on L,. So F(x(t)) - '(t) has a larger magnitude on L4 than L, and

%F-dr:f F-dr+f F~dr—|—f F-dr+J F.dr
Ll L2 LB L4

C
:0+J F~dr—|—0—i—J F-dr>0
L, Ly

So C is a closed curve with §, F - dr > 0 and F is not conservative.

@, @,

Ly

N —
F

e —— e ————
ey

Ls x

(d) We are told that one of the four vector fields is conservative. Only the vector field in
(d) is left, so it is conservative.

Remark: We can verify that vector field (d) is indeed conservative by observing (look at
the figure (d) on the right above) that the i component of the vector field is exactly zero
and that the j component depends only on y. So the vector field is of the form

F(x,y) =a(y)]

for some function a(y). If A(y) is any antiderivative of a(y), we have F = V A, so that F is
conservative with potential A(y).

S-6:

(a) The (largest possible) domain is D = { (x,y,2) ‘ x> 4+y?>#0 } That is, all of R3 except
the points lying along the z-axis.
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(b) As preliminary computations, let’s find

8_(x—2y)_ -2 _2y(x—2y)_—2x2+2y2—2xy
WA\ +y2) 2yt (2422 (a2 412)
O (2x+y)_ 2 2x(2x+y)  —2¥%42y* —2xy
x \x2+y2) 2 +yr (2492)?  (2442)
So the curl of F is
g g 1(7( —2x% 42y —2xy  —2x2+2y* —2xy \ o
V xF=det| o o oo0z| = s — 5 k=0
X2y 2ty (x2 +y2) (x2 4+ y2)

x2+]/2 x2+]/2

on the domain of F.
(c) Parametrize the circle by

r(t) =2costi+2sintj+3k  r(t) = —2sinti+2cost]

with 0 < 6 < 27. So the integral is
2x+y

x—2y
22 22
on( oot o, Teomra Zom? |~ =
J‘Fdr:J‘{ €0 I SaLLiy WA I Ll N R}{ﬁagnﬁ+2amﬁ}w
c 0

27 —4sintcost—|—85in2t+8coszt+4sintcostdt

:L .

27T
=2 dt =4
0

(d) As the integral of F around the simple closed curve C is not zero, F cannot be
conservative. See Theorem 2.4.6 and Examples 2.3.14 and 4.3.8 in the CLP-4 text.

S-7: The point here is that F is conservative, as F = V¢ with

2 ZZ

X
¢—?+yx—yz+ >

So, for all paths from r(tp) = (1,0, 1) tor(t;) = (0,-2,3),
[ Fdr =g (xtt0)) = 9(x(t0)) = 9(0,-2,3) - 9(1,0,-1)

91 [1 1

_{0+0+6+§}—{§+0—0+§]
1
_95
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S-8: Note that:

e Along the line segment from (0,0) to (1,0), x increases from 0 to 1, while y is held
fixed at y = 0. So we may parametrize this segment by r(x) = x7,0 < x < 1.

e Along the line segment from (1,0) to (1, 71), y increases from 0 to 7r, while x is held
fixed at x = 1. So we may parametrize this segment by r(x) =1+ yj, 0 <y < 7.

e Along the line segment from (1, 7r) to (0, 7r), x decreases from 1 to 0, while y is held
fixed at y = 71. So we may parametrize this segment by r(x) = xi+ 7rj with x
running from 1 to 0.

Hence
1 T 0
JV-dr:J V(x,0)~idx+J V(l,y)-idy—i—f V(x, ) idx
C 0 1

1 0
:J (e* +x )dx—|—f (y+3)dy—|—J (—e* +x%) dx
0

1 T
:2f exdx+J (y+3) dy
0

0

7'(2
:2(6—1)—1—7—1—37(

S-9: (a) We may parametrize the curve by r(t) = ti+ t?j with 0 < < 1. Then
v(t) = E(t) =i+2tjand F(x(t),y(t)) = 21— 2] so

1 r 1 1
LFdr:fo F(x(t),y(t)) - jt( t) dt = fo (21— 2] - [1+2t]] dt:L [— 7] dt
1

(b) The path is the union of three line segments.

e On the first segment of the path y = z = 0 so F simplifies to x7 — x k and dr = 7 dx
(i.e. we can parametrize the first segment of the path by r(x) = xiwith0 < x < 1),
so F-dr = xdx.

e On the second segment of the path x = 1,z = 0 so F simplifies to + yj — (1 + y)k
and dr = j dy (parametrize the second segment of the path by r(y) =1 + yj with
0<y<1),s0F -dr=ydy.

e On the final segment of the path x = y = 1 so F simplifies to (1 — ) (1-z2)j -2k
and dr = kdz (parametrize the third segment of the path by r(z) =i +j + z k with
0<z<1),s0F -dr=-2dz.

So

1 1 1 1 1
JFdr:fxdx+fydy+f(—2)dz:—+——2:—1
c 0 0 0 22
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S-10: Parametrize the curve using y as a parameter. Then y = t, x = 2y = 2t and

— 8 8 5o that:

Z_x_y:ﬁ
N
r(t):2t1+t]+t—2k, 1<t<2
.. 84
r’(t):21—|—]—t—3k
F(r(t)) =421+ 45k
F(r(t))-r'(t) = 8> — 32
Then
2 2 8 240
fF-dr:J F(r(t)) - ¥ (t) dt:J (82 —32) dt = [—t3—32t} ==
c 1 1 3 1 3

S-11: Note F is defined and continuous on all of R®. By Theorem 2.4.6, the integral
{c F-dr =0 for all closed paths C if and only if F is conservative. Furthermore, F has

continuous first-order partial derivatives on all of R3. Using Theorem 2.4.7, F is

conservative if and only if V x F = 0:

i j k
— — 0 0 0
cxX

e*siny ae*cosy + bz
= (0—Db)i — (c—0)j + (ae* cosy — e* cosy)k

Soa=1,b=c=0.
S-12: (a), (b) The curls of F and G are
f j
g g 2
oy 0z

V x F = det [ ox
6x2yz? 2x322 + 2y —xz 4x%yz

= (4x%z — 4x%z + x) 1 — (12x%yz — 12x%yz) ] + (6x°2>

1

—z-6x221) k

=xi—zk
i j k
Vdeet[% g g]
yz 0 xy

=xi—zk

Hence the screening test for
Vx (F+AG) = (x+Ax)i— (z+ Az) k

passes for A = —1. Furthermore
F-G = (6x°yz> —yz)i+ (2x°22 4+ 2y — x2) j + (4°yz — xy) k

=V (2x%yz* — xyz + )
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The potential was found by guessing. Alternatively, we can find it by using that ¢(x, y, z)
is a potential for F — G if and only if

2—¢(x, y,z) = 6x%yz* —yz
O¢p 3.2 B
ay(xy, z) = 2x°z° + 2y — xz

0
a—f(x, y,z) = 4x%yz — xy

Integrating the first of these equations gives

¢(x,y,2) = 2xy2* — xyz + f(y,2)

Substituting this into the second equation gives
} A
2x32% — xz + jyr(y, z) =2x%22 42y —xz  or —f(y,z) =2y

which integrates to
fy,2) =y’ +3(2)
Finally, substituting ¢(x,y,z) = 2x3yz? — xyz + y? + ¢(z) into the last equation gives

4xyz —xy+ ¢ (z) =4%yz—xy  or  ¢(z)=0
which integrates to
8(z) =K
with K being an arbitrary constant. Choosing K = 0 gives the potential
¢(x,y,z) = 2x3yz? — xyz + y? as in the guess above.

(c) Any point (x,y,z) on the curve must have z = x and y = ¢** = e*’. So we may
parametrize the curve by r(x) = xi+ ¢ j + xk, 0 < x < 1. Hence

fF.dr:J(F—G)-dhl—fG-dr
C C C G(r(x)) 4
(1,6,1) 1~ - A\ Vs A~ —
:[2x3yzz—xyz+y2] [xe I+ xe" K] 1+2x"j k] dx
(0,1,0)
1 ) 1
:e+ez—1+f 2xe* dx:€+€2—1+[€x]0262+2€—2
0

S-13: Parametrize the line segment by

N

r(t) = (0,0,1) +£{(2,1,0) = (0,0,1)} = (2t,,1—t) 0<t<1

so that r(0) = (0,0,1) is the initial point of the line segment and r(1) = (2,1,0) is the
tinal point of the segment. Then

Y(t) = (2,1,-1)
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and the work is

1 1
fF«h:J;Hdﬂyﬂuyﬂ:J‘Qh%%t—u—¢fw1—ﬂ—yﬂ(zL—ndt

0
1 1
:f (4t 282 + t =142t~ — 1+t+4t2)dt:f (+8t—2)dt
0 0
1 7
= +4-2=1
37" 3

-14: On P, z = log 1 = —log(x). So parametrize the curve P by

r(f) = cosfi+sinfj—log(cos)k 0<6< %
Then
r'(0) = —sinfi+cosfj+ tanfk
F(r(9)) = cos0i+sinfj + cos’ 0 k
F(1(0)) -x'(0) = sinf cos? 0
so that

t/4 /4 1 /4

Work:f F-dr:J F(r(9)) -x'(0) dGZJ sinf cos?0 df = —= cos’ 0

P 0 0 3 0
= 1[1 1

: ] ~0.2155

~ 03/2

S-15: Hmmm. F looks suspiciously complicated. Let’s guess that F is conservative and
look for a potential for it. ¢(x, y,z) is a potential for this F if and only if

0p _

a—x(x,y,z) = Yz Cos X
g—i(x,y,z) = zsinx + 2yz
A

—(x,y,z) = ysinx +y* —sinz
0z
Integrating the first of these equations gives

¢(x,y,2) = yzsinx + f(y,2)

Substituting this into the second equation gives

. of L of B
zsmx—{—@(y,z)—zsmx—i—Zyz or @(y,z)—2yz
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which integrates to
fly,2) = v’z +38(2)
Finally, substituting ¢(x,y,z) = yzsinx + y?z + ¢(z) into the last equation gives

ysinx +y* + ¢/(z) = ysinx +y*> —sinz  or g'(z) = —sinz
which integrates to
g(z) =cosz+C

with C being an arbitrary constant. So ¢(x,y,z) = yzsin x + y?z + cos z is one allowed
scalar potential and the specified integral is

r(7t/2) 3 2

7T 7T
r(0) —43(7'(/2, 7-(/2’ n/z)*go(oloro)—?‘szl

[RECEE

S-16: Solution 1:

We are being asked to evaluate the line integral {- F - dr with C being the specified
semi-circle and F = xyj. As V x F # 0, the vector field F is not conservative. So we’ll
evaluate the integral directly. First, using the figure,

y (1 —cos#, sin&)

(z—1P2+y" =1

(1,0) !
we parametrize C by
r(0) = (x(0),y(0)) = (1—cosf)i+sinfj 0<6O<m

So the integral is
T T
f xydy = J x(0)y(0)y'(0) do = f (1 —cosf) sin6 cost df
C 0 0

Making the substitution u = cos 6, du = —sin6d6, u(0) =1, u(m) = -1,
-1 1 1 13 2
nydyzf (1—u)u(—du):f (u—uz)du:—ZJ wdy = —2— = —=
C 1 -1 0 3 3

Solution 2:
We can write x in terms of y over C in two pieces:

e Let C; be the quarter-circle x = 1 — 4/1 — y? as y goes from 0 to 1, and
e Let C; be the quarter-circle x = 1+ /1 — y? as y goes from 1 to 0.
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Then:

r

f xydy = | xydy + f xydy
C

J C1 Cy

rl 0
= 1—4/1— 2) d +J <1+ 1-— 2) d
0( VI—y ) ydy . Vi—y ) ydy

r 0

1 1 0
= ydy—J‘y 1—1ﬂdy+J‘ydy+J‘y 1-y2dy
JO 0 1 1

[

1
:—ZJ yy/1—y?dy
0

Using the substitution u = 1 —y?, du = -2y dy:
0
2
= /29y = -2
L w2du = -3

-17:

The line integral is {~ F - dr with F = (ye* 4-siny) 1+ (e* 4 siny + x cosy) j. We are to
show that it is independent of path. That is the case if and only if F is conservative. So
let’s look for a potential ¢ for F. That is, let’s look for a function ¢ that obeys

g UPE I
e (x,y) = ye* +siny
g—j(x,y) =e* +siny+ xcosy

Integrating the first of these equations gives

¢(x,y) = ye* +asiny + f(y)
Substituting this into the second equation gives
e* +xcosy+ f'(y) =e* +siny+xcosy  or f'(y)=siny

which integrates to
f(y) =—cosy+C

So F is indeed conservative with one potential being ¢(x,y) = ye* + xsiny — cosy and
the line integral is

(0,71/2)
L(ye" +siny)dx + (e* +siny + xcosy) dy = Jc F.dr= (p(x,y)‘(1 y
= [ e’ + xsiny — cos }(OIH/Z)
=Y y y 10)
T
=1+
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-18: Here is a sketch of C.

(0,0,1)

(0,1,0)

(1,0,0) Cs

Note that

o y = 0 on the line segment from (1,0,0) to (0,0,1) so that the integral reduces to
{ zx dz on that line segment and

o x = 0 on the line segment from (0,0, 1) to (0,1,0) so that the integral reduces to
§{ yz dy on that line segment and

o z = 0 on the line segment from (0,1,0) to (1,0,0) so that the integral reduces to
{ xy dx on that line segment.

So it looks feasible to evaluate the integral directly. Label the sides of the triangle C;, C;
and Cj as in the sketch above.

o We parametrize C; by r(t) = (1,0,0) +#[(0,0,1) — (1,0,0)] = (1 —¢, 0, ),
0<t<1 So

X z Z'(t)

1 e —— —— 1
J xydx+yzdy—|—zxdz:f zxdz=J (1—-¢t) (¢) (1) dt=J (t—t?)dt
G G 0 0
_1 1.1
2 3 6
o We parametrize C, by r(t) = (0,0,1) +#[(0,1,0) — (0,0,1)] = (0, ¢, 1 —¢),

0<t<1 5o
z y'(t)
1 A~ —— —— 1
f xydx—kyzdy—kzxdz:f yzdy:f () (1-¢t) (1) dt:f(t—tz)dt
G G 0 0

111
=5-3=
o We parametrize C3 by r(f) = (0,1,0) +#[(1,0,0) — (0,1,0)] = (¢, 1 — ¢, 0),

0<t<1. 5

x y x'(t)

— —— — 1
f ORENED dt:f(t—tz)dt

f xydx +yzdy 4+ zxdz —f
G 0

xyd
1
3

N =

1
2
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All together

3
nydx+yzdy+zxdz=2f xydx—i—yzderzxdz:gxl:l
C —1JC 6 2

S-19: We are told that F is conservative. Let’s find a potential ¢ obeying V¢ = F. That is,

09

w oyt
a—q):x-i—eysinz

y

0
—(P:z+ex+eycosz
0z

The first equation forces ¢(x,y,z) = xy + ze* + P(y, z). Substituting this into the second
equation gives x + %(y, z) = x+eéeYsinzor g—f(y,z) = ¢¥ sin z which forces

P(y,z) = e¥sinz + {(z). So far, we have ¢(x,y,z) = xy + ze* 4+ ¢¥ sinz + {(z).
Substituting this into the third equation gives e* + e¥ cosz + {'(z) = z+e* + €Y cos z or

'(z) = z which forces {(z) = & + C, for some constant C, which we take to be zero. So
2
our potential is
2
o(x,y,z) = xy + ze* +e¥sinz + %

So the line integral

LF.dr = ¢(r(n)) — ¢(r(0)) = ¢(m,e",0) — ¢(0,1,0) = me™

S-20: (a) Note F is defined and continuous on all of R3. Furthermore, F has continuous
first-order partial derivatives on all of R3. Using Theorem 2.4.7, F is conservative if and
only if it has zero curl:

0=V xF=V x (ae'i+ (xe! + pcosz)j— yysinzk)
+

= (—ysinz + Bsinz)i + (e¥ —ae¥)k

which is the caseif and only ifa =1, 8 = 7.
(b) We use Theorem 2.4.2: if ¢ is a potential for F, then

| F-dr = (P —g(r)

where C runs from Py to P;. So, we find ¢.
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Assume that « = 1, B = <. We find a potential ¢ for F by antidifferentiating.

0

Ly =e — ¢(x,,2) =3¢ + 1 (y,2)
g—;o(x,y,z) = xe¥ 4+ Bcosz — ¢(x,y,z) = xe¥ + By cosz + a(x,z)
0

D (x,,2) = pysinz — plxy,2) = Pycosz + ¢5(x,y)

for some functions 1 (v, z), ¥2(x,z) and P3(x,y) to be determined.

We’d like a single function ¢(x,y, z) that simultaneously obeys all three of these
equations, for some ¥;’s. An initial guess is simply the sum of all of the distinct terms,
other that the 1;’s, that appear in the three equations above. The term xe¥ appears in the
Y1 and ¥, equations and the term By cos z appears in the ¢, and 13 equations. So we
guess

o(x,y,2) L xe¥ + By cos z

If welet ¥1(y,z) = Bycosz, Po(x,z) = 0, and ¢3(x,y) = xe?, then we see this function
¢(x,y,z) does indeed obey all three equations and so is a potential for F.

The curve C runs from Py = (0%,¢% 71-0) = (0,1,0) to P; = (1%,¢',m-1) = (1,¢, 7).
Using Theorem 2.4.2:

JCF-dr: ¢(l,e,m) — ¢(0,1,0) = (¢ — Be) —p=¢"— Ple+1)

S-21: (a) The curl of F is

i ] k
VxF=det| & &  &|=0
cosx 2+siny é*

Because Fj is a function only of x, F; is a function only of y, and F3 is a function only of z,
that all partial derivatives used in computing the curl are 0.

(b) The vector field F passes the screening test on all of R® and so is conservative by
Theorem 2.4.7 in the text. Alternatively, we can see that

F =V (sinx +2y — cosy + ¢°)

by inspection. Alternatively, f can be found by antidifferentiating its partial derivatives:

g—];(x,y,z) = Cos X = f(x,y,z) =sinx + ¢1(y,z)
%(x,y,z) =2+siny = f(x,y,2) =2y —cosy + o(x,z)
af Z Z

Yy =e — flry2) =+ (e y)
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We’d like a single function f(x,y, z) that simultaneously obeys all three of these
equations, for some ¢;’s. An initial guess is simply the sum of all of the distinct terms,
other than the ¢;’s, that appear in the three equations. The term sin x appears in the
equation, the terms 2y and — cos y appears in the ¢, equation, and the term e* appears in
the ¢3 equation. So we guess

f(x,y,2) = sinx + 2y — cos y + ¢€*

If welet ¥1(y,z) = 2y — cosy + €%, Po(x,z) = sinx + €%, and ¢3(x,y) = sinx + 2y — cosy,
then we see this function f(x,y, z) is indeed a potential for F.

(c) Since F = V¥,

| F-ar = f(x(3m) £ (x00))

= f(37,-1,0) — £(0,1,0)
=(0-2—cos(-1)+1)— (0+2—cos1+1)

Since cosine is an even function, cos(—1) = cos 1.

=—4

S-22: (a) The curl is

j k

0 0

V x F = det ox 5_y oz =0
z+e¥Y xe¥ —e*siny 1+ x4 e*cosy

D

so F passes the screening test. Since its first-order partial derivatives are continuous on
all of IR?, it is conservative by Theorem 2.4.7 in the text.

By inspection, the potential is ¢(x,y,z) = xz + xe¥ + e* cos y + z — this is another way to
verify that F is conservative. Alternatively, ¢ can be found by antidifferentiating its
partial derivatives.

0

aZ?(x,y,z) =z4+ e = @(x,y,z) =zx + xé¥ + ¢1(y, 2)
Z—;(x,y,z) = xe¥ — e siny = ¢(x,y,z) = xe¥ + e cosy + Po(x, z)
a(P(x,y,z) =14+ x+e“cosy = ¢(x,y,z) =z+zx + e cosy + P3(x,y)

0z

We’d like a single function ¢(x,y, z) that simultaneously obeys all three of these
equations. An initial guess is simply the sum of the distinct terms (without the ¢;’s) that
appear in the equations above:

¢(x,y,2) < zx + xeV +e“cosy +z
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If welet ¢1(y,z) = e*cosy + z, P2(x,z) = zx + z, and P3(x,y) = xe¥, then we see this
function ¢(x, y,z) is indeed a potential for F.

(b) Since F = V¢, with ¢ = xz + xé¥ + e* cosy + z,

r(7)

[P = o(x0) ~ 9(e(0) = [12+xe0 +-cosy+2]

(m2,0,1)

= [xz + xe¥ + ezcosy-i-z}
(0,0,1)

= (n2+7r.2+e+1)—(0+0+e+1):2n2

S-23: (a) For F to be conservative, it must pass the screening test

i j k
0=V x F = det 2 2 2
2

This is the case if and only if b = 3and a = —1
(b) Seta = —1 and b = 3. For f to be a potential for F, it must obey

0 x
T yz) = (et 1pe
%(x,y,z) = xe* +2°
of

(x,y,z) = 3y22

0z
Integrating the second of these equations gives
f(x,y,2) = xye* +yz° + g(x,z)
Substituting this into the last equation gives

3yz* + i—‘g(x,z) =3yz>  or —=(x,z)=0
C

which forces
8(x,z) = h(x)
Finally, substituting f(x,y,z) = xye* + yz3 + h(x) into the first equation gives

xye* +ye* +h(x) = (x+1)ye* or H(x)=0
So h(x) = C and hence f(x,y,z) = xye* + yz> + C works for any constant C.
(c) Since F = V¥,

| Frar= | Vf-dr = f(rm) — £((x(0) = Fm1,-1) = £0,1,1)
= [me™ —1] — [1] = me™ -2
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(d) Since
J F.-dr= f (x +1)ye* dx + (xe* +2%) dy + 3yz* dz
C C

we have

I:J F-dr+f yz2dz
C C

y 22 dz
f”r—/\—\f-)?/—_/%
=me™ -2+ | (cos2t) cos”t (—sint)dt
0
JrT[

= e —2+ | (2cos®t—1)cos® t(—sint)dt

JO
r—1
=me -2+ (2u®> —1)u*du  withu = cost, du = —sintdt
J1
2u  udq-1
- 2]
e + 5 31
4 2
ner-re [0
7te + 5—1—3
32
R
T

S-24: (a) The vector field F is conservative if and only if it passes the screening test
V x F = 0. That is, if and only if,

A

1 j k
_ _ 0 0 0
0=V x F=det & & %

y2e¥ + Axy® 2xye’? + 3x%y?  Bxy?e*
= (2Bxye> — 6xye*) 1 — (By?e™ — 3y?e>) j + (2ye> + 6xy* — 2ye> — 3Axy?) k
So F is conservative if and only if A = 2 and B = 3.

(b) Let A =2 and B = 3. We find a potential ¢ for F by antidifferentiating its partial
derivatives.

¢

5, (y,7) = yie 4 2xy — ¢(xy,2) = xy’e" + X7y + Pi(y,2)
%("f y,z) = 2xye + 327y — ¢(x,y,2) = xy’e® + 2% + a(x,2)
0

Fxy,2) = 3w — 9(xy,2) = xy’e + 3(x,y)

Let’s guess that

o(x,y,2) = xy’e + 2%y
(This was obtained by summing the distinct terms in the above three equations, without
the 1;’s.) If we set 1 (y,z) = ¢ (x,z) = 0 and 3(x,y) = x*y>, we see our choice of ¢ is
indeed a potential for F.
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(c) Set A =2 and B = 3. We are asked the evaluate {- G - dr with
G = (y*e* +xy®) i + (2xye™ + 3x%y?)j + 3xy*e> k = F — x°1
So
L (2> + xy?) dx + (2xye®® + 3xy?) dy + 3xy?e>* dz = L F.dr— L xy® dr

i ¥ (1)

A

Ve

— TN 2Gn ta 1 .
—<P(r(1))—<P(r(0))—Le (™) l-(Ze i—e ]+1—+tk>dt

1
= qo(eZ, 1/¢,10g2) — ¢(1,1,0) —f 2¢f dr
0

= (P (/" 4 6 (1))~ (1+1) ~2(e 1)
=2 4+e-2-20+2
=8—e¢

S-25: (a) The field is conservative only if
o _0F R _R R _OR
dy  ox 0z  ox oz 0y
That is,

6_ i = _5_ 2 — 367 —
3 (2xsin(mty) — €*) = p (ax cos(7ty) — 3e ) <= 2mxcos(my) = 2ax cos(my)

% (2xsin(rty) — €*) = —g—x (x + by) ¢ — —eF = ¢
% <ax2 cos(mty) — Sez> = _g_y (x + by) e* — —3¢% = —be*

Hence only a = 7r, b = 3 works.

(b) Whena =7, b =3

A

F = (2xsin(my) — )i+ <7Tx2 cos(my) — 3ez) j—(x+3y)ek
= V (x?sin(mry) — xe* — 3ye* + C)

so ¢(x,y,z) = x?sin(7ty) — xe? — 3ye? + C for any constant C. Here ¢ was guessed.

Alternatively, it can be found by antidifferentiating the partial derivatives of F.

¢

a(x, y,z) = 2xsin(mty) — e* = ¢(x,y,2z) = x2 sin(7ty) — xe* + ¢1(y, z)
g—j(x,y,z) = 71x? cos(my) — 3¢* = ¢(x,y,z) = x2 sin(7ty) — 3ye” + Po(x, z)
a Z Z Z

a—qzo(x,y,z) = —(x+3y)e = ¢(x,y,z) = —xe* — 3ye* + P3(x,y)

241



Summing the distinct terms on the right hand sides of the three equations above, we
guess
2

¢(x,y,z) = x“sin(my) — xe* — 3ye*

is a potential for F. Setting 1 (y, z) = —3ye*, ¥(x,z) = —xe?, and P3(x,y) = x
convinces us that our guess is indeed a valid potential.

(c) By part (b),

2 sin(7ty)

J F-dr = ¢(1,1,log2) — 9(0,0,0) = <sin7t ~elog2 _ 3e1°82> ~ (sin(0) —0—0) = -8
C

(d) Observe that G = F + 3ye¢? k, with F evaluated with a = 77, b = 3. Hence
J G-dr:f F‘dr—{—f 3ye* k- dr = —8+f 3ye* k- dr
C C C C
To evaluate the remaining integral, parametrize the curve by r(t) = i + tj + log(1 + t)k

with0 <t <1 Thenr'(t) =1+ + %Hf( and 3ye*k = 3t(1 + t)k so that
3ye? k - dr = 3t dt. Subbing in

1
| Grar=s+ [ atar——s+3--3
c 0 2 2

S-26: (a) The potential f must obey

Z—ir(x, Y,z) = —2ycos x sin x

5f 2 Yz
8—y(x,y,z) = cos“x + (1 +yz)e
af _ 4,2,yz

L (xy2) = yie

Integrating the last of these equations with respect to z gives

f(x,y,z) = ye¥* +g(x,y)

Substituting this into the second equation gives

e* + yze¥* + a—g(x,y) =cos®x + (1+yz)e¥*  or a—g(x,y) = cos” x

Y oy

which forces
g(x,y) = ycos2 x + h(x)

Finally, substituting f(x,y,z) = ye¥* + y cos? x + h(x) into the first equation gives

—2ysinxcosx + h'(x) = —2ycosxsinx or K (x)=0
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So h(x) = C and hence f(x,y,z) = ye¥* + y cos? x + C works for any constant C.
(b) By part (a)

J F'dr:f Vf-dr= f(m,e",0) - f(0,1,—7?) = [yeyz—kycoszx]
o C
— 27— (¢ 1)

(,e™,0)

(0,1,—72)

S-27: (a) The curl of F is zero because F; is a function only of x, F, is a function only of y,
and F; is a function only of z. That is:

i ] k
V x F = det {g_x & %] = (0-0)i+(0-0)j+(0-0k=0
2x 2y 2z

(b) All first-order partial derivative of F are continuous on all of R3. By part (a), F passes
the screening test and is conservative by Theorem 2.4.7 in the text. By inspection, a
potential is ¢ = x2 + y? + z%. Since F = Vg,
(a1,a2,a3)
J F-dr= [x2+y2+zz] o :ﬂ%-l-a%—l-a% —a-a
C (0,0,0)

S-28: (a) The curl of F is

i j k

— 0 0 0

V x F = det ox @ oz
e¥*  xze¥* 4 ze¥ xye¥* + ée¥

(xe¥* + xyzeV* + e¥) — (xe¥* + xyze’* +e¥)] i — [ye¥* — ye¥*] j + [ze!* — ze¥*] k

(b) F is defined on all of IR? and passes the conservative field screening test V x F = 0. So
F is conservative. We find a potential ¢ for F by antidifferentiating its partial derivatives.

a Z y4

Lxyz) =e — 9(x,,2) = xe +41(1,2)
Z—;(x, y,z) = xze¥* + ze¥ = ¢(x,y,z) = xe¥* + ze’ + Pr(x, z)
Z—Z(x,y,z) = xye¥* + e = ¢(x,y,z) = xe¥* +ze + P3(x,y)

All together, ¢(x,y,z) = xe¥* 4 ze¥ 4+ C works for any constant C. So the specified work
integral is

ite

Lpdr = p(x(/2)) - 9(x(0)) = p(0,1,7/2) — 9(1,0,0) = = ~1
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S-29: (a), (b) The function f(x,y) is a potential for F(x, y) if and only if it obeys
of
ox
of

—(x = sin(x?) — sin
5, (0y) = sin(x?) —sin(y)

(x,y) = 2xy cos(x?)

Integrating the first of these equations gives

f(x,y) = ysin(x*) + g(y)

Substituting this into the second equation gives

sin(x?) +¢'(y) =sin(x*) —sin(y)  or  g(y) = —sin(y)

which integrates to
§(y) = cos(y) +C

with C an arbitrary constant. Hence f(x,y) = ysin(x?) + cos(y) + C is a potential for any
constant C. Because F has a potential, it is conservative.

(c) We may parametrize C by

r(t) =sin(t)i+tj

SIS
N
N
|

As f(x,y) = ysin(x?) + cos(y) is a potential for F

LF-dr = F(x(7)) ~ F(x(7/2)) = £(0,7) — F(1,7/2) = (1) — (5 sin(1))

= 1- gsin(l)

S-30: (a) The stated integral property is characteristic of conservative fields
(Theorem 2.4.6). Since all partial derivatives of F are defined on all of R3, an equivalent
property is

A

i j k
ol ol 0
0=V xF= e oy oz

(mxyz +z> —ny?) (x%z —4xy) (x%y + pxz + qz°)
=1 (x* —x%) —j (2xy + pz — mxy — 2z) + k (2xz — 4y — mxz + 2ny).

This requires p = 2, m = 2, and n = 2, but leaves g € R completely free.

(b) Solution 1:
The choices from (a) give

F = (2xyz + 2% — 2y2) i+ (x*z — 4xy) j + (x%y +2xz + g2°) k.

244



We find a potential ¢ for F by antidifferentiating its partial derivatives.

%(x, y,z) = 2xyz + Z2 2y2 = ¢(x,y,2z) = xzyz +xz% — ny2 + 1(y,2)
g—j(x, Y,z) = x2z — 4xy = ¢(x,y,z) = xzyz — nyz + Uo(x, 2)
Z—f(x, y,z) = xzy +2xz + qz3 = ¢(x,y,z) = xzyz +xz% + %24 + P3(x,y)

All together, F = V¢ for

p(x,y,z) = xzyz +xz2 — ny2 + 41?724 +C

where C is any constant.

Rearranging the sphere’s equation to x> + y? + (z — 1)2 = 1 reveals that its bottom is at
ro = (0,0,0), and its top is at r; = (0,0,2). Hence the work done is

W:f F-dr:J Ve -dr=¢(0,0,2) — ¢(0,0,0) = 4q
C C

Solution 2:
Since the integral is path-independent, all paths from rj to r; produce the same result. A
simple choice is

C: r=(0,0,¢), 0<t<2

Here r'(t) = (0,0,1), so direct calculation gives

2 2 1 12
J F-dr:f F(x(t)) -¥(t)dt = | qfdt=|5qt| =4
c t=0 t=0 47 l=0

S-31: (a) Parametrize C by x. When the first component of a point on the curve is x, then
the second component, i, must be x? and the third component, z, must be x3. So

r(x) = xi+x2j+ 2%k 0<x<1
r'(x) =14 2xj+3x%*k

ﬁ(x) =/1+4x2 +9x4

dx

and

p(x) ﬁ(x) = (8x +36x%)\/1 + 4x2 + 9x*

dx

1
f pds :J (8x +36x°)\/1 + 4x2 + 9x* dx
c 0
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Substituting u = 1+ 4x% 4+ 9x%, du = (8x + 36x%) dx, u(0) = 1, u(1) = 14,

14 2 14
des: Vidu = Zu3/?
C 1 3 1
= %[143/ 2 1] ~ 34.26

(b) Since F(x,y,z) = Vf(x,y,z) with f(x,y,z) = xsiny + yz + 122,
J F-dr=f(1,1,1) — £(0,0,0) = sin1 +g ~ 2.3415
o

The potential f was just guessed. Alternatively, it can be found by solving

of .
a—x(x,y,z) = siny
Z—;((x,y,z) =XxCcosy +z
of

e (x,y,z)=y+z

Integrating the first of these equations gives

f(x,y,z) = xsiny + g(y, z)

Substituting this into the second equation gives

xcosy—|—§—§(y,z):xcosy—|—z or %(x,z):z

which forces
8(y,z) = yz +h(z)
Finally, substituting f(x,y,z) = xsiny + yz + h(z) into the last equation gives

y+h(z)=y+z or h(z)=z
So h(x) = % + C and hence f(x,y,z) = xsiny +yz + % + C for any constant C.
S-32: First, we'll parametrize (x, y), which wraps once, counterclockwise, aroung the
circle x> + y?> = 1. So x(t) = cost, y(t) = sint, 0 < t < 27t works. As (x,y) wraps around

the circle, z has to start at 0 (when t = 0) and end at 1 (when = 271). So z(t) = ﬁ works
and our parametrization is

t -
t) = ti+sint]+—Kk
r(t) = costi+sin I+
(Compare to Example 1.4.4 in the CLP-4 text.) With this parametrization

1 -
'(t) = —sinti tj+—k
r'(t) sin t1 4 cos ]+27r

2

E(x(t),y(t),z(t)) = —sinti+costj+ ;?f(
2
F(x(0), 90, 2(0) -¥(0) = 1+
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and

LF-dr:LZHF(x(t),y(t),z(t)) ¥ (H) dt:fﬂ <1+8t—;) dt
:27T—|—%

S-33: (a) Let’s evaluate the integral directly using the parametrization

r(x) = xi+ (9 —x%)j
with -3 < x < 3.
Since r'(x) =1 —2x},

dy
y &
(_/H

3 —_— 3
f(x2+y)dx+xdl/zj (x* + 9 +x(—2x))dx:f (9—22%) dx
C -3 -3

3 33
zzf (92x2)dx:2<272§) =18

0

(b) In this solution, we’ll evaluate the integral directly. Label the four sides of the square

L] , Lz, L3 and L4 as in the figure
Yy T
(07 1) .(L 1)

L 4 ¢ (170)1’

The parametrization of Lj by arc length is r(s) = s1, 0 < s < 1. As the outward pointing
normal to L1 is —J,

LlF-ﬁds = LlF(s,o) (=) ds = Ll(—o)ds 0

The parametrization of L, by arc length is r(s) =1+ 5j,0 < s < 1. As the outward
pointing normal to L; is {,

1 1
f F-ﬁds:f F(l,S)~de=f 2ds =2
Ly 0 0

The parametrization of L3 by arc length (starting at (1,1))isr(s) = (1—5s)i+j,0<s < 1.
As the outward pointing normal to L3 is j,

1 1 1
f F-ﬁds:f F(l—s,l)-jds:f el=5ds = [—31*5} —e—1
L3 0 0 0
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The parametrization of L4 by arc length (starting at (0,1))isr(s) = (1 —5)j,0<s
the outward pointing normal to L4 is —i,

L F-ﬁds:folF(O,l—s)-(—i)ds:E(—O)ds:o

All together

JF-ﬁds:f F-ﬁds+f F-ﬁds+f F-ﬁds—kf F-Ads
C Ly Ly Lj Ly

=0+2+(e—1)+0=e+1

S-34: (a) Since m = 1, Newton’s law of motion gives

a(t) =v/(t) = F(t) =j —sintk
Integating gives
v(t) =tj+costk +c

for some constant vector c. Since v(0) = i + k, we have ¢ = i so that
r'(t) =v(t) =i+tj+costk

Integating again gives
£2

r(t) =ti+ —j+sintk +c

N I

for some (new) constant vector c. Since r(0) = j, we have ¢ = j so that
12
r(t) =ti+ (1+ ) j+sintk
(b) The particle has x = 7t/2 when t = 71/2 and then
T 2\ . .
= x(n/2) = Tit (1+ ) i+ k

(c) The work done between time t = 0 and time t = 77/2 is

/2 /2 dr /2 . .
J F(t)-dr:J F(t) X()dt= | [—sintk]-[i+t]j+costk] dt
0 0 dt 0
/2 2 1 /2 2 1
= —gj = | — — 2 = — — —
_Jo [t —sintcost]|dt [2 + 5 cos t]o )

< 1. As
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S-35: (a) We can parametrize L by

r(t) = (x(t),y(t) = (£,1),

with ¢ running from 2 to 1. Using this parametrization,

1 1
JFdr:f F(x(t),y(t))-(x’(t),y'(t))dtzj (3t, 1) - (1,1) dt
L

2 2

1
:f(4t—1)dt:—5

2

(b) First, we note that such a choice of path is even possible: if F were conservative, then
§. F - dr would be —5 for every path starting at (2,2) and ending at (1,1), because it

would be path independent. Since %5 —3and aF T =1# 3 °F1 , by Theorem 2.4.6, F is not

ay
path-independent.
Solution 1:
y
(2,2)
L
1,1)
N ’Ll
Ls
X
{—(—o

wy) L @Y

Let’s try a family of polygonal paths Cy that consist of

o the line segment L; from (2,2) to (2,Y) followed by
o the line segment L, from (2,Y) to (1,Y) followed by
o the line segment L3 from (1,Y) to (1,1).

This is a way of characterizing a family of alternate paths with only one parameter, Y. We
are hoping that the value of the integral SCY F - dr depends on Y and that we can choose a

specific value of Y so as to make the value of the integral SCY F - dr exactly 4.
Note that

o On Ly, x = 2is a constant (so that dx = 0) and y runs from 2 to Y.
o On Ly, y = Y is a constant (so that dy = 0) and x runs from 2 to 1.
o On L3, x = 11is a constant (so that dx = 0) and y runs from Y to 1
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So,

ny F.-dr = JLl{(By dx + (x — 1)dy} + Lz{(?)y dx + (x = 1)dy} + JLB{ (Bydx + (x —1)dy}

Y 1 1
:J dy+J 3de+f 0dy
2 2 Y

= (Y-2)+3Y(1-2) = -2Y -2

Since we want our integral to be 4, we set 4 = —2Y — 2, and find Y = —3. That is, the
path D consisting of line segments from (2,2) to (2, —3) to (1,—3) to (1,1) gives us
SpF-dr=4.

Solution 2: Choosing three straight line segments was a convenient way to solve this,
but not the only way. To emphasize this point, we show that we also could have
considered (for example) the family of parabolas that pass through (2,2) and (1,1).

That is, we consider the family of functions y = ax? + bx + ¢ with 2 = 4a + 2b + c and
1 = a + b + c. Subtracting the equation a + b + c = 1 from the equation 4a +2b 4 ¢ =2
(in order to eliminate c) gives

(da+2b+c)—(a+b+c)=(2)—(1)

— 3a+b=1
N b:1—3ﬂ
Using b =1 —3g,
a+b+c=1
— a+(1-3a)+c=1
—_— c=2a

So, the class of functions described by y = ax? + (1 — 3a)x + 2a for some constant a are
parabolas that pass through (1,1) and (2, 2).

y

(2,2)

(1,1)
y=ax?>+ (1-3a)x+2a
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So, we consider paths of the form:

r(x) = (x, ax* + (1 —3a)x + 24)
(3ax? +3(1 —3a)x + 6a, x — 1)
= (1, 2ax +1—3a)
(3ax? +3(1 —3a)x +6a) + (2ax*+ (1—3a)x —2ax + (3a —1))
— 5ax? 4 (4 — 14a)x + (9a — 1)

So, if C is a portion of this parabola from (2,2) to (1,1), then

1
f F-dr :J (5ax* + (4 — 14a)x + (92 — 1)) dx
C 2

1
= {%aaﬁ +(2—7a)x* 4+ (92 —1)x
2
a
-
3

Since we want our integral to have value 4, we set 4 = § — 5, which yields a = 27.

If we choose C to be the path from (2,2) to (1,1) along the parabola 27x? — 80x + 54, then
§c F-dr =4, as desired.

S-36: Solution 1:
Let’s try a family of polygonal paths Cy (sketched below) that consist of

o the line segment L; from (0,0) to (0,Y) followed by
o the line segment L, from (0,Y) to (2,Y) followed by
o the line segment L3 from (2,Y) to (2,0).

Here Y is a parameter. We are hoping that the value of the integral SCY F - dr depends on

Yy
(0,Y) Ly (2,Y)
[ >
Ll)\ L3
(0,07 (2,0) ¢

Y and that we can choose a specific value of Y so as to make the value of the integral
SCy F - dr exactly 8. Note that

o on Ly, x = 0 is a constant (so that dx = 0) and y runs from 0 to Y and
o on Ly, y = Y is a constant (so that dy = 0) and x runs from 0 to 2 and
o on L3, x = 2 is a constant (so that dx = 0) and y runs from Y to 0
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Since F - dr = (2y + 2) dx,
f F.dr:f(zy+z)dx+f(zy+z)dx+f(zy+z)dx
Cy Ly Ly Ls

2
:o+f (2Y +2)dx +0
0

=2(2Y +2)

SoY =1 does the job.

Solution 2:

There’s nothing magical about the form of the path from Solution 1. It’s just a path that’s
relatively easy to describe using one constant Y. To emphasize this point, we provide a
solution with an alternate path based on an ellipse.

A partial ellipse running from (0,0) to (2,2) can be described by
r(t) = (cost+1, Asint) for a constant A, with ¢ running from 7 to 0. (To find this: we
centre a circle of radius 1 at the point (1,0), then multiply its y-coordinate by A.)

y

(2,0)
In this case, F(r(t)) = (2Asint +2,0) and t'(t) = (—sint, Acost), so
F(r(t))-r'(t) = —sint(2Asin2 4+ 2) = —A(2sin’t) — 2sint = —A(1 — cos2t) — 2sint

JF.dr: JO (A(cos2t —1) —2sint)dt = {A (%sin(Zt)—t) —|—2cost]0

—Amnr+4

7T
Setting At +4 =8, we find A = %. So, the half-ellipse r(t) = (cost +1, % sin t> , with ¢
running from 77 to 0, is another path that gives {- F - dr = 8.

S-37: The vector field F is conservative, with

Y
F=Vep  o(ny) =x+f0 75(7) d7

Consquently, for P = (x(,0) and Q = (x1,0),

JCF-dr=qv(Q)—qv(P)—x1+f 78(7 dy—xo—f 7g(7) dy

=X1—X0
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Thus
= [x(Q) — x(P)| = distance between P and Q

fF-dr
C

5-38:

o First notice that the vector field F(x, Y,z) = 22 k is conservative (with potential %23),
SO Scl F.dr= Scz F - dr for any two curves C; and C, from P; to P, (whether or not
they are on the surface S). Consequently, the statement ”SQ F.dr = Scz F.-dr”is
true if and only if the statement “§ (F —F) -dr = { (F—F) - dr” is true. So we
may replace the vector field F with the vector field

G(x,y,2z) = F(x,y,2) — F(x,y,2) = (xz + axy?)i + yzj

o We are to consider only curves on the surface S. For any such curve C, say
parametrized by r(t) with a < t < b, the integral

b dr
Lcmzﬁcamya@m

depends only on the values of G on the surface S. In particular, if another vector
field H obeys H(x,y,z) = G(x,y,z), for all points (x,y,z) on S, we have

b b
fcm:fqm»$om Jmmni ) dt = fﬂm

C a a
So we may replace G with

H(x,y,z) = G(x,y,2 + x* - = [x(2+ 2% = 3y) + axy*]i + y(2 + x* — 3y?)j
:(2x+x 3xy +axy )i (2y+yx 3y )j

Note that H(x, y, z) is defined on all of R®. It just happens to not depend on z.
o The curl of His

i j k
V < H = det 3 A
2x + 2% = 3xy? +axy®> 2y+yx> -3y 0

= (2xy — [~6xy + 2axy]) = (8 —2a)xyk

This is zero if a = 4. As H has continuous first order partial derivatives on all of R3,
Theorem 2.4.7 of the CLP-4 text tells us that, when a = 4, H is conservative and that
Scl H dr = Scz H - dr for any two curves C; and C; from P; to P,

So a = 4 does the job.
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S-39: (a) The curl of F is
i j k
V o« F = det Z A )
(1+ axz)ye3"2 — bxzcos(x?z) xe¥  x2cos(x2z)
= 01 + [—bx cos(x?z) + bx’zsin(x?z) — 2x cos(x%z) + 2x°zsin(x%z)]
+ [e?’x2 + 6323 — (1+ axz)e3x2] k
= [~ (b4 2)x cos(x?z) + (b +2)x3zsin(x?z)]j + (6 — a)xzeg”‘2 k
(b) For F to be conservative it is necessary that V x F = 0. This is the case when b = —2
y
and a = 6.
(c) For f to be a potential, when b = —2 and a = 6, we need
%(x, y,z) = (1+ 6x2)ye3"2 + 2xz cos(x%z)
C
%@C/ y,2) = xe™
0
a—jzr(x, y,z) = x* cos(x%z)

Integrating the second of these equations gives
fxy,2) = xye™ +g(x,2)

Substituting this into the last equation gives
0
g(x,z) = x% cos(x%z)

0z
which integrates to
g(x,z) = sin(x?z) + h(x)

Finally, substituting f(x,v,z) = xye®* + sin(x2z) + h(x) into the first equation gives
(1+ 6x2)ye3x2 + 2xz cos(x%z) + W' (x) = (1 + 6x2)ye® +2xzcos(x*z) or h'(x) =0

So hi(x) = C and hence f(x,y,z) = xye®*" + sin(x2z) + C works for any constant C.

(d) Note that the integral is §~ (F,—gp—_2 — 6x2ye3x2i) -dr. So
f (ye3x2 +2xz cos(xzz)) dx + xe3x2dy + x% cos(x%z)dz = f Vf.dr— 6J xzye3"2 dx
C C c

1
= f(1,1,1) — £(0,0,0) 6J B3t dt
0
1 3
:e3+sin1—§f ue' du with u = 32, du = 6tdt
0
3 1 3
=e’ +sinl — 3 [ue” — e”} . integration by parts

13
S inl— =
e’ + sin

3
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S-40: (a) Parametrize C by x. Then

r(x) =xi+x*j+2°k  0<x<1

:x4—x2+2x2+2x4+3x4:x2+6x4

1 3 5
dr= [ Prertdr= [C 1) 2B s
LF dr—JO[x +oxt]dy = [T+ 2| = =158

(b) Parametrize C by x as in part (a). Then
y p
ds dr V11422 1 oxt
222D = /] 42 4
dx dx AxT O
d
o(x, x2,x%) ds (8x +36x°)V/1 + 4x2 + 9x*

J pds= J (8x +36x7)\/1 + 4x2 + 9x* dx

Using the substitution u = 1 + 4x% 4+ 9x*, du = (8x + 36x3) dx:
&

_2 2 | gyt 3/2‘1
= 3[1 + 4x° + 9x*] .
= %[143/2—1] ~ 34.26

(c) Since F = V£ with f = xsiny + yz + 3z°
J F.dr=f(1,1,1) — £(0,0,0) = sin1 +; ~ 2.3415
C

The potential f was just guessed. Alternatively, it can be found by antidifferentiating:

’)

f(x y,z) = siny = f(x,y,z) = xsiny + P1(y, z)
%(x,y,z) =xcosy+z = f(x,y,z) = xsiny +yz + P2(x, z)
of _ .

Sz =y+e — floyz) =yzt o2+ s(xy)

All together, f(x,y,z) = xsiny +yz + % + C works for any constant C.

S-41: (a) This field is conservative if and only if it passes the screening test V x F = 0.
That is, if and only if,

S
dy  ox 0z  ox oz 0y
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That is,

g—y(Axgyzz) = g—x(z3 + Bx*yz) — 2Ax%yz = 4Bx%yz

0 0

E(Ax%/zz) = 5—)((33/22 —x*y?) — AxX3y? = —4x3y?
Z—Z (z° + Bx*yz) = Z—}/(Syz2 —x*y?) = 322 4+ Bxty = 32% — 2x%y

Hence only A = —4, B = —2 works.
(b) When A = —4, B= -2

F= —4x3y22i + (23 — 2x4yz) j+ (3]/22 - x4y2) k

We find a potential function ¢(x,y, z) for this F by antidifferentiating.

0

a—f(x,yIZ) = 4%’z — ¢(x,y,2) = —x'y’z+ 1 (y,2)

0

%(x, Y,z) = z3 - 2x4yz = ¢(x,y,z) = yz3 — x4yzz + Po(x,z)
0

L xy,2) =392 -5y — ¢(xy,2) =yz’ = Xy'z + Pa(xy)

All together, ¢(x,y,z) = —x*y?z + yz® + C with C being an arbitrary constant.
(I =¢(1,-1,1) — ¢(0,0,0) = —2.
(d) Note that | = {, G - dr with

G = (z —4x°y*2)i + (22 — x*y2)j + (Byz® — Pk
= F +zi+xtyzj

so that

]:f(zi+x4yzj+F)-dr: —2+J(zi—|—x4yzj)-dr
c c

Parametrize C by r(x) = xi—xj+ 2k with0 <x < 1. As & =7 -j+2xk
4 ! 2 7 ; 2 7 1 1 11
J(zerx yzj) dr:f (x*1—x"j)- (1—j+2xk) dxzj (P 4+x)dx =+ =—
C 0 0 3 8 24
11 37
— J =245 =10~ 15417

(e) T is a closed path and F is conservative, so ST F-dr = 0. Let 77 be the line segment
from (1,0,0) to (0,1,0), 7, be the line segment from (0,1,0) to (0,0,1) and 73 be the line
segment from (0,0,1) to (1,0,0).
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(0,0,1)

7,
75 2

(0,1,0)

(1,0,0) T
T

OnTi,z :O,sogﬂzi-drzo. On7;,x=0,s01-dr = dx:OandSEzi-dr:O.
Parametrize 73 by r(t) = ti + (1 — t)k, 0 < t < 1. Then % = i — k and the z-coordinate of
the path is parametrized by 1 — ¢t. So,

z1 dr
—

L(ziﬂz)-dr:szi-dr:Llfl_iT)i-(i—R) dt
=fa—wm=%

0

S-42: (a) By Newton’s law of motion
ma=F = 2V/(t)= (4,6, —4) = V/(t)=(2t, 3>, -2t

So

t t

v/(u)du = (0,0,0) +J (2u, 3u?, —2u) du = (£, £, —?)
0

v(t) =v(0) + J

0

(b) From part (a), ¥'(t) = v(t) = (#*, 2, —#?). So
t

r(t) = r(0) —i—fo v (u)du = (1,2,3) —I—JO (u?, u?, —u?) du

t t* £
= (1,2,3)+ (£/3, £*/4, —£/3) = (§+1, T2 -3 +3)

(c) From parts (a) and (b)
/()] = |P(1,t,—1)| = V2 + 12

i j k
tz t3 _tz

and

v'(t) x 1" (t) = det

2t 3t2 -2t
= (-2t +3tYi— (-2 +2) 7+ (Bt —2t") k
=tri+ 1tk

— |(t) x 1" (t)| = V21t
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The curvature is (see §1.5 of the CLP-4 text)

() x (b)) V2t

k(t) = FOE - (tzm)3
_ V2
CR2+R)>?
(d)W = (F-dr:
t=T T dr T
LO F(t)-dr = JO F(t)- (D dt = L (4t, 617, —4t) - (£, 13, —1*) dt

T
— J (82 +6t°) dt = 2T* + T®
0

S-43: (a) For the specified curve
_(AV25 W25,
v(t) =1r(t) = (2v2t1/2,2v2t1/2,2 — 2t)

V| = /8t + 8t +4—8t+ 412 = /4142t +2) =2[1+ | =2(1 + 1)

So the distance travelled is

JOZ v(t)|dt = L22(1+t)dt - 2[t+§]z —8
(b) As
v(t) =1(t) = (2v2t/2,2v2t1/2,2 - 2t) v(1) =2v2(1,1,0)
a(t) =v(t) = (V2r /2, v2ar1/2, 2) a(1) =v2(1,1,-v2)
v(1) x a(1) =4(-v2,v2,0) v(1)] =4
the curvature
_v(@) xa(1)] 8 1
*W="Nor e s

(c) G = Vo with ¢(x,y,z) = —Mgz, so that gravity is conservative. The work done is
¢(r(2)) — ¢(r(0)) = ¢(16/3,16/3,0) — ¢(0,0,0) = 0

Friction is not conservative, so we have to compute the work long hand.

2 2 r 2 2
fp-dr - fF(t) - %(t) dt = —L V() Py(t) - v(t) dt = —L () dt
16

0 0

2 2
= —24f (1+8)rdt=—-—(1+ t)5’0

0 5
1
= —§(35 —1) ~ —774.4
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(d) Solution 1: We know, from Theorem 1.3.3.c in the text, that

d?s . ds\2..

We have also been told that, at the apex, N = —k and that Ols( t) =3 forallt. So jtg =0.

Ask = % at the apex

a(l) =0T + 1(3)2(—12) -k
8 8
Solution 2: The bird follows the parametrized path
r(u) = (4‘;’&1,13/2, 4\35113/2, u(2 - u))

This is the same path as the plane, but the parameter u is not time. Let’s denote by R(#)
the position of the bird at time f. At time ¢ the bird is at some point on the parametrized
path, so there is some u(t) with

We saw in part (a) that ‘ Ll = 2(1+ u). Since the bird always has speed 3,
du du
3= \ H| = \ u(t) | =20 +u()) 5
. —:>d2”__ 5 w9
dt 2(1+u(t)) d2  2(14u(t)2dt 41 +u(t))?
At the apex u = 1 so that % =3 and lez—té‘ = — 5. The bird’s acceleration is
d’R d (dR d /dr du d’r ;du\2  drd?u
0= a(a) = a(@g0) = 52(&) *ae

From part (a)

% = (2v2u'/?,2v2ul’2,2 — 2u)
d?r ~1/2 ~1/2
W = (\/Eu , \/El/l , —2)

At the apex, when u =1,

j = (2v2,2v2,0)
j—; = (vV2,v2,-2)
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and the acceleration is

= () e = 022 3() @220 (-3

(00

L 4

Solutions to Exercises 3.1 — Jump to TABLE OF CONTENTS

S-1: This parametrization is almost trivial. We know it will have the form
r(x,y) = P1(x,y)i + Pa(x,v)j + ¥3(x, y) k where ¢ gives the x-component (i.e. x), ¢
gives the y-component (i.e. y), and y3 gives the z-component (i.e. ¢! + xy). So,

r(x,y) = x4+ yj+ (e + xy)k

S-2: Our parametrization is

x(u,v) =u+v
y(u,0) = u® 4 v*
z(u,v) =u—ov

e Adding x(u,v) and z(u,v) gives x(u,v) + z(u,v) = 2u.
e Subtracting z(u, v) from x(u,v) gives x(u,v) — z(u,v) = 2v.

Sou = % (x(u,v) +z(u,v)) and v = 1 (x(u,v) —z(u,v)). So on our surface

1 1
y(u,v) = u* +0* = Z(x v) +z(u, v))2+z(x(u,v)—z(u,v))2
_ 1 2, 1 2
= Sx(w, ) + S2(u,0)
All points of our surface lie on 2y = x2 + z2. This is a parabolic bowl:

o no points have y < 0 and

o they = Y (with Y > 0) cross-section is the circle x> + z2 = 2Y,y = Y
o the x = 0 cross-section is the parabola 2y = 22 x=0

o the z = 0 cross-section is the parabola 2y = x2,z = 0

z
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S 3: Note that, since x> + y?> = 1 + 222 on S, the condition z > 1 is equivalent to
xZ+y? =3,z = 0. So the hyperboloid is
{(xyz)| x> +y>=1+222,3<x2+1y2<9,z=>0}.

(a) No. Under this parametrization the condition 3 < x> + y? < 9is 3 < u? + v? < 9, not
2<u?+0*<9.

(b) Yes. Under this parametrization x = usinv, y = —ucosv and z = ”72 —3.S0

o x?+y?-2z2=u?-2 (”2—2 — %) = 1, as desired.
o The condition x? + y? < 9 is equivalent to u < 3, since u > 0.
o The condition x? + y? > 3 is equivalent to u > /3, since u > 0.

_ uz 1
o zZ = 7—220

(c) Yes. Under this parametrization x = v'1 + 202 cosu, y = v/'1 + 2v2sinu and z = v. So

o x? +y?—222 =1+ 20% — 20% = 1, as desired.

o The condition x? + y? < 9 is equivalent to 1 + 2v? < 9, which is equivalent to v < 2,
since v > 0.

o The condition x? + yz > 3is equivalent to 1 + 202 > 3, which is equivalenttov > 1,
since v = 0.

oz=0v=0

(d) Yes. Under this parametrization x = v/1 + usinv, y = +/1 + ucosv and z = vu /2. So

o x>+ y?>—2z2=1+u—2(u/2) =1, as desired.

o The condition x? + y? < 9 is equivalent to 1 + u < 9, which is equivalent to u < 8.
o The condition x> + y? > 3 is equivalent to 1 + u > 3, which is equivalent to u > 2
@)

u/2=>0
(e) No. Under this parametrization x = y/ucosv, y = —y/usinvand z = 4/(u +1)/2. So
o x> +y?-222=u—-2(u+1)/2=—-1,not +1

S-4: (a) No. z = sin ¢ sin 6 is negative when 0 < ¢ < 7, 1 < 0 < 2.

(b) Yes. Note that x*> + ( — y)z + (v/2—x2 - y"—) = 2 and that, for x> + y? < 1, we have
both x? + (—y)? < 1land /2 —x2 —y2 > 0.

(c) No. (usin8)? + (1 cosf)?> = u?> > 1for 1 < u < 2. Also v/2 — u? is not defined for
V2<u<?2

(d) Yes. Note that

(\fsin(,bcos@)2 (\fsin¢sin9)2 (ﬁcos¢)2:
o For0 < ¢ <, wehavez = +/2cos¢ > 0.
o As ¢ runs from 0 to §, r(¢) = v/2sin ¢ runs from 0 to 1, so that

(x =7(¢) cosb, y = r(¢) sinf) covers all of x*> + y* < 1 as ¢ runs from 0 to § and 6
runs from 0 to 27t.
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(e) Yes. Note that
o (—v2-22 si1r1<p)2 + (V2 — 22 cosgb)2 + (2)2 =2

o For1 < z < +/2, we have obviously have z > 0.

o Aszruns from 1 to v/2, 7(z) = v/2 — z2 runs from 1 to 0, so that
(x = —r(z)sing, y = r(z) cos ¢) covers all of x* +y? < 1 as z runs from 1 to v/2
and ¢ runs from 0 to 2.

5-5: (a) No. When u = v = 0, z = 4 is not between 0 and 1.

(b) Yes. Note that when x = v4 —u cosv,y =+v4—usinvandz=uwithO <u <1,
0<v<2m,

oz+xP+y?=4

o0<z=u<x<l

o For each fixed z = u between 0 and 1, (x,y) runs once around the circle
x?>+y? =4 —z=4—uasvruns from 0 to 27t.

(c) Yes. Note that when x = u cosv, y = u sinvand z = 4 — u?, withv3 <u <2,
O0<ov<2m

oz+x2+y?=4

00<z=4-u’<1

o For each fixed z = 4 — u? between 0 and 1, (x, y) runs once around the circle
x?> +y? =4 — z = u? as v runs from 0 to 27t.

S-6: First note that,

o for A,Band C,r(0,¢) = x(0,¢)i +y(6,$)] +z(6,¢) k obeys

x(0,¢)* +y(0,¢)> +2(0,¢)> = 4

and so lies on S1
o forD,Eand F, r(6,z) = x(6,z) i +y(6,2z)j + z(6,z) k obeys

x(0,2)2 +y(8,2)* =4 —z(6,2)?

and so lies on 51
o for G,Hand I, r(6,z) = x(6,z)i +y(6,2) ] +z(6, z) k obeys

x(0,2)% +y(8,2)* = z(0,2)?

and so lies on S3
o for],Kand L, r(x,y) = x(x,y)i +y(x,y)j +z(x,y) k obeys

x(x,y)* +y(x,y)* = z(x,y)?

and so lies on S3
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(a) To get a part of S1, we need to use one of the parametriAzations A,B,C,D,E, F In the

cases of A, B, C, for r(6,¢p) = x(0,¢)i+y(6,¢)] + z(6, ¢) k to lie inside S, we need

(recalling that all points of S; have z(6, ¢) > 0 and hence 0 < ¢ < 7/2)
1

x(0,0)? +y(0,¢)> <1 «— 4sin’p <1 — singbéi = 0<¢<

NE

In the cases of D, E, F, for r(6,z) = x(0,2)1 +y(0,2)j + z(0, z) k to lie inside S, we need
(recalling that all points of S; have z(6,z) > 0 and hence z > 0)

x(0,2)2+y(0,2) <1 «— 4-2°<1 «<— z>3

So parametrizations A and F work.

(b) To get a part of S1, we need to use one of the parametriAzations A,B,C,D,E, F In the
cases of A, B, C, forr(6,¢) = x(6,¢)1+ y(6,¢)] + z(0, ¢) k to lie inside S3 we need
(recalling that all points of S; have z(6, ¢) > 0 and hence 0 < ¢ < 7/2)

x(0,0)* +y(6,¢)* <z(0,9)> — 4sin’p <4dcos’¢p «— tandp <1 «— O<¢<g

In the cases of D, E, F, for r(6,z) = x(0,2)1+ y(6,2)j + z(6, z) k to lie inside S3 we need
(recalling that all points of S; have z(6,z) > 0 and hence z > 0)

x(0,2)2 +y(8,2)? <z(6,2)* — 4—-22<2* — z>2

So parametrizations B and E work.

(c) To get a part of S3, we need to use one of the parame’Erizations G, H,LJ, K, L. In the
cases of G, H, I, for r(6,z) = x(6,z) i+ y(0,z) ] + z(0, z) k to lie inside S, we need
(recalling that all points of S3 have z > 0)

x(0,2)2 +y(6,2)* <1 «— 22<1 «— 0<z<1
In the cases of J, K, L, for r(x,y) = x(x,y) i+ y(x,y)j + z(x,y) k to lie inside S3 we need
2

(%Y +y(xy)? <1 <= 2 +y° <1

So parametrizations G and J work.
(d) To get a part of S3, we need to use one of the parame:crizations G, H, L], K, L. In the
cases of G, H, I, for r(6,z) = x(6,z) i+ y(0,z) ] + z(0, z) k to lie inside S we need
(recalling that all points of S3 have z > 0)
x(0,2)2 +y(6,2)* +2(0,2)? <4 «— 22°<4 «— 0<z<V2
In the cases of J, K, L, for r(x,y) = x(x,y) i+ y(x,y)j + z(x,y) k to lie inside S3 we need
x(x, )2 +y(x,y)? +z(x,y)? <4 — 222 +2* <4

So parametrizations H and L work.
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S-7: (a) In the sketch below, the point (x,y,z) deviates from the centre (2,2,4) by sin6
units in the k direction, and by cos 8 units in the , /\% (i+7) direction. So,

x,,2) = (24 L cosf, 2+ L cosh, 4+sinb).
Y V2 V2

(x,y,2)

Y

So, we can parametrize the circle as (x,y,z) = (2 + \/LE cosf, 2+ \/LE cosf, 4 +sinf),
with 0 < 6 < 27,

Remark: it’s easy to check that this equation satisfies the two properties we desire. Since
the x- and y coordinates match, it’s in the plane x = y. To check that it’s a circle centred at
(2,2,4), we note the distance from (x,y,z) to (2,2,4) is

-2+ (2 4)2:\/(\%COS@)Z—F(\%cos@)z—i—(sin())z

1
\/2c0529+—c0529+sm 9—\/c0529—|—sm =1

So, our points all have distance one from the same point — that is, they lie on a circle of
radius 1.

(b) Consider a point (x,v,z) = (2 + L cosh, 2+ L cosh, 4+ sinb), rotatin ¢ radians
P Y V2 V2 &
about the line x = y = 4.
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The new position of the point has the same height, z = 4 + sin 0. Its distance from the
line x = y = 4is also preserved: R = +/(x —4)2+ (y —4)2 + (z —z)2 =

\/(\%c056—2)2+ (%cos9—2)2+0) = cosf — 2v/2.

The circle traced out by a point (x,y,z) = (2 + % cos 6,2+ % cos 0,4 + sin @) on the

circle is centred at (4,4, z) with radius v/2(4 — x), so it has equation
x=4++2(2—+2cosf)cos¢p,y =4+ +/2(2—+/2cos0)sin¢, z = 4sinb.

&> <&

Solutions to Exercises 3.2 — Jump to TABLE OF CONTENTS

S-1: We are going to use part (b) of Theorem 3.2.1 in the CLP-4 text. To do so, we need the
first order derivatives of f(x,y) at (x,y) = (—1,1). So we find them first.

_ 2y Py 2 4 2
folxy) = 22 (x4 +2y2)2 fl 1) =3+ 5=
x> 2y (4y) 1 4 1
fy(x,y) L) =3-53="5

T2 (g 2p2)

So(2/9,1/9, 1) is a normal vector to the surface at (—1,1,1/3) and the tangent plane is

2 1 1
§(x+1)+§(y—1)+(z—§>—0
1 2 1 1 2
gVtz=-5+t5+3=3

2x+
9 9 3

9 9
or2x +y+9z =2.

S-2: The equation of the given surface is of the form G(x,y,z) = 9 with
——2____ So, by part (c) of Theorem 3.2.1 in the CLP-4 text, a normal

Cov.2) = Fampans
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vector to the surface at (2,1,1) is

27
= (2x, 2y, 2z)
2 (x24y2+22+3)3/2 (x9,2)=(2,1,1)

—(2,1,1)

VG(2,1,1) = —

and the equation of the tangent plane is

-2,1,1)-(x-2,y—1,z-1)=0 or 2x4+y+z=6

S-3: We may use G(x,y,z) = xyz? + y*z> — 3 — x? = 0 as an equation for the surface.
Note that (—1,1,2) really is on the surface since

G(-1,1,2) = (-1)(1)(2)*+ (1)*(2)° -3 - (-1)> = —4+8-3-1=0
By part (c) of Theorem 3.2.1 in the CLP-4 text, since

Gx(x,y,2z) = y22 —2x Gx(-1,1,2) =6
Gy(x,y,2) = xz* + 2yz° Gy(-1,1,2) =12
G.(x,y,2z) = 2xyz + 3y°z> G:(-1,1,2) =8

one normal vector to the surface at (—1,1,2) is VG( ,1,2) = (6,12, 8) and an
equation of the tangent plane to the surface at (—1,1,2) is
(6,12,8) - (x+1,y—1,z-2)=0 or 6x + 12y + 8z =22

or

S-4: (a) The surface is G(x,vy,z) = z — x> + 2xy —y?> = 0. When x = g and y = 2a and
(x,v,z) is on the surface, we have z = a®> — 2(a)(2a) + (2a)? = a?. So, by part (c) of
Theorem 3.2.1 in the CLP-4 text, a normal vector to this surface at (4, 24, az) is

VG(a,2a, az) = (—2x+2y,2x -2y, 1)

= (2a, —2a,1)
(xy,z)=(a,2a,a2)

and the equation of the tangent plane is

20, —2a,1) - (x—a, —2u,z—a2 =0 or 2ax —2ay +z = —a?
Y Y

(b) The two planes are parallel when their two normal vectors, namely (24, —2a, 1) and

1
(1, =1, 1), are parallel. This is the case if and only if a = 3.
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5-5: A plane is determined by one point on the plane and one vector perpendicular to the
plane. We are told that (8,1,5) is on the plane, so it suffices to find a normal vector. The
given surface is parametrized by

r(u,0) = 2?1+ j+ (> +°) k

so the vectors

or

a(u,v) = (4u, 0, 2u)
ar - )
%(u,v) = (0, 2v, 3v°)

are tangent to S at r(#,v). Note thatr(2,1) = (8,1,5). So

or
521 = (8,0,4)
or
%(2,1) = (0,2, 3)

are tangent to Satr(2,1) = (8,1,5) and

or or
6_1,[(2,1) X 8_0(2,1) = (8,

or (-8, -24,16) = (1,3, —2) isnormal to S at (8,1,5). So the tangent plane is
(1,3,-2) - {(x,y,2) = (8,1,5)} =0 or x+3y—2z=1

S-6: To find the tangent plane we have to find a normal vector to the surface at (2,2,0).
Since

or

= (1,2u,1)
(2, )

a normal vector to the surface at r(u,v) is

; i ]k
g—rxé—r:det12u 1
w.oov 1 20 —1

= (—2u—2v,2,2v—2u)
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As r(u,v) = (2,2,0) when (the x-coordinate) u + v = 2 and (the z-coordinate) u — v = 0,
i.e when u = v = 1, a normal vector to the surface at (2,2,0) = r(1,1) is

(—4,2,0)  or  (=2,1,0)
and the equation of the specified tangent plane is

—2(x—2)4+(y—-2)+0z=0 or y=2x-2

S-7: The first order partial derivatives of f are

fx(x,y) = _ﬁ fx(=1,2) = %
2
o) = oy - Ry =22

IERT AN

So, by part (b) of Theorem 3.2.1 in the CLP-4 text, a normal vector to the surface at
(x,y) = (-1,2)is (2%, —%, —-1). As f(-1,2) = %, the tangent plane is

(%,—%,—1)-(36—1—1,]/—2,2—%) =0 or %x—%y—z:—g

and the normal line is

waar= (123 1(5 -5 1)

S-8: A normal vector to the surface x> + 9y? + 4z = 17 at the point (x,v, z) is

(2x, 18y, 8z). A normal vector to the plane x —8z = 0is (1, 0, —8). So we want

(2x, 18y, 8z) to be parallel to (1, 0, —8), i.e. to be a nonzero constant times (1, 0, —8).
This is the case whenever y = 0 and z = —2x with x # 0. In addition, we want (x, Y, z) to
lie on the surface x + 9y? + 4z% = 17. So we want y = 0, z = —2x and

17 =2+ 9y? +42° = X* +4(—2x)> = 17x* = x = +1

So the allowed points are +(1,0, —2).

S-9: The equation of S is of the form G(x,y,z) = x* 4+ 2y* 4+ 2y — z = 1. So one normal
vector to S at the point (xo, Yo, zo) is

VG(X(), Yo, Zo) =2x01+ (4]/0 + Z)j —k
and the normal line to S at (x, Yo, 2o) is

(x,y,2) = (x0,Y0,20) + t(2x0, 4yo + 2, —1)
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For this normal line to pass through the origin, there must be a t with

(0, 0,0) = (X(),yo,Zo) + t(ZXO , 4y() +2, —1)

or
X0+ 2x9t =0 (E1)
Yo+ (4yo+2)t =0 (E2)
20—t=0 (E3)

Equation (E3) forces t = zg. Substituting this into equations (E1) and (E2) gives

xo(142z9) =0 (E1)
vo+ (4yo+2)zg =0 (E2)
The question specifies that xy # 0, so (E1) forces zy = —%. Substituting zp = —% into (E2)

gives

—yo—lzo - yoz—l
Finally x is determined by the requirement that (xg, yo, zo) must lie on S and so must
obey

1 1
20=+205+2%0 -1 = —5 =x5+2(-1)°+2(-1) -1 = x5 =

So the allowed points P are (\% ,—1, —%) and ( —

71, —3).

S-10: Let (xo, Yo, o) be a point on the hyperboloid z? = 4x? 4 y? — 1 where the tangent
plane is parallel to the plane 2x — y + z = 0. A normal vector to the plane2x —y +z =0
is (2,—1,1). Because the hyperboloid is G(x,y,z) = 4x?> + y> — z> — 1 and

VG(x,y,z) = (8x,2y,—2z), a normal vector to the hyperboloid at (xo, yo, z0) is
VG(x0,v0,20) = (8x0,2y0, —220). So (xo, Yo, zo) satisfies the required conditions if and
only if there is a nonzero t obeying

(8x0,2y0, —22z0) = #(2,—-1,1) and z(z) = 4x(2) + y% -1

t t
— xO:Z’ yozzoz—iandz%:élx%—{—y%—l
£ tz—i—tz 1and x ! z !
 — = — _— = — — = ——
4 41 0= gy o=20=75

— t=42 (xo,yo,Z()) = i(%,*l, -1

S-11: (a) A vector perpendicular to x> +z? = 10 at (1,1,3) is

. .1
V(x? +2%)| = (2xi + 2zk))| =2i+6kor 5(2,0,6) = (1,0,3)

(1,1,3) (1,1,3)
(b) A vector perpendicular to y? +z? = 10 at (1,1,3) is

. « PO |
V(i + 22)‘(1,1,3) = (2yj + 2zk)| (1,13 = 2J +6kor E(O’ 2,6) =(0,1,3)
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A vector is tangent to the specified curve at the specified point if and only if it
perpendicular to both (1,0, 3) and (0, 1,3). One such vector is

—_ O
O =~
W W RS

(0,1,3) x (1,0,3) = det { ] = (3,3,-1)

(c) The specified tangent line passes through (1,1, 3) and has direction vector (1,1,3) and
so has vector parametric equation

r(t) = (1,1,3) + £(3,3,—1)

S-12: x(t) = (x(t), y(t), z(t)) intersects z°> + xyz — 2 = 0 when
2P+ x()y(H)z(t) —2=0 — (B + (B) () () —2=0 «— 266 =2 s t=1
since t is required to be positive. The direction vector for the curve att = 1is
r(1) =3i+j+2k
A normal vector for the surface at r(1) = (1,1,1) is
V(Z+ xyz)\(m,l) = [yzi + xzj + (32% + xy)l?](llu) =i4j+4k
The angle 0 between the curve and the normal vector to the surface is determined by

(3,1,2)[](1,1,4)|cos 0 = (3,1,2) - (1,1,4) «= v14V/18cosf = 12
<« 7 x36cos0 =12

= cosf = —

V7
= 0 =40.89°

The angle between the curve and the surface is 90 — 40.89 = 49.11° (to two decimal
places).

L o &

Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-1: The surface is z = f(x,y) with f(x,y) = xy. So, by (3.3.2) in the CLP-4 text,

dS = /14 f2+ f2 dxdy = /1 +x2 +y2 dxdy
-
1= J(xz—kyz)dS: Jf (x®> +1y?) 4/1+x2 4+ y2 dxdy

S x2+y2<3

(‘27T \/§
= dOJ drrr*v/1+r2
0 0

and
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We switched to polar coordinates in the last step. Making the change of variables
u=1+7r2du="2rdr

4 4
Iznf du(u—l)\/ﬂzn[ébﬁﬂ_%uwﬂ :n[64 l6 2 2| _1Ti6
1

1

S-2: First observe that any point (x,y,z) on the paraboliod lies above the xy-plane if and
only if

0<z=a*—x*—y* — ¥*+y*<a

2

That is, if and only if (x,y) lies in the circular disk of radius a centred on the origin. The
equation of the paraboloid is of the form z = f(x,y) with f(x,y) = a®> — x> — y*. So, by
(3.3.2) in the CLP-4 text,

Surface area = ff \/1 + fx(x,y)? + fy(x,y)? dx dy

2 h2<a?
= ff A/1+4x2 + 4y2 dx dy
2 4y2<a?

Switching to polar coordinates,

a 27T
Surface area = J drf do rv/1 + 4r2
0 0
a
:27(f dr rv/1 + 4r2
0

14442 ds
:Zﬂf gﬁ withs =1+4r%, ds = 8rdr
1

s=1+442

S-3: First observe that any point (x,y,z) on the cone lies between the planes z = 2 and
z = 3ifand only if 4 < x? + y? < 9. The equation of the cone can be rewritten in the form

z = f(x,y) with f(x,y) = 1/x% + y2. Note that

fx(xy) = \/%}/2 fy(x,y) \/%Tyz
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So, by (3.3.2) in the CLP-4 text,

Cr
Surface area = \/1 + fx(x,y)2 + fy(x,y)? dx dy
4<x2JJ:y2<9
Cr x2 yz
= 1 dxd
JJ \/ +x2+y2+x2+y2 e
4<x?+y2<9
=2 ff dxdy
4<x2+y?2<9

Now the domain of integration is a circular washer with outside radius 3 and inside
radius 2 and hence of area 71(3% — 22) = 5. So the surface area is 5v/27.

S-4: The equation of the surface is of the form z = f(x,y) with f(x,y) = 5 (x3/2 4+ 13/2).
Note that

floy) =vx  fylxy) =y
So, by (3.3.2) in the CLP-4 text,

Surface area = J dx dy \/1 + fx(x,y)? +fy(xr]/)2
pl
J dx | dy/1+x+y

JO

=1

de g(1+x+y)3/2}y
) 13

y=0
1

_ %J dx [(2+ 0)¥2 — (14 2)%2]
0

x=1

22 5/2 5/2
=3 5[(2+x) —(1+7%) ]x:O

i [35/2 25/2 _ 25/2 + 15/2}
5

4
= 15 [0V3-8v2+1]

S-5: () By (3:3.2) in the CLP-4 text, F(x,) = 1+ o2y + fy(xy)

(b) (i) The “dimple” to be painted is part of the upper sphere x> + y* + (z — 2\/5)2 =41t

is on the bottom half of the sphere and so has equation z = f(x,y) = 2¢/3 — y/4 — x2 — 2.
Note that

fr(x,y) = i p fy(x,y) = R

272



The point on the dimple with the largest value of x is (1,0,+/3). (It is marked by a dot in
the figure above.) The dimple is invariant under rotations around the z—axis and so has
(x,y) running over x% +y? < 1. So, by (3.3.2) in the CLP-4 text,

.
Surface area = J \/1 + fx(x,y)? + fy(x,y)? dx dy

x2+y2<1

B J +4fx27y2+4—x2*y2 *y
x24+y2<1

i 2
==

x24y2<1

dx dy

(&

Switching to polar coordinates,
2r
V4 —r?

(b) (ii) Observe that if we flip the dimple up by reflecting it in the plane z = 1/3, as in the
tigure below, the “Death Star” becomes a perfect ball of radius 2.

27T 1
Surface area = f dQJ dr
0 0

z

s =B o (10.V3)

The area of the pink dimple in the figure above is identical to the area of the blue cap in
that figure. So the total surface area of the Death Star is exactly the surface area of a

here of radius 2 and so is 5712° = 3%
sphere of radius 2 and so is 37T 5

5-6: On the upper half of the cone

=Sl =R Alen - o A - o

so that

2 2
_ 2 2 — _
ds = \/1 + fr(x,y)? + fy(x,y)?dxdy = \/l+ 21y + 21 dxdy = v2dxdy
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and

Area = Jf V2dxdy

1<x2412<162
=2 [area of { (x,y) | x> +y* <16® } —areaof { (x,y) | x> +y* <1 }}
= V2 [716* — m1%| = 255v27 ~ 1132.9

S-7: We are to find the surface area of part of a hemisphere. On the hemisphere

z=fluy) =y —x2-y? filvy)=-—m - fy(xy) == 4

2 — 2 a2 —x2— 2
so that
5 ; x2 12
dS:\/l—{—fx(x,y) + fy(x,y)?dxdy = 1+a2—x2—y2 o xz_ydedy
22
= —az_xz_yzdxdy

a

In polar coordinates, this is dS = i rdr df. We are to find the surface area of the

part of the hemisphere that is inside the cylinder, x> — ax + y?> = 0, which is polar
coordinates is becomes 12 — arcos = 0 or r = a cos 6. The top half of the domain of
integration is sketched below.

Y

r = acost

L=

(a/2,0)

So the

acos6

/2 acos 0
Surface Area = 2 f dBJ d 2 _ rz]
0 0

a /2
_ =2 do | —

rr pr—— afo [ .
/2
:Zaf df [a —asin6]

0

/2

:2a2[0+cosf)}0 = a*[m - 2]
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S-8: The upper half cone obeys f(x,y,z) = x> + y*> — z2 = 0. So, by (3.3.3) in the CLP-4

text,
/2 L 12 1 72
dxdy = i +zy Tz dxdy

2xi + 2y — 2zk
-2z

dxdy =

as = | v/
Vf-k

But on the cone x? + y? = 22, and z > 0, so that

/2 L 12 L 22 /272
ds =YX +zy Tz dxdy iz dxdy = v2dxdy

and
ot P21 = x4—y4—l—y2(x2—i—y2) (P4 +1=1
We have to integrate (x,y) over the interior of x> + y? = 2x, or equivalently, the interior
of (x — 1)? 4+ y? = 1, which is the disk
D={(xy)|(x-1)+y* <1}

So
=1

ff Ex4 —yt 4y -2 13 dS = ﬁffdxdy = V2 Area(D) =V2 7
D

S

5-9: As we saw in Example 3.1.5 of the CLP-4 text, the torus may be parametrized by
r(0,9) = (R +rcosf) cospi+ (R +rcosf)sinpj+rsinfk  0<6,p <2m

Then
or o . or . A -
&D=(R+rc059)[—sm¢l+cos¢]} %:r[—stcoquz—sm@smtp]—f—cosﬂk]
and
or or A . . A PN .
g x =3 = r(R+rcosf) [ —sinyi+ cos ¢j| x [ —sinbcospi—sinfsinyj + cos O k]
i j k
=r(R+rcosf)det | —siny cos i 0
—sinfcosyPp —sinfsinyp cosb

= r(R+rcos€)[cos¢cos€i-|—sint/zcos@j—l—sin@li}

As [cospcosBi+sinicosfj+sinf 12} is a unit vector, (we could have shortened this

computation by observing that — sin 3 4 cos ¢j and — sin 6 cos ¥y — sin f sin ¢ + cos O k
are mutually perpendicular unit vectors, so that their cross product is automatically a
unit vector) and

Jor Or

%x = =7r(R+rcosf) = dS =r(R+rcosf)dydb
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The total surface area of the torus is

27T 27T 27T
rf de dp (R+rcosf) = 2mr df (R + rcos @) = (271)?Rr
0 0 0

S-10: By symmetry, the centroid (X, 7, Z) obeys ¥ = i = Z. Parametrize the sphere using
spherical coordinates.

(6, ¢) = asin g cos@i+asin psinfj +acos p k

Then
or . R , . or . o .8
0= —asin @sin@1i+ asin @ cos ] % =acos@cosfi+acos@sinfj—asingk
so that
or o i j k
P det —asing@sin® asin¢cos0 0
08 Og . .
acos@cost acosg@sinf —asing
= —a*sin” g cos 01 — a® sin® ¢ sin 0§ — a® sin @ cos g k
6r or
— dS = ke 9 dfde = a®sinpdfde
As the surface area of the part of the sphere in the first octant is %47‘(&12 = ”T“Z
~_ szds /2 /2 5 . P
xT=7=1z i[. ds naZ/ZL fo ¢ (a“sin¢)(acos ¢)
2a 7 (72 _ 1., 17" a
=72, de Sln(pCOS(p—a|:§Sln q)}0 =5
S-11: In cylindrical coordinates
x = rcosf y =rsin6 z2=1z

In these coordinates the equation, x> + y? = 2ay, of the cylinder becomes

2 = 2arsinf or r = 2asin®
Thatis, r = f(0) with f(0) = 2asin 6. Parametrize the cylinder by
r(0,z) =x(0,z)1+vy(0,z)] +z (6 z) k with
x(0,z) = f(0) cos® = 2asin 6 cos § = asin 20
y(0,z) = f(0)sinf = 2asinfsinf = a(1 — cos26)
z(0,z) =z
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Under this parametrization,

or . : R or o or or R i R
%—Zac05291+2a31n29] E_k — %xg——Zac0s291+2a5m261
or or
= dS = %XE dfodz =2adfdz

We still have to determine the limits of integration. The figure on the left below provides
a top view of the cylinder.

Yl

2
2 + y* = 2ax
(0,a)e .,
0

| x

.

zZ=—-T
r=2a sin 6

From it we see that 0 < 8 < 7. The cone z? = x?> + y? = 2 (i.e. z = +r) and the cylinder

r = 2asin 6 intersect at z2 = 12 = 442 sin® 6. So, for each fixed 6, z runs from —2asin  to
z = +2asin 6. (See the figure on the right above. It shows a constant 0 cross-section.)
Finally,

T 24 sin 0 T T
Area:f ZadeZ:ZaJdGJ dz:8a2fd9 sin9:8a2[—c056]
|z|<2a sin 0 0 —2asinf 0 0

= 164>

S-12: (a) This right circular cone symmetric about the z-axis projects down onto a disk D
in the plane z = 0. Setting z = b gives

Dz{(x,y,z)\xz-l—yzéaz,z:o}

Since G(x,vy,z) = b?(x? + y?) — a®z? is constant on S, the area elements dS on S are
related to area elements dxdy on D as follows:

dS — |VG(x/y/Z)| xd _ 2‘(b2x’b2y/ _a22)| dxd _ \/b4(x2 +y2) +6I4Z2 dxd
x 1.2) -k N a2z N a2z
VG(xyz) K 22| ! : !

by (3.3.3) in the CLP-4 text. The defining equation for S gives z = %«/ x4+ y?, s0

12 12+ 202 (2 + 172
dS:\/b (x* +y2) +ab*(x* +y )dxdy:%\/mdxdy.

Hence I = —””2;172 §§p (2% +y?) dxdy.
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(b) Or, parametrize the surface S using 0 and t as follows:

b b
_ — ot — 22 =2
x-tcos@,y-tsm@,z—a xs+y —at, 0

Then we have, by (3.3.1) in the CLP-4 text,

A

0 <2m 0<t

)
S
O

ot 09 —tsinf tcosf® O

6 = t\/1+ b2 /a2 dt d6.

It follows that for the rectangular region R of the t6-plane described in (*),

I= H () /1 + b2 /a2 dt do.
R

i j k
or X ax_ = det [ cosf  sinf b/a] = (- Ztcos@,gtsine,t),

SO dS—‘

EX

(c) Using polar coordinates in (a) would give

2
=2 +b f J r rdrd@— 2 a3\ a2 + b2
r=0

Direct integration in (b) gives the same thing, because

2
I—H ()1 + b2 /a2 drde = YT “’ J J 3 dt do.
t=0

S-13: (a) The surface is g(x,y,z) = x> + y? + z> — a*> = 0. So, on the surface of the sphere,

PS4 SN o ek SN 3 Y O I

Vgl /a2 +y2+ 22

2)n++1—1/2 _ (az)n+1/2 — g2n+l

= JJF nds = g%t ff dS = a*"*1Area(S) = 4ma® 3
S

since the surface area of a sphere of radius a is 47ta?.

(b) The box has six faces.
S1={(xyz2)|0<x<a,0<y<b z=c} withoutward normal i = k
So={(xyz)|0<x<a,0<y<b z=0} withoutward normal i = -k
S3={(xy2)|0<x<a4,0<z<c y=>b} withoutward normal i =j
Ss={(xyz)|0<x<a,0<z<c y=0} withoutward normal i = —j
Ss={(xyz2)|0<y<b 0<z<c¢ x=a} withoutward normal i =1
Se={(xy2)|0<y<b 0<z<c¢ x=0} withoutward normal A = —i
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Tﬁ:k
i (0,b,¢)
S)
n=—-)<—+ +——>n=
Y
| S5
i (a,b,0)
v A=-k
For Sq,i.e. the z = ¢ face, and S, i.e. the z = 0 face,
J_ F-ﬁdS:J_ (xi+yj+ck) -kdxdy =c| dxdy=abc

face face face

because the z = c face has area ab. Similarly,

JOFﬁdS:JOF-ﬁdS:O f F-ﬁdS:LbF-ﬁdS:abc

face face face face

The total flux is 3abc.

(c) The base of the coneis { (x,y,z) | x> + y* < 1, z = 0 } and has (outward) normal
fi = —k. So The flux through the base is

f F-AdS = Jf (yi) - (—~k)dxdy =0
base
x242<1

In cylindrical coordinates x = rcos 8, y = rsinf, z = z and the equation
z =1 —4/x% + y?2 of the top part of the cone becomes z = 1 — r. So we may parametrize
the top part of the cone by

r(r,0) =rcosfi+rsinfj+(1-r)k with0<f<2m, 0<r<1

Then
% = cosf1+sinfj —k
or s .
i —rsin01+rcos0j

i ik
? X % —det | cos@ sinf —1
or ¢ —rsinf rcosf® O

= —rcosfi—rsinfj+rk
R _oJr _or
= AdS = Frl %drdG

= (—rcosfi—rsinfj+rk)drdo
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by (3.1.1) in the CLP-4 text. We have the orientation correct because the k component of
f is positive. The flux through the top, as well as the total flux, is

Z

1 27T ,_/R K—M ~ A
J F-ﬁdS:f drf df (rsinf i+ (1—r) k)-(—rcosfi—rsinfj+rk)
top 0 0
1 27T
:J drf d@(—r2sin6cosﬂ-|—r(1—r))
0 0

=— [Jl dr rz} { Zn de %sin(ZG)} + 27 Ll dr[r —1?]

0 0
—dosafi-3)-

S-14: Let G(x,y,z) = x*> 4+ y? + 2z. Then, by (3.3.3) of the CLP-4 text,

Ads — VGA dxdy — 2xi + 2yj + 2k

Ve L > dxdy = (v +yj + k) dxdy

2 4y W2 4 y?
———Z  _dS=——2 __ \/1+x2+12dxdy = (x* +¢?) dxd
V122412 V1+x2 412 o ytdady = (C ) dxdy
F-0dS = [xi+yj+zk]  [xi +yj+ k] dxdy = [x* +y* +z] dxdy
1
= [1+§(x2+y2)] dxdy

sincez =1- (x> +y2) on S.

(a)
x2+y2 J‘J ) ) 1 1
——= 7 dS= || (x*+v?) dxd :4f dxjd xZ 4+ 1/
gm 5( y)dxdy =4 | dx | dy (x"+y7)

1 1 1 1 8
_ 2 ) — - -
_4J0 dx (x+ 3) 4<3+3)

3

(b)

1 1

e 1,2 27 1 8 _16
fJF-ndS—lexﬁldy [1+§(x +vy )] —2><2+§><—_ 3
S

W

S-15: Let G(x,y,z) = z — xy. Then, using (3.3.3) in the CLP-4 text,

VGA dxdy = —yi—xj+k
VG k 1

ndsS =

dxdy = (—yi — xj + k) dxdy

X%y X%y [ 22 >

F-adS= [xi+yj+k| [—yi—xf+k]drdy = [1-2xy] dxdy
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1 1 1
S:fJxZ dxd :f dxf dy x2 :J dx 12 = 2
Jf«/l—l—xhry £ ey 0 0 Iy o 2

(b)

1 1 1 1 1
JfF-ﬁdS:def dy[1—2xy]:fdx[1—x]:1——:—
) o Jo 0 2 2

-16: For the surface z = f(x,y) = y3/2

3 2 9
S:4/1+f§+fy2dxdy:q/l+<§\/y> dxdy:4/1+zydxdy

by (3.3.2) in the CLP-4 text. So the area is
1 1 1 1
9 8 9 \3/271 8 r/13\3/2
e [ go= [aessl (0057, = [l ()
T 27|\ 4

S-17: The surface is a sphere of radius 2 centered on (0,0, 2), The plane z = 1 intersects
the sphere on the circle x? + y? = 3. Let F(x,y,z) = x> + y*> + (z — 2)%. Then, by (3.3.3) in
the CLP-4 text,

VF xi+yj+(z—2)

_ | 2xd 42y +2(z - 2)k

ds_‘w.f( dxdy = | >3 |dxdy = | = ‘dxdy
_ /242 (z-2)? _ 2
= z=2] dxdy = -2 dxdy

since x? + 4>+ (z—2)2=40onS.0On S,z< 2,50z —2| =2 —zand

fjf(x,y,z) ds = ff (2 —2)(x* + 1) z E A dxdy =2 JJ (x* + y*) dxdy
S

2 4+y2<3 x24y2<3

Switching to polar coordinates

V3 27T A3
Jff(X,y,Z)dSZZJ drrf d9r2:2(27r)—’ =977
0 0 4 1o
S
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S-18: (a) Each (horizontal) constant z cross-section is a circle centred on the z-axis. The
radius varies linearly from 2, when z = 0 to 0, when z = 3. So the radius at height z is

(3 —z) and we can use

2 .
r(0,z) = %(3—z)cos(9i+ 5(3—z)sin9j+zk 0<f<2m, 0<z<3

as the parametrization.

(b) By symmetry the centre of mass will lie on the z-axis. We are only asked for the
z-coordinate anyway. The z-coordinate of the centre of mass is the weighted average of z
over the cone. Since a density has not been specified, we assume that it is a constant. We
may take the density to be 1, so the z-coordinate of the centre of mass is {§;zdS/ {{¢ dS.

Since

& — (~2(3-2z)sinb, 2(3-2)cos, 0)
% (—%cos@,—%sin@,l)
% x & =(3B-2)cosh, 3(3-2)sinb, (3 -2))

the element of surface area for this parametrization is

dS = |Z x &|dodz = 2(3 —z)|(cos 8, sinf, 2)|dodz
— 2y13(3 — 7)d6dz

So the surface area, {{s dS, of the cone is

3 27T 3 3
Jodzjo dG%ﬁ(B—z):@nL dz(3—z):—%ﬁn(3—z)2’0
= 2V131
and the z-coordinate of the centre of mass is
1 N 2 (? 27322 239°
r=—— | 4 do 2v13(3 — :—fd 32-22) =22 -2
z Zmﬂfo ZL 9( z)z 9Oz(z z%) 9[2 3]0
_227_1
= 5¢ —

This is a little less than half way up the cone, which is reasonable since the cone is
“bottom heavy”.

S-19: Each constant z cross-section of the cone is a circle. When z = 0, that circle has
radius a. When z = a that circle has radius 0. Thus the radius decreases linearly from a to
0 as z increases from 0 to a. So the radius at height z is @ — z and we can parametrize the
cone by

1(0,z) = (a—z)cos@i+ (a—z)sinfj+zk 0<60<2m 0<z<a
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Since

% (= (a—z)sinb, (a—z)cosb, 0)
% (—cosf, —sinf, 1)

& x &= ((a—2z)cosh, (a—z)sind, a—z)

the element of surface area for this parametrization is

dS = |Z x &|dfdz = (a —z)|(cos 0, sinf, 1)|dodz
= V2(a—z)dodz

by (3.3.1) in the CLP-4 text. So the surface area of the cone is

JSJ ds = f: dz LM dé v2(a — z)

zzﬂnrdz (a—2z) = —\ﬁn(a—z)za
0

0

=2 ma®
and the z-coordinate of the centre of mass is
_ {§szdS 1 J“ 2 f
Z= = dz dG\fa—z == | dz( az—z
§sdS V2 ma? Jo 0
_z[ﬁ_i}“_zaj_z
a2l 2 3lo 426 3

This is a little less than half way up the cone, which is reasonable since the cone is
“bottom heavy”.

-20: Parametrize the surface by

x(6,z) =cos®  y(6,z) =2sin6 z(0,z) =

with (6, z) running over 0 < 6 < 27, 0 < z < 1. Then, by (3.3.1) in the CLP-4 text,

<?; g‘g gz> —sinf,2cos6,0)

((3x ay §z> (0,0,1)

0z’ 0z’ . o
X Z X Z
fds = <ae ag ge) % <((;z az az)ded

= (2cosb,sin6,0) df dz (+ for outward normal)
F(x(0,2),y(0,2),2(0,z)) = cos 01+ 2zsinf cos 0 j + 16z sin*  k
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So

rl 27T
JfF-ﬁdS = dzf de [2c0529+2:zsin29c059]
JO 0

rl 27T
= | dz J dé [1 + cos(20) + 2z sin? § cos 6]

Jo 0
1
i 1 2 27
= Jo dz [9 + isin(29) + 37 sin’ 9}0 =2

For an efficient, sneaky, way to evaluate S(z)n cos? 0 db, see Example 2.4.4 in the CLP-4 text.

S-21: By (3.3.2) of the CLP-4 text, with f(x,y) = 4 — x> — y?,
AdS = +(— fx, —fy, 1)dxdy
= +(2x, 2y, 1) dxdy
To get the downward pointing normal, we want the minus sign. Set
T={(xy)|0<x<1,0<y<l-x}
Then

z

———
ﬂF-ﬁdS:— q(x+1,y+1,2(4—x2—y2))-(2x,2y,1)dxdy
3 J
= - q(8+2x—|—2y) dxdy

T
1 1-x
_ dxf dy (84 2x +2y)
0

—_ fl dx (8(1—x) +2x(1—x) + (1 - x)?)

= — de (9 —8x —x?)

RREE

(&
(]

S-22: First we have to parametrize S. It is natural to use spherical coordinates with

P = \/2. However if we use the standard spherical coordinates

x=+V2singcos® y=+2singsind z=1+2cosg

.. . AJyP42? in? ¢ sin? 0 2 C .
the condition x > /y? + 22, i.e. Y12 <1, becomes V/sin” psin’ 0--cos’ ¢ < 1, which is very

X sin ¢ cos 6
complicated. So let’s back up and think a bit before we compute. From the sketch below
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(x,0,0) \/y —1—22

X

VP+22 .
we see that Y~—— is the tangent of the angle between the radius vector (x,y,z) and the
x-axis. The angle between the radius vector (x, y,z) and the z-axis (not the x-axis) is
exactly spherical coordinate ¢. So let’s modify spherical coordinates to make the x-axis
play the role of the z-axis. The easy way to dois tojustrenamex =27,y = X,z =Y.
Then the integral we are to compute becomes {{; ZX? dS, and the condition

X = +/y? + z%2 becomes Z > v/ X? 4 Y2. Under the parametrization

X = /2 sin @ cos Y = /2 sin ¢ sin 6 Z=+/2cosg

the condition Z > v/ X? + Y2 is ¥ X2ry? _ sing 1, whichis turnis0 < ¢ < Z. As
Z =7

Cos @
dS = 2sin ¢ d0d¢ (see Appendix F.3 in the CLP-4 text and recall that p = +/2) the
specified integral is

/4 27t
ffxyz ds = JJZXZ ds = ZJ de sin(pf dé (V2 cos ) (V2 sin ¢ cos §)°
S 5 ’ ’
/4
=42 f dg cos @sin® ¢
0

/4
=42 f dg cos @sin® ¢
0
0
2

. 4 71'/4 27T
43 [sulL go] {sm 4 }
0

4

Ve
4

For an efficient, sneaky, way to evaluate Sgn cos? 0 df, see Example 2.4.4 in the CLP-4 text.

S-23: Here is a sketch of the part of S that is in the first octant.
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2?2 4 2% =sin’y

X

For each fixed y, x> + z? = sin? y is a circle of radius siny. (It’s the blue circle in the
sketch above.) So we may parametrize the surface by

r(0,y) = (siny cos@, y, siny sinf)  0<60<2m, 0<y<m

Then, by (3.3.1) in the CLP-4 text,

% = (—siny sinf, 0, siny cos )
2—;: (cosy cosf, 1, cosy sinb)

2—; 2—;— (—siny cos, siny cosy, —siny sinf)
ds = % X ? dédy = siny4/1 + cos?y df dy

So the specified integral is

ff«/l +cos2ydS = J dy d9 siny{1+ cosy}

= 27rj dy siny{1 + cos?y}
0

-1
:—ZNJ du {1+u?} withu=cosy, du = —sinydy
1
1
:47TJ du {1+ u?}
0

31!
=4r {qu—]
3 Jo

16

S-24: The paraboloid is

S={(xyz)|z=1-22-y% z20}={(xv,y,2) [z=1-22 -1, ¥ +1* <

1}
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By (3.3.2) in the CLP-4 text, the paraboloid has

ds = \/1 + fe(x,y)2 + fy(x,y)2dxdy  withz = f(x,y) =1—x*—y°

= 4/1+4x2 + 4y2 dxdy

By symmetry, the centre of mass will lie on the z-axis. By definition, the z-coordinate of
the centre of mass is the weighted average of z over S, which is

. Dyzpluy2)ds
§s0(x,y,2) dS

On S,
(x z)— z B 1—x2—y2
PRy B4z T+ 4x? 42
so that

o(x,y,2z)dS = (1 —x* - y*) dxdy

So, using polar coordinates, the denominator of Z is

27T
fjp(x,y, Jf (1-x*—y?)dxdy = Jdrrf de (1—1r?)
S

x2+y2<1
=27‘L’J r(1—r?)dr
0
7,2 7,4 1
=275 -7,
_
2

and the numerator of Z is

27T 2
szp(x,y, JJ (1—-x*—1?) dxdy Jdrrf de (1-r%)
S

x2+y2<1

= an r(1— 1’2)2 dr
0

2 4 6
_ T
3
and
Z_n/?) g
/2 3
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S-25: The equation of the plane is z = f(x,y) = 2 — x — y. So by (3.3.2) in the CLP-4 text,
1dS = [~ fu(x,y)i— fy(x,y)j + k] dxdy = [i+] + k] dxdy
A point (x,y,z) on the plane lies in the first octant if and only if
x>0 and y>0 and z=2-x-y=>0 9(072)

So the domain of integration is the triangle

T+y=2
T={(xy)|x>0y>0 x+y<2} T
(2,0)
and T
ya
. R —~——— A SR ~
HF-ﬁds = U [xi+yj+(2—x—y)k]-[i+]+k] dxdy
S T
= ZJ dxdy
T
1
=2-(2)(2) =4
2
S-26: Since
% = (02, 2uv, v)
o = (2uo, u?, u)
& & = (v, uo?, —3u*v?)
(3.3.1) in the CLP-4 text gives
AdsS = +(u v, uv? 3u202) dudov
We are told that fi should have a positive z-component, so
AdsS = (uzv uv? 3u202) dudv = (- w?o, —uv?, 3u202) dudo

and

JJF AdS = Jf , uv, uv) - (- w?v, —uv?, 3u202) dudo

3 1 3
duf dov 130° = [ du u3] [J do 03]
0 0 0
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S-27: (a) We start by just sketching the curve z = €Y, considering the yz-plane as the plane
x = 0in IR3. This curve is the red curve in the figure below. Concentrate on any one point
on that curve. It is the blue dot at (0, Y, ¢¥) in the figure. When our curve is rotated

z

(0,Y,eY)

Y

T
about the y-axis, the blue dot sweeps out a circle. The circle that the blue dot sweeps out

o lies in the vertical plane y = Y and
o is centred on the y-axis and

o has radius e”.

We can parametrize the circle swept out in the usual way. Here is an end view of the
circle (looking down the y-axis), with the parameter, named 6, indicated.

“(0,v,e")
(¥ sin®,Y,e¥ cosh)

end view

The coordinates of the red dot are (eY sin@, Y, eY cos 9). This also gives a
parametrization of the surface of revolution

x(Y,0) =e¥sinf

y(Y,0) =Y
z(Y,0) = e¥ cos 0
0<Y <1, 0<0<2m

Finally here is a sketch of the part of the surface in the first octant, x,y,z > 0.
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(b) We are using the parametrization

r(Y,0) =e'sinfi+Yj+ecosfk 0<Y<1,0<6<2nm

so that
| k
%x%—det e¥sinf 1 e'cosd | = (—eYsinG,ezy,—eYcose),
e¥cos® 0 —e'sind

and, by (3.3.1) in the CLP-4 text,

« %‘ dYdo = \/e2Y + ¢4 dY df = e¥\/1 + e2¥ dYdo

5‘\57

So the integral is

1 3/2|}
Jf e¥ds = J dY d9 e2Y /1 + e2Y = 27TJ dY e2¥4/1 4+ e2Y = 2?71 [1 + ezy}

0

th [(1 + 22 _23/2]

(c) Again, we are using the parametrization

r(Y,0) =e'sinfi+Yj+ecosbk 0<Y<1,0<6<2nm

so that - 5
oL or Y 2y Y
X 75 (—e'sinf, e, —e" cosh),
and, by (3.3.1) in the CLP-4 text,
AdsS = iﬁ X %deQ = +(—e"sinb,e”’, —e" cos) dY do

We choose the “+” sign so that fi points towards the y-axis. As an example, when
00 < %, then z = eY cos6 > 0 while the z-coordinate of fi is —e¥ cos 6 < 0. So the
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integral is

x z

27 /_A_\
JJF ndS—f de do (e smGOe cosf) - (—eYsinG,ezy,—eycose)

27T
f dYy do %Y = 27(] dy %Y
0 0

=-n(e?—1) = n(1-¢)

S-28: Write
V={(xvyz)|1< x>+ y? + 2 <4}

The boundary of V' consists of two parts — the sphere, Sy, of radius 2, centred on the
origin, with (outward) normal fi = o | 5, and the sphere S of radius 1, centred on the
origin, with (inward) normal fi = —r, So,

HF-ﬁdszHl-EdS—ﬂi-rds
r| 2 x|
oV S, S
:ﬂds_f ds
S Sq

= 471(2)% —47m(1)?
=127

S-29: The part of the cone that has some fixed value, Z, of z with 0 < Z < 1 is the part of
the circle { (x,y,z) | x> + y* = 4Z?,z = Z } of radius 2Z thathas 0 < x < y. Hereis a
sketch of the top view of that part of that circle.

a? +y? =427

So we can parametrize S by

r(0,Z) = 2Zsinfi+2Zcosj + Zk 0<6< %, 0<Z<1

291



So

or . A
%—ZZcosf)l—ZZsmO]
O o sinfi+2c0s0) + k
27 = si cos0j
so that
1 j k
or or . .
— X = =det |2Zcos® -2Zsin® 0| = (—2Zsinb, —2Zcosb,4Z),
00 oz .
2sinf 2cosf 1

and, by (3.3.1) in the CLP-4 text,

or or
ds = 2 "5 dodZ = /207 dedzZ
and
1 /4
ffzzdsszdzf dgzi%szlzﬁ
0 0 4 4 8
S

S-30: We'll start by parametrizing S. Note that as x> + y? runs from 0 to 4, z runs from 5
to 1, and that, for each fixed 1 < Z < 5, the cross-section of S with z = Z is the circle
x> +y*=5—Z,z = Z. So we may parametrize S by

1(0,Z) =\5—Zcos@i +5—Zsinfj+Zk 0<0<2m,1<Z<5

Since
%:—\/ —Zsin0i++/5—Zcosfj
or 1 1 N
— = 01 — ———sinf7i+ k
27 > 5_Zcos 1 > 5_Zsm ]+
so that

i j k
%xg—;:det —V5—=Zsinf +/5-Zcost 0| = (v5—Zcosf, v5—Zsinb, 1/2),
1 1
cosf 1

25—27 RSN AL

(3.3.1) in the CLP-4 text gives

AdsS = i% X g—;deZ =+(v5—-Zcosb,V5—Zsinb, 1/2) d6dZ
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Choosing the minus sign to give the downward pointing normal

|| F-as
S

x3 o % 2
17 ~ 17 % N —
JdZJ _E 5 Z]3/2COS 0 [5—2]3/2C059811’129, _5[5_2]3/2511130, ZZ )

(V5 —Zcos0, V5 —Zsin6, 1/2)

7T
1
—JdZJ de <—§[5—Z]2cos49—[5—Z]2c052931n29—15—Z]zsin49+1Z2)
1 0

51

2
Since . . .
Ecos46+coszésin20+§sin49:E(c0529+sin29)2:
the flux
HF ndS—deJ [5 Z] —%ZZ —nde [5 Z)? Z2)
1 737° VERNNC |
= |-Bb-ZP - | =a|=—-Z=+Z|=-20
”{3[ | 3}1 ”{3 3+3} g

S-31: The surface is z = f(x,y) with f(x,y) = /2xy. Since f, = 4/4= and f, =, /37
(3.3.2) in the CLP-4 text gives

2 2 2
:4/1+f§+fy2dxdy:,/1+%+%dxdy:\/%dxdy

_ Xty dxdy

\/2xYy

On the shell, z2 = 2xy <
over the region x > 1, y

4. So the x and y components of points (x,y,z) on the shell run
> 1, xy < 2, which is sketched below

Y

Ty =2
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So the mass is

2/x 2/x
prxy, dS—def dy 3f(x, fdxf dy 3(x +y)

1,]%* 2 2 1
SJ dx {xy+2y]1 :3J dx {Z—I—p—x—i}

-32: Since x = g(y,z) with g(x,y) = y* + 2%, (3.3.2) in the CLP-4 text gives

ndS = +(1,-gy, —8z) dydz = £(1, -2y, —2z) dydz

We choose the + sign so that fi -7 > 0. Furthermore

{(x,y,z)\x:yz—l—zz, x <2y}
{(xy2)|x=y*+2* y¥*+22 <2y }
{(xy.2)

{(xvy,2)

xy,z) | x=y"+2% (y-1)*+22 <1}
X, Y,z ‘x:y2+zz, (y,z)inD }

where D = { (x,y) | (y —1)? 4+ 2> <1 } is a disk with radius 1. Hence

JJF -adS = £f(2, z,y) - (1, -2y, —2z) dydz = £J(2 — 4yz) dydz

Since —4yz is odd under z — —z the integral of —4yz is zero and

JJF -AdS =2 Area(D) =271
S

S-33: For the specified F and the surface x = f(x,y) = 1 — 1x% — 2, by (3.3.2) in the
CLP-4 text,

adS = (- fri—fyj+Kk)dxdy = (§i+2yj+f<> dxdy
i ik
VxFodet| & 2 &
3y +z x—x* 1
=j+(1-2x—6y)k

VxF-AdS = (2y+1—-2x—6y)dxdy = (1 —2x — 4y) dxdy
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The domain of integration is 1 — }lxz — yz >0or %LxZ + yz < 1. This is an ellipse. Call it D.
So

Uv x F-fidS :ff(1—2x—4y)dxdy
S D

The integrals over D of x, which is odd under x — —x, and of y, which is odd under
y — —y, are both zero. As the ellipse D hasarea A = m x2 x1=2m

JJVxF-ﬁdSzfj(l—Zx—LLy)dxdy:A:Zﬂ
S D

S-34: Due to the symmetry of the surface and the vector field under reflection in the
xy-plane, i.e. under z — —z, it is sufficient to compute the integral over the upper half of
the surface, where z > 0, and then multiply the result by 2. The upper half of the surface
consists of two pieces, S and Sy, where S is the part on the sphere and S5 is the part on
the hyperboloid. S; and S; intersect on a circle. The circle is obtained by imposing the
two equations x% + y? + z? = 16 and x? + y? — z> = 8 simultaneously. Thus we have
X2+ y2 =12 and z = 2, or in cylindrical coordinates r = V12, z = 1, on the circle. Here is
a sketch of a cross-section of the apple core.

z

S

r=12, z=2
5 &
2

r

Let ¢; be the angle between z-axis and the cone formed by connecting the circle to the
origin. We have tan ¢; = v/12/2 = /3. Thus ¢ = /3.

We'll use spherical coordinates to compute the flux integral SS51 F-fdS . As the spherical
coordinate p = 4 on all of S;, we can paramerize S; by

1(6, ) = 4cosfsin @i +4sinfsingj+4cospk 0<0<2m, 0<¢p<m/3
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So

% = —4sinfsin @i+ 4cosfsingj
;?; = 4cosfcos @i+ 4sinfcos @f —4sin gk
C
i j k
%xj—r:det —4sinfsing 4cosfsin g 0
¢ 4cosfcosp 4sinfcosgp —4sing
= —16( cos@sin® ¢, sinfsin® ¢, sin ¢ cos )
= —4(sing)r(6, ¢)
and, by (3.3.1) in the CLP-4 text,
or or
A = 4+ — J— = I 1
nds tag 5o dfde = F4 (sin¢) r(6, ) dodg

To get the outward pointing normal, i.e. the normal point in the same direction as r(6, ¢),
we take the plus sign. AsF = (6, ¢),

42
——
F-ndS =4[r(6,¢)]* sinpdfdde = 64sin pdf de
and

271 /3 /3
JJF~ﬁdS:64J dQJ d(psin(p:64.27t[—cosq)}0 = 641

0 0
51

The surface Sy can be parametrized using the cylindrical coordinates 6 and z. Indeed, we

have
r=a/x2+y2 = (8 +2%)1/2

for the hyperboloid and we always have x = rcosf and y = rsin 6. Thus the
hyperboloid has the following parametrization:

R(0,z) = (8 +2%)2cos0i+ (8 +22)/?sinfj + zk

The range for the parameters of S is 0 < 6 < 271 and 0 < z < 2. We have

Z_I; = (8+22)25in 07+ (8 +22)/2cos 0] + 0k
g_lz{ =2(8+2%) 2 cosfi+z(8 +2°) " 2sin] + k
and
R R ! /

k
— x— =det | —(8+2*)?sinf (8+2%)2cosf 0
z z(8 +22)"1/2cos 0 z(8+2%)"1/2sinh 1

= (84 2%)2cos 01+ (8 +2%)1/2sinfj—zk
+
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Note that %—Ig X %_5 is pointing downward (since z > 0) and hence outward. Since
F- (aR X aR) = (x,v,2) - (x,y,—z) = x> + y*> —z2 =8 on Sy, we have

00~ oz
2 27T
ffF'ﬁdS: JfF-(Rngz)dez:f dzj df 8 =321
0 0
So So

Finally, the flux integral over the whole apple core surface is

2 HF~ﬁdS+”F-ﬁdS = 2(647 +327) = 1927
51 Sy

S-35: (a) The specified surface is of the form

G(x,y,z) = x>+ 2> —cos’y =0

So one normal vector at the point (3, %, %) is

= (1,1,1)

1 71 .
VG (E’Z’E) = (2x, 2sinycosy, 2z)

(353
and an equation for the tangent plane at (1, Z, 1) is

(1,1,1)- (x—=1/2,y—m/4,2—-1/2) =0 or x+y+z=1+mn/4

(b) For each fixed y, x> + z2 = cos? y is a circle of radius | cosy|. So we may parametrize
the surface by

r(0,y) = (cosy cosf,y, cosy sinf)  0<6<2m, 0<y<7/2

Then

or .

=5 = (—cosy sinf, 0, cosy cosb)

2—;: (—siny cosf, 1, —siny sinb)
ﬁ><g—( cosy cosf, —siny cosy, —cosy sinb)
0 oy . .

. or or . .2
dS = %x@ dfdy = cosyq/1+sin“y dody
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So the specified integral is

/2 27T
siny dS = J d df cosyy/1 + sin?y sin
JJ Y . Y . Y Y Y
/2
= an d 1+ sin?y siny cos
0 UV y y Y

2
= nJ du vu withu =1+ sin’y, du = 2sinycosydy
1

[umr
= 7T _—

3/2 ],
- 2%[2[2*1}

S-36: (a) By definition F is a conservative vector field with potential f. Suppose that the
curve C starts at P, on S, and ends at P, on S. Then f(P;) = f(P,) = ¢ and, by Theorem
2.4.2 of the CLP-4 text,

LF{h:fU@—f@Q:c—c:O

(b) Since F = Vf, F is normal to the level surfaces of f by Lemma 2.3.6 of the CLP-4 text.
So, at any point of S, F is a scalar multiple of fi and F x G is perpendicular to fi. Thus

(FxG) -fi=0and
[ﬂFxcyﬁds:a
S

S-37: (a) (i) Here is a sketch of the part of the plane in question.

i

We can use x and y as parameters. As we can rewrite the equation of the plane as
z = 3(16 — 2x — 4y), we have the parametrization

r(x,y) = xi+yj+%(16—2x—4y)f<
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In terms of x and y, the condition z = (16 —2x — 4y) > 0is 16 —2x — 4y > O or
x + 2y < 8. So the domain is

{(xy) |x=0,y=0, x+2y <8}
Renaming x to u and y to v, the parametrization is also

A

1
r(u,v)z(u,v,§(16—2u—4v)>k u=>0,v=>0,u+20<8

(a) (ii) Here is a sketch of the part of the cap in the first octant.

z

2 .20 .2
. .y r°+y + 22 =16

/
T

The full sphere can be parametrized (using spherical coordinates with p = 4) by
(0, p) = 4cosfsin i +4sinfsingj+4cospk 0<0<2m, 0<ep<m
In these coordinates, the condition 4/v/2 < z < 4 is

1
<4cosp<4 «— —=<cosp<1

7 <

— 0<¢<

4
V2

]

So our parametrization is

(60, p) = 4cosfsin pi+4sinfsingj+4cospk 0<0<2m, 0<¢< g
Renaming 6 to u and ¢ to v, the parametrization is also

. o 7T
r(u,v) = (4cosusinv, 4sinusinv, 4cosv) 0<u<2m, 0<v< 1

(a) (iii) Here is a sketch of the hyperboloid.

<
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If we use x and y as parameters, then, since z = /1 + x2 4 y2, we have the

parametrization
r(x,y) = xi+yj+4/1+x2+1y2k

In terms of x and y, the condition1 <z < 101is

1<4/14+224+12<10  or  0<x®+1y*><99

{(xy) |*+y* <99}

Renaming x to u and y to v, the parametrization is also
r(u,0) = (u, v, V1+u? +0?) u? + 0> <99

Alternatively, if we replace x and y with the polar coordinates r and 6, we get the
parametrization

So the domain is

r(r,0) =rcosfi+rsinfj++/1+r2k  0<60<2m, 0<r<+V99

Renaming r to u and 6 to v, the parametrization is also
r(u,v) = (ucosv, usinv, /1 + u?) 0<v<2m 0<u<+v99
(b) Let’s use the parametrization

(6, @) = 4cosfsin @i +4sinfsingj+4cospk 0<0<2m, 0<¢<

]

from part (a) (ii), so that

A

or O et 4'i9' 4 é 18
8 5 —4sinfsing 4cosfsin ¢

4cosfcosp 4sinfcose —4sing

= —16( cos 0 sin? , sin6 sin® , Sin ¢ cos
% P P %

and, by (3.3.1) in the CLP-4 text,

a o
08 odg
= 16sin ¢ d0d¢

ds = ‘ dfde = 16sin (p\/cos2 0sin? ¢ + sin § sin” @ + cos? ¢ dfd @

So the area is

/4 271 /4 /4
Area:JJdS :J de de 16sin(p:327rj de sin(p:327'c[—c05(p}0

0 0 0
S

:3271[1—\%}
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5-38:
Solution 1 — using tweaked spherical coordinates.

First we have to parametrize S. It is natural to use spherical coordinates with p = /2.
However if we use the standard spherical coordinates

x = /2 sin ¢ cos 6 y = /2 sin ¢ sin 6 z=1+/2cos¢

1
\/_E/
and think a bit before we compute. The condition z > 1, as opposed to y > 1, is easy to

implement in spherical coordinates. It is cos ¢ > \/LE or 0 < ¢ < 7. So let’s modify

the condition y > 1 becomes sin ¢ sin 0 > which is very complicated. So let’s back up

spherical coordinates to make the y-axis play the role of the z-axis, by just exchanging y
and z in the parametrization.

x = /2 sin ¢ cos 6 y=+2cosg z=+/2 sing@sinf

The condition y > 1 is then v2cos ¢ > 1, which is turn is 0 < ¢ < F. Since we have just
exchanged y and z we could probably just guess i dS and dS from standard spherical
coordinates. (See Appendix F.3 in the CLP-4 text and recall that p = +/2.) But to be on the
safe side, let’s derive them. We are using the parametrization

1-(9,4))=\@singocos9i—|—\/§cos¢j—|—\/§singosin6f< 0<6<27T,0<(P<%
Since
or . PN . y
Fr i 2 sin @ sin A1 4 /2 sin @ cos O k
g—;:\@cosgocosﬁi—\@sinqoi+\f2cosq)sin9f<
so that
i j k
E><ﬁ—det —+/2 sin@sin 6 0 V2 sin 0
20 84) — S1 (PSl S1 gOCOS

V2 cospcos® —+/2sing /2 cos¢@sinf
= 25sin® @ cos 01 + 2sin ¢ cos ¢ + 2sin® gsin O k

(3.3.1) in the CLP-4 text gives

nds = J_ra—; X g—;de(p = +2sin¢(singcos B, cos ¢, sin ¢ sinf) dode
ds = gxﬂ dfd¢ = 2sin ¢ d6d

Choose the plus sign to give the outward pointing normal.
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(a) The specified integral is

3

y
/4 2 —
J y3dS:2J0 de ; df sing (V2 cos g)

S
/4
= Sﬁﬂf dg sin @ cos® ¢
0

COS4gD s
=8V2m {— ]
4 0
1 3

(b) The specified integral is

Jf (xyi+xzj+zyk) AdS
5

/4 27T
:2f de | do sing (2sing@cospcosh, 2sin® psinfcosh, 2sin ¢ cos psinb)-
0 0

(singcosB, cos ¢, sin@sinf)

/4 27T
=4 J de J de { sin® ¢ cos ¢ cos? 6 + sin® ¢ cos ¢ sin B cos 6 + sin® @ cos ¢ sin? 0}
0 0

/4 277
:4f dg sin® ¢ cos ¢ J df (1 + sinf cos6)

| Jo | Jo
- /4 12
_ 4 sin* ¢ i o+ sin20]"
B 1 2
L 0 Jo
1 T
—4XEX(27T)—E

Solution 2 — parametrizing by x and z.

We can also parametrize S by using x and z as parameters. On S,

oy=+v2—x2—-22and
o y runs over the range 1 < y < v/2. Correspondingly, x> + z2 = 2 — y? runs over
0<x?+22<1

So we can use the parametrization

r(x,z) =xi4+42-x2-22j4+zk 0<x?*+2z2<1

Since
ar_i X .
ox 2—x2—22]
or z .\
— = i+k
0z 2—x2—22]+




so that

i j k
or or _ X
a><E:de’c 1 V-2 0
_ Z
0 V2—x2—22 L
. X i a z &
222 T ez
(3.3.1) in the CLP-4 text gives
or Or X z
ndS = +— x —dxdz=7F 1 dxd
ndSs _8xxéz xdz +(\/2—x2—22’ ’\/Z—xz—zz) xdz
or  or x2 + 72 V2
= | — —_— — 1 _— e —
ds Ealen dxdz \/ +2_ 2 dxdz mdxdz

Choose the plus sign to give the outward pointing normal.
(a) The specified integral is

3

Yy
3 V2 f 2 2\3/2
ds = dydz ———— (2 —x"—2z
ij J \/2—x2—zz( )
S x2+22<1
=2 fj dxdz (2 - X2 — zz)
x24+22<1

Switching to polar coordinates with x = rcos 8 and z = rsin 6,

Jsfye’ ds = \/EJ:H do Jol drr(2 —r?)
o2 e ]2

(b) The specified integral is
fj (xyi+xzj+zyk) -AdS
S

= Jf dxdz (xvV2—x% — 2%, xz, z\/2 — x% — 22)-

x24+22<1

X z
<\/2—x2—22'1’\/2—x2—22>
= JI dxdz{x2+xz+zz}

x24+22<1
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Switching to polar coordinates with x = rcos and z = rsin 6,

r27 1

JJ (xyi+xzj+zyk) AdS = ] dGJ dr r(r* cos® @ + 1 sin @ cos § 4 r* sin” 9)
0 0

S

[ ~1 277
= J dr r3] [J de (1+sin9cos€)]
0 0

27

B 'f ! 9+sin20
14, 2

0

S-39: First observe that,

o because (x +y +1)? > 0, all points on (x +y + 1)? +z? = 4 have |z| < 2 and that,
o for |zo| < 2, the surface (x +y + 1) + z? = 4 intersects the horizontal plane z = zg

on(x+y+1)>=4—23 ie onthetwolinesx+y = +,/4—z3 -1,z = z,.
o Theline x +y = +4/4 — z% — 1, z = zp intersects the first octant if and only if zy > 0

and +4/4—2z3—-1>0.

o Thusx +y = —4/4 — Z% — 1, z = zp never intersects the first octant and

o x+y =4/4—25—1,z =z intersects the first octant if and only if 0 < zp < /3.
o Whenzy =0, thelinex+y=4/4—2z5—1,z=zisx+y=1,z=0.

o Whenzy=+/3,thelinex+y=4/4—25-1,z=z)isx+y=0,z=2.
o So as (x,y,z) runs over S, (x,y) runs over the triangle x >0,y >0, x +y < 1.

Let G(x,y,z) = (x +y+1)? 4z Then

VG
VG k

x+y+1)i+2(x+y+1)j+2zk

hdS = +
fid5 =+ 2z

dxdy = + 2 dxdy

For the downward normal, we need the minus sign, so

(x+y+1i+ (x+y+1)j+zk
z

F-ﬁdS:—[xyi+(Z—x]/)ﬂ'[ ]dxdy
= Ly by 1)+ (- ) (x+y +1)] dady

1
= —E[z(x +y+1)] dxdy
= —(x+y+1)dxdy
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The domain of integrationisx >0, y >0, x +y < 1, s0

HF Ads =— defx (x+y+1)= fdx 1+X)(1—x)+;(1—x)2}

L o &

Solutions to Exercises 4.1 — Jump to TABLE OF CONTENTS

5-1: (a) A. The angle between F and dr is less than 90° along the entire path. So F-dr > 0
along the entire path and the work is positive.

(b) B. F is perpendicular to dr along all of C;. So SCZ F.-dr=0.
(c) C. It looks like Py = Q, =0at N.SoV-F =0 at N.

(d) A. At Q, the vertical component of F is increasing from left to right (so that Q, > 0)
and the horizontal component of F is decreasing from bottom to top (so that P, < 0). So

(e) B. At D, the horizontal component of F is increasing from left to right, so that P, > 0.

S-2: No. The vector field F(x,y,z) =1+ yk has

Vdeet[

—_ Q)lg) ~>
o@hﬂN)
< ¥
I

=1
has dot product 1 with F(x, y, z) (for all x, y, z) and so is not perpendicular to it.

S-3: (a) By the product rule

V- () = SUR) + 5 UR) + S (R)

OF aF aF
= fortf 2+f :

f f _f
+hgy +F26y 30z
= fV-F+F.Vf
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(b) Again by the product rule

0 0 0
8_(P2G3 - FRGy) + a—y(F3G1 — FGs3) + (Q—(Fle - EG)
 OFR_ OF_ 0F_. 0F_. OF_. 0F
= et oy C1 oy R

0Gs G, oG, Gy Gy oG
x ey TRy Flay +h B

(/P3 (7F2 01—“1 0F3 an (3F1
(&y_82)Gl+<8z_&x)cz+<&x_0y)(;
0Gs  0Gy 0G1  0Gs 0Gy 0Gy
Fl(ﬁﬁ) F(EW) F(W@)
—G-(VxF)—F (VxG)

V. (FxG)=

+ Bk

(c) Recall that V*(fg) = V - [V (fg)]. First

V(f3) = 5 (f8) 5, (f8) + R (fs)
= gafﬂg §+kga£
+ ifa +]f@ + ng—i
=8gVf+fVg

So by part (a), twice,

V3(fg) =V - (gVf) + V- (fVg)
=8(V-Vf)+(Vg) (Vf) + f(V-Vg) + (Vf) - (Vg)
= fV2q+2Vf -Vg+gV?f

5-4: (a) By definition
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(b) By definition

) . . 0
V- (xy*i — yZ4 + zx%k) = p (xy?)

i
V x (xy* —yz%] + zx*k) = det g—x

(c) By definition

X N y A X
V. + = ||+
(o) 5 ()

+a—(— z
oy Y
j k
0 il
oy 0z

éJlQ) ~>

(d) By definition

v -—fL 54 2 fza—— z
VRN T

_ XYy 0
[x2+y2]3/2 [x2+y2]3/2
i ik
y X ) 0 s a9
V() e
ARy 2112 0
Vo y/ay
_( L N S
VAR 24PV 2y
:x2—|—y2—x2 422+ 2 y2f<— k
[x2 + 2]/ VaZ+?
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xityj+zk

ﬁ (a) We are to compute the divergence of 7 = v Since
0 X B 1 1 x(2x) B y? + 22
ox 2+ 2+ 222 [ 2 4222 2 2+ 2+ 222 [ 4 g2 + 2232
0 y B 1 1 y(2y) B x? 4 22
Wi r2+ 2V 2222 22 p 24 2P [ty
0 z B 1 1 z(22) B x% 4+ 12
Z2 2122 22?2 22421 22P? 0 224 2P

the specified divergence is

V<£>_2x2—|—2y2—|—222 2r* 2

r) 222 B
(b)
i ]k
V x (yzi+2xzj+eYk) =det | g—y 2 = (v —2x)i— (ye¥ —y)j+zk
yz 2xz e
S-6: (a) Since k= (x2~|—y2+zz)k/2,
0 k_ 2, .2 .2\5-1 2\ k=2
-7 —2x2(x +y +z7)?  =k(ri)r
0k 2 2, 51 M k-2
&yr —2y2(x +y +2°)r  =k(rj)r
O k_ o ko, 2 ovk-1_ S\ k=2
Pt —222(x +y +z7)?  =k(r-k)r
We want k = —3.
(b) Using the computation in part (a)
0 0 0
(k) — © gk O ok Ok
V- () = S+ )+ S
A S S S
= 3r +xaxr +yayr +zazr
= 37" + x (kx *72) + y (ky r*72) + z(kz r*72)
= (3+k)r*
We want k = 2.
(c) Recalling that VZ=V.V,
V(") =V - (V()
=V (kr"2r) by part (a)

=k(3+k—2)r* 2

by part (b), but with k replaced by k — 2

308



We want k = —2.

S7: (a) o
X ¥

Vr= aﬁ‘@‘i‘az

(1a—+ i+ka ) (x?+y*+22) =2xi+2yj+ 2k =2r

2y _
V) =I5 Tig T
(c) Since
i j k A
rxa=det|x y z|=i(asy—az)+]j(amz—azx)+k(ax—ayy)
a; az 4as
we have
i j k
V x (rx a) = det g—x % % = —2a11—2a,] —2a3k
asy —azz a1z —aszx dx — a1y

= —2a

we have
0 x 0 y 0 z
V. (V(r) =— + = + =
(Vi) X (2424 2)2 W (2424 22) % 0z (2424 22)!?
B 3 1 2x%2 42> +222 2 2
(22 +2)? 2212122 (a2 7
(a) Since
AN YA VTR
V(r) = <’ax+]ay+ka >(x +y +2%)
_ X R y ~ z
(242 +2)"7 @+ (2 +2)Y
X sy X
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we have g = —3.

(b) Since
) _(9_ 2 2, .2\1/2 (9_ 2 2, .2\1/2 ﬂ 2 2, . 2\1/2
Vo (rn) = |0y ) ] (@R ) )
2 2 2
—3(2 R R) P Y +2’1Z/2 =42+ P+ =
2 (x2+y2+22)
we have a = 4.
(c) Since
L0 0 a0 3/2
3y _ (20 50 20\ (2,2, .2
V() = (lﬁx +]8y+ké’z) (x> +y~ +2z%)
—13x(2+ P2+ P j3y(P+ P+ D) P k3 (P 4+ 2+ )
= 3rr
we have
V- (V) =V-(3rr) =3V - (rr) =3 (4r) by part (b)
= 12r
so thata = 12.

S-9: (a) Since V- F = & (1 +yz) + g—y(2y +zx) + £ (32% + xy) = 2+ 62 # 0, F fails the
screening test and cannot have a vector potential.

(b) The vector field A = A1 + Aj is a vector potential for G if and only if G =V x A,
which is the case if and only if

oA 1
_(')_zz =Yz <= A2:—5y22+32(xzy)
0A 1
Tzl =zx <<= A= Exzz + Bl(xry)
aAz_aAl_x 632_(931_x
ox oy Y ox oy Y

There are infinitely many solutions to % — 66_131 = xy. In fact B is completely arbitrary. If

one chooses B, = 0, then By = —%xyz does the job. If one chooses By = 0, then B, = %xzy
does the job. Thus two solutions are A = }(z? — y?)xi — Jyz%j and
A = IxZ%+ (2% - 2.

S-10: (a) F is well-defined wherever the denominator x? + z2 is nonzero. So the (largest
possible) domain is

D={(xyz)|x*+22#0}
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(b) As preliminary computations, let’s find

o —z \_ 1 2z(-z)  —x?+2°
0z \ x% + 22

2+ (2422 (k24 22)
1 2x(x)  —x*422

0 x
ox (x2+22) T 242 (24222 (x2+y2)

So the curl of F is
i i R 2 2 2 2
d d d —X“+z —X*+z A
V xF=det| &% oz = — . 2 T 2 ]j=0
_—z_ x (x +y) (x —|—y)
212 Y a2z

on the domain of F.

(c) As preliminary computations, let’s find

0 —z o 2x(—z)  2xz
ox (x2+zz) N _(x2+zz)2 (24 22)?
0 x B 2z(x)  —2xz
0z (x2+zz> (2422 (2rp2)

So the divergence of F is
0 —z 0 0 x
F=— )+ L (N
v ox (x2+z2)+&y(y)+§z (x2+zz)

(d) By part (b), the vector field passes the conservative field screening test V x F = 0. But
we should still be suspicious because of the similarity of F to the vector field of Examples

2.3.14 and 4.3.8 in the CLP-4 text.
So let’s compute the line integral of F around the (closed) circle y = 0, x> 4+ z% = 1,
parametrized by

r(t) = costi+sintk  r'(t) = —sinti+costk

The line integral is

) P xziyz r'(t)
T —_—— —— A - > N
JF-dr: {—sinti+ cost k}-{—sinti+costk }dt
C 0
27T
:f dt =271
0

As the integral of F around the simple closed curve C is not zero, F cannot be
conservative on D. See Theorem 2.4.6 and Examples 2.3.14 and 4.3.8 in the CLP-4 text.
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5-11: (a) By the vector identity of Theorem 4.1.7.a in the CLP-4 text,
V- F=V-VxG=0
So we must have
0=V -F=V-((xz+xy)i+alyz—xy)j+ Byz+x2)k) = (z+y) +a(z—x) + By + x)
This is true for all (x,y,z) ifand only if &« = = —1.
(b) Since
V x G =V x (xyzl —xyzj + g(x,y,2)k) = (g +xy) i — (gx — xy) hj + (—yz — x2) k
we will have that V x G = F if and only if
(8 + )i — (g —xy)j + (~yz — x2) k = (xz+ xy)i - (yz = xy)j - (yz + x2) k

which is the case if and only if

Sy =Xz, §x =Yz
The first equation, g, = xz, is satisfied if and only if ¢ = xyz + h(x, z). The second
equation is also satisfied if and only if ¢» = yz + hy(x,z) = yz. This is the case if and only
if hy(x,z) = 0. That s, if and only if 1 is independent of x. Equivalently, if and only if
h(x,z) = w(z) for some function w(z). So, in fact, any function of the form
g(x,y,2) = xyz + w(z) will work.

S-12: (a) Denote by 6 the angle between a and r. The point r is a distance ¢ = |r| sin6
from the axis of rotation. So as the body rotates, the point sweeps out a circle of radius ¢
centred on the axis of rotation. In one second the point sweeps out an arc of this circle

Q

that subtends an angle of () radians. This arc is the fraction % of a full circle and so has
length 22770 = ¢ = Qx| sin 6. Thus the point is moving with speed Q[r| sin 6. The
velocity vector of the point must have length Q)|r| sin § and direction perpendicular to
both a and r. The vector Q) x r is perpendicular to both r and 2 = Q4 and has length
Q] |r| sinf = Qr| sinf as desired. So the velocity vector is either ) x r or its negative.
By the right hand rule it is (3 x r.

(b) By vector identities




(which are Theorems 4.1.4(d) and 4.1.5(d) in the CLP-4 text) and the assumption that ) is
constant
Vx(Qxr)=Q(V-r)—(V-Q)r+ (r-V)O-(Q-V)r=Q(V-r)— (Q-V)r
V. (Qxr)=r-(VxQ)-Q - (Vxr)=-0Q-(Vxr)

Substituting in
_Ox oy 0z
V'l‘—g‘Fa—y"‘E—?)
0z 0y, ox 0z.. oy Ox\p
er_(ay &z)l+(az 6x)]+<6x (Ey)k_o

0 0 0 A N R R ~
(Q . V)r = (Qla—x + 02@ + Qgg) (Xl +y] + Zk) = Qll + QZ] —+ Q3k = Q
gives

Vx(Qxr)=20 V- (Qxr)=0

(c) The students are a distance 6378 sin(90° — 49°) = 6378 cos(49°) = 4184 km from the
axis of rotation. The rate of rotation is () = 37 radians per hour. In each hour the

students sweep out an arc of 3 radians from a circle of radius 4184 km. Their speed is
3% x 4184 = 1095km /hr.

5-13: We shall show that &2 — % = F;. The other components are similar. First we have

— oy
dr R i ] k
tF(r(t))xa(t):tF(tx,ty,tz)x(xi+yj+zk):tdet FL B F
X vy z

Reading off the k and j components of the determinant gives
1
Gs(x,y,z) = f t[Fi(tx, ty, tz) y — B (tx, ty, tz) x| dt
0

1
Ga(x,y,z) = fo t[F3(tx, ty, tz) x — Fy (tx, ty, tz) z| dt

So
aa_(};; _ Ll t[ﬂ (tx, ty, £2) + é;_l;(tx, ty, tz) ty — %—I;z(tx, ty, tz) tx} dt
% _ Ll t[%(tx, ty, tz) tx — %(tx, ty, tz) tz — Fy (tx, ty, tz)] dt
- 5633 _ % = Ll [Zt Fi(tx, ty, tz) + t%y aa—l;l(txr ty, tz) + t22%<tx’ ty, tz)
—t?x aa—l;z (tx, ty, tz) — t>x (ZF; (tx, ty, fz)} at
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Since, by hypothesis, V - F = aFl + 3 an + 5 6F3 = 0, the last two terms

h (tx, ty, tz) }

—t x{@(tx, ty, tz) + E(tx, ty, tz)} = —t x{ —

ox
so that
0Gy_ Gy
oy 0z

[

1

1

2tF (tx, ty,tz)+t2xii(tx ty, t )+t2ya€/ (tx, ty, tz) +tzz%(tx,ty,tz)] dt

t=1
[tzFl(tx, ty, tz)} dt = [tzFl(tx, ty, tz)] = Fi(x,v,2)
t=

Q..l&..
—

0

&> <&

Solutions to Exercises 4.2 — Jump to TABLE OF CONTENTS

S-1: (a) Expressing the left hand side as an iterated integral, with z as the innermost
integration variable, we have

([ Lo v~ [ an [ o[ 2 L)
\%4

1 1
:J de dy [f(x,y,1) = f(x,,0)]
0 0

by the fundamental theorem of calculus

Jf f(x,y,1) = f(x,,0)] dxdy

_ ﬂf(x,y,n dxdy — Hf(x,y,o) dx dy
? R

(b) Define the vector field F(x,y,z) = f(x,v,z) k. Then the divergence of F is
V. EF(x,y,z) = % (x,,z). The boundary of the cube V is the union of six faces

A

S1={(xyz)|0<x<1,0<y<1l,z=1} withoutward normal A =k
S5={(xyz)|0<x<1,0<y<1z=0} withoutward normal i = -k
S3={(xyz)|0<x<1,0<z<1 y=1} withoutward normal fi =j
Ss={(xyz)|0<x<1,0<z<1 y=0} withoutward normal i = —j
Ss={(xyz)|0<y<1,0<z<1 x=1} withoutward normal i =1
Se ={ (x,v,2) }O <y<1,0<z<1 x=0} withoutward normal i = —{
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S)
f=—j)<—t f—>n=j
Y
| So
i (1,1,0)
v f=—k
Observe that
+f onS;
F-Ai=fk fAi=<-f onS,

0 on 53, 54, 55, 56

So the divergence theorem gives

ng(x,y,z) dxdydz = WV-F(x,y,z) dx dy dz
%4

1%
- 6

= (RﬁdS:ZHF-ﬁds
o =1,

(&

= ffds—f £ds
52

-~

= (f(x,y,l) dxdy—fff(x,y,O) dxdy
R

=Py

S-2: (a) The divergence of pais V- (pa) = V¢ -a+ ¢V -a = V¢ a, since a is constant.
So, by the divergence theorem,

ag%.ﬁdszfﬂv.(%)dvzg Vo-adV — vaqbﬁdsg Vodv

This is true for all vectors a. In particular, applying this with a = ,j, k, we have that all
three components of [{{.,, pAadS — {f§,, V¢ dV] are zero. So

ﬂqmds mvgbdv_o

(b) By part (a), with ¢ = x2 + y2 + z2 and V¢ = 2x1 + 2yj + 2xk,

1 2, 2, 2aqc_ 1 fjf R . R o
2V H(X T+ RdS = 5o ||| (2xE 429 + 22K dV = (£,7,2)
ov v

=0
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5-3: (a) We'll parametrize the sphere using the spherical coordinates 6 and ¢.

x = sin ¢ cos ¢
Yy = sin @sin 6
Z = COS @

with 0 <0 <27, 0 < ¢ < 7. Since

ja}
(Z—g, ;—Z, g—z> = (—sin(psin(), sin ¢ cos@, 0)
<(§—;, %’ g—;) = (cos ¢ cos @, cos @sinf, —sin @)

(3.3.1) in the CLP-4 text yields
. ox oy 0z ox 0y 0z
=4(—=, =, = —, ==, —

05 =5 5 7)< (55 5 7
(—singsind, singpcosf, 0) x (cos pcosf, cos sinf, —sin ¢) dfd¢

) dode
=+
=+(- sin® @ cosf, —sin® @sinf, — sin ¢ cos @) dbde
= Fsing(singcosf, sin@sinf, cos ¢) dodg

= Fsing(x(6,9),y(6,9), 2(6,9)) dodg

To get an outward pointing normal we need the + sign, since then fi(6, ¢) is a positive
multiple, namely sin ¢, times r(6, ¢).) So, on S,

F

A

Ve

F-fdS =sing (singcosf, singsind, cos? qoi-(sinqocos@, sin gsin®, cos ¢) dodg
= sin ¢('sin? ¢ cos®  + sin® ¢ sin” 0 + cos® )

and
T 27T
JJF fidS = J de | do sing(sin? ¢ cos? 0 + sin® g sin? 6 + cos® ¢)
0 0
S

T 27T
= f d(pf dé (sin® ¢ + sin ¢ cos® @)
0 0

s s
:271'{J de sin®¢ + [—1cos4(p} }
0 4 0

T 1 & 4
= ZnJ dg sin ¢(1 — cos® @) =27 {— cos @+ 3 cos® qo} =27 {5}
0 0

_87‘[

3

(b) Let V be the interior of S. Then, by the divergence theorem,

gFﬁdS:JVHV-FdV:fVﬂ(Hsz)dV
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By oddness under z — —z, the z integral vanishes, so that

JJF-ﬁdS = 2fJ dV = 2Volume(V) = 243_7r = STT[
S 1%

S-4: (a) Let’s use spherical coordinates. As S is the sphere of radius a centred on the
origin, we can parametrize it by

(6, ¢) = asinpcosfi+asin psinfj+acos pk

or . PN : 5

%:—asmq)smm—kasm(pcosm

2—;: acos pcosBi-+acossinfj—asingk
or Or

Adg . 4 0r ot

nds _80X(9(pd9d(’)

i j k
= det | —asin@sin® asin¢cosf 0 déde
acos@cost acosgsinf —asing

= i(—azsinzq)cosm—azsinzgosin@j—azsinq)cosq)f(> dfdg

= ?azsingo(sin(pcos@iJrsingosin9j+cos(pR> dodg
For the outward normal, we want the + sign, so
ndS = azsingo(singoc059i+sin(psin6j+c05(pf<> dfde
F-ndS =z(0,¢)k-ndS = a’sin g cos® ¢ df dg

and

T 27T
JfF-ﬁdSza?’J de df sin ¢ cos® ¢
g 0 0
7T 1 s
= 27m3j de sin ¢ cos® ¢ = 2ma’ {—5 cos® qo]
0 0
= ;émz?’

(b) Call the solid x* 4 y? + z> < a?, V. As

0 0 0
VF= 0+ 50+ () =1

the divergence theorem gives

ﬂpﬁds = Jﬂv.pdv = g dV = Volume(V) = %nas;
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S-5:(a)On D, z = 0 and

so that
JJF-ﬁdS = —ijzdxdy
D D

Switching to polar coordinates

27T 27
JJF ndS =— J drr deé rsm@ [J drr] { dée sinZG}
0

= de_l—cos@@] :ﬁ[e_wrl B
0

4 2 4|2 4 4

0

For an efficient, sneaky, way to evaluate So sin § df, see Example 2.4.4 in the CLP-4 text.

(b) Observe that V - F = x + 2. Since x is odd and V is invariant under x — —x, we have
§§§,, x dV = 0 (more details below) so that

g V. FdV = f‘ﬂ(mz) dv zzfvﬂ dv =2|v|

Here are two more detailed arguments showing that XSSV xdV = 0.

2
Argument 1: 'We may rewrite the equation z = 2X V. of the curved boundary of V as

m
9(1—2)
94224 y2) =9 _ 42 _ 2 2., .2 _
z(9+ x* 4+ y°) X -yt = x4y 152
This is the equation of the circle of radius r(z) = 9(11;;) centred on x = y = 0. So z runs

from 0 to 1, and for each fixed 0 < z < 1, y runs from —r(z) to r(z) and, for each fixed y

and z, x runs from —4/7(z)% — y? to 4/7(z)%? — y2. So

1 r(z) A/ 1(z)2—y? 1 r(z)
fjfde:f dzf dyJ dxx:J dzf dy0=0
v 0 —r(z) —/1r(z)2—y? 0 —r(z)

since {* x dx = 0 for any a > 0.

Argument 2:  As we have observed above, the curved boundary of V is x2 + y? = 9(11;22)

which is invariant under rotations about the z—-axis. By that symmetry, the centroid of V
lies on the z-axis. Recall that, for any solid V, the centroid of V is (%, 7, Z) with

7= Wy xdV 7= §i§y ydv s §§§, zdVv
i, av Woav 2T Lav
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So
fjfxdv = X Volume(V) =0  and ff ydV = jVolume(V) =0
14 14

(c) By the divergence theorem,

Jf V-FdV:JfF-ﬁdS:fJFﬁdS%—JJF-ﬁdS
14 ov S D

N . 81
JJF-ndS:Jf V-FdV—JandS:Z]VH-ZT(
S 14 D

S-6: (a) Let G(x,y,z) = x> + y* + z. Then the surface is G(x,y,z) = 1 and

VG(x,y,z) = 2x1+2yj + k so that, by (3.3.3) in the CLP-4 text,

so that

Vde xdy = 2x1+21y]-|—k

F-fdS = [xi+yj+k]  [2xi+2yj+k]dxdy = [2x* +2y* + 1] dxdy

nds = dxdy = (2xi+2yj+ k) dxdy

Switching to polar coordinates

1 27T 2 1 1
JjF-ﬁdS:J drr| do 2 +1)=2r |5+ 21| =2n
0 0 4 2 1y

(b) Call thesolid0 < z<1—x%> -4,V

2 2 _
T rr+y =1

Let D denote the bottom surface of V. The disk D has radius 1, area 7t, z = 0 and
outward normal —k, so that

HF Ads = — UF kdxdy = — fdxdy—

0 0 0
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the divergence theorem gives

gF.ﬁdszg v.de_gF.ﬁdszwzdv_<_n):n+zfﬂdv

To evaluate the volume {f{,, dV, we slice the V into thin horizontal pancakes. Here is a

sketch of the pancake at height z.

Its cross-section is a circular disk of radius v/1 — z, and hence of area 77(1 — z). As the

pancake has thickness dz, it has volume 77(1 — z) dz. So

0 0

1 N 1
ffF~ﬁdS:7r+2f dz f dxdy=7r+2] dz (1 —z)
S x2+y2~}<1—z
1 '1
:7t+27r{z——z2 =27
2 ]y

S-7: (a) The divergence is

0 . 0 o, .
V.- F= a(z—i—smy) —|—@(zy) —i—g(smxcosy)
=z
(b) Let
V={(vy2) | ¥+ +z2<9}

By the divergence theorem (assuming that we are to find the outward flux),

JJF.ﬁdS:J‘va.lzdvzflfzdv:o

since z is odd.
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S-8: Call the silo V. Call the sides and top of the silo S. Call the base of the silo (namely,
xZ+1y? <1,z = 0) B. By the divergence theorem,

Hv nds+ﬂv ds—ﬂvwv
Uv nds- [ (2 4y)drdy = szyz+z

x2+y2<1

By oddness under Y — —y, “x2+y2<1 ydxdy = {{§, xyzdV =0, s0
JJV ndsS = JJ x? dxdy + fjfz dv
x2+y2<1
21 —
:J dr d@r(rcos@)2+fffz dv
o Jo
14

We can evaluate the volume integral by decomposing V into thin horizontal pancakes.
See Section 1.6 in the CLP-2 text. For 0 < z < 1, the horizontal cross-section of the silo at
height z is a circle of radius 1 and hence of area 7t. For z > 1, the horizontal cross-section
of the silo at height z is again a circle. Its radius is determined by the equation

x2 + y? + z% = 2 of the top of the silo. The radius is v/2 — 22, so the cross-section has area

77(2 — z%). The biggest that z can get is /2. Thus
rl 27T
JJV-ﬁdS:J dr dé r (rcos 6)? fdzrtz+f dz (2 — 2%)z
; 0 0
! 2 cos(29)+1
= Jdrr3 dg ———— sznz-i—f dz (2 — z2
_0 O 2 -
(i Ll
4], 2 |, 4 |
3
—Z+2+ {1—1}

For an efficient, sneaky, way to evaluate S(z)ﬂ cos? 0 d6, see Example 2.4.4 in the CLP-4 text.

5-9: Apply the divergence theorem. The divergence of F is

V-F—i(x2)+
 ox

P
ay

— (xy) +

0
E(3z—yz):3+3x—y
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So

gp.ﬁdszg v-deszH(Hax—y)dv

To evaluate the integrals of x and y we use that, for any solid V' in R,

__ §yxdv ~ ffyyav _ (ff,zav
ffj dV = Volume(V) = Vohfme()/) ¥y= Voh]ljme()/) = VohrTe(V)

where (%, v, z) is the centroid of V. Our ball has volume V and centroid
(f,g, 2) = (X(),y(),Zo). So

ﬂF.ﬁdszv[3+3x_y-] — [B+3x0—yo] V

S-10: Let
V={(vyz2) | ¥+ <l-z,0<z<1}

Then the boundary, 0V, of V, with the orientation that is used in the divergence theorem,
consists of two parts

e the surface S, but with the upward pointing normal, and
e thedisk D = { (x,y,2) ‘ x> +1y?<1,z=0 }, with normal —k.

So the divergence theorem gives

UJV FdV = HF fdS = — UF nds+ﬂ (-k)d

AsV-F=0and F(x,y,0) = (1,1, 1)

HF nds—” (—k)d sz_£ 4 — —

S-11: Let V be the solid x? —|— y? —|— 22 < 2,z > 0. The surface of V consists of the
half-ellipsoid S = { (x,y,z) | x> + y* + 222 =2, z > 0 }, on top with upward pointing
normal, and the disk D = {(x,y,2z)}z =0, X2+ y < 2, on the bottom with normal —k.
Call the vector field F. By the divergence theorem

UF nds+ﬂ ds_ﬂvmv mzldv
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The ellipsoid has 2 = v/2, b = v/2, ¢ = 1 and volume 3mtabe = §7. So

1
fffél dV =4 x 1(Volume of the ellipsoid) = %
1%

On D,z =0and {{,xdS = {{, ydS = 0 because x and y are odd. So

!jF (~k)dS = U(xierjJrof() (—k)dS =0

D

JJFﬁdS:fJfALdV:%n

and the desired flux is

S-12: (a) If (x,y,2) # 0,

_9 x L9 y G z
ox [x2+y2+zz]3/2 oy [x2+y2+zz]3/2 0z [x2+y2+zz]3/2
[Py 4+ 2] x5 (2x) N 2+ +22] —y32y) [P+ +2%] —23(22)

V F(x,y,2)

[x2 42 + 2] [x2 4 y2 + 2] [x2 432 + 2]
3[4 yP 422 —3x% —3y* — 322
[x2 42+ 2]

If (x,y,z) = 0, F(x,y,z) is not defined and hence V - F(x, y, z) is also not defined.

(b) Leta > 0. Write 0, = { (x,y,2) | x> + y* 4+ z2 = a? }. The outward unit normal to ¢, is
A = 1 so that
H

r r 1 1 1
F-ﬁdszf —-—dS:f —dsz—f ds = = (47a?
La itj=a T[> 1| it|=a |T]? % Jitj=a 612( )

=47 #0

(c) No, the results of (a) and (b) do not contradict the divergence theorem. One
hypothesis of the divergence theorem is that V - F (in fact all first order derivatives of F)
be defined and continuous throughout the solid that V - F is to be integrated over. That
hypothesis is violated in this case.

(d) Let’s first figure out what the surface z2 — x> — y> + 1 = 0, i.e. the surface

x% + y2 = 1+ 22, looks like. For each z(, the z = z( cross-section of this surface is the
circle x? + y? = 1 + z3. The radius of this circle is 1 when zg = 0 and grows as |z
increases. So the solid region E looks like an hourglass drum, as sketched in the figure on
the left below.
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We are going to use the divergence theorem to compute the flux of F out through the
surface o of E. However we cannot apply the divergence theorem using E as the solid,
because F is not defined at the origin, (0,0,0), which is a point in E. So we pick any

0 < a < 1, and define the auxiliary solid

E={(xyz2) | +y+22=a P+ <1+7% -1<z<1}

The solid E, is constructed from the solid E by removing the ball x> + y? + z? < a? from
it. A side view of E, is sketched in the figure on the right above. As in part (b), denote by
0, the surface x> + y? + z? = a® with outward pointing normal. Then the boundary of E,
is 0E; = 0 — 0,;, meaning that it consists of two parts. One part is the boundary, o, of E,
with outward pointing normal. The other part is the surface x> + y? + z2 = a2, but with
normal pointing into the sphere, opposite to the normals for ¢;. Consequently the
divergence theorem gives

OZH V.dezHpﬁdszﬂpﬁds—ﬂpﬁds
E, o Oq

0E,

JJF'ﬁdS = JJF-ﬁdS =4
o oA

— x% — y? + 4y — 3 = 0 can be rewritten as

so that, by part (b)

(e) The equation z2

P (y—-22=1+7
As is part (d), for each z, the z = z cross-section of this surface is a circle

x?+ (y —2)? = 1+ z3 of radius 4 /1 + z2. But this circle is centred at (0,2, zp), whereas the

corresponding circle in part (d) was centred at (0,0, zp). The solid R again has the shape
of an hourglass drum. But while the origin (0,0,0) was in E, it is not in

R={(xyz2) |+ {y-2?<1+2% -1<z<1}
So V - F = 0 throughout all of R and the divergence theorem gives

|[F-nds=[[Fnas=[[[v-Fav -0
b R R
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S-13: (a) If the surface were the sphere x> + y* + z2 = 1, we could parametrize it using
the spherical coordinates 6 and ¢ (with the radial spherical coordinate p = 1).

x = sin ¢ cos ¢
Yy = sin¢@sin6
Z = COS @

with 0 < 6 < 27, 0 < ¢ < 7. Our surface is not a sphere, but the equation looks like the
equation of the sphere with the units of the y- and z-coordinates changed. In particular, if
we define j = y/2 and Z = z/2, so that y = 2§ and z = 2Z, then on our surface

2 2 7)2 £)2
o zm 5, (29)7  (2%)
I

= 24 P+ 2
and we can parametrize

x = sin ¢ cos ¢
7 = sin¢@sin6

Z = cos ¢
and then
x = sin ¢ cos 6
Yy =2 = 2singsin®
z=2Z=2cos¢
or

(6, ) = sinpcosfi+2sin@sinfj+2cospk 0<O<2m, 0<@<m

(b) Considering part (c) in this question, we are presumably to evaluate the flux integral
directly. Since

(Z—g, %, (3—;) = (—singsin®, 2sin ¢ cos b, 0)
0" 0
(2—;, S—Z, g—;) = (cos @ cosf, 2cos psinf, —2sin )

(3.3.1) in the CLP-4 text yields

N ox dy 0z ox oy %)dedgo

nds =+ (5 a9 ) * (g g 7

+(—singsinf, 2singcosf, 0) x (cos @ cosf, 2cos gsinb, —2sin ¢) dode
+

(—4 sin p cosf, —2sin” ¢ sin, —2sin ¢ cos (p) dode
= F2sin¢(2sin@cosf, sin ¢sinf, cos qo) dode

To get an outward pointing normal we need the + sign. For example, with the + sign,
the z-component is 2 sin ¢ cos ¢ = sin(2¢) so that the normal is pointing upward when
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0 < ¢ < 7, i.e. in the northern hemisphere, and is pointing downward when 7 < ¢ < 7,
i.e. in the southern hemisphere. So

F-AdS = {(sin ¢ cos 0) (4sin® ¢ cos ) + (2sin @ sin 0) (2 sin® ¢ sin 0)
+ (2cos @) (2sin ¢ cos @) }dfd¢
= {4sin® g cos® 0 + 4sin® g sin? 6 + 4 sin ¢ cos? p}dodg
= 4sin ¢(sin? ¢ + cos® ¢)dfdg
= 4sin ¢ dfde

and the flux is

27T T
JJF ndS—J de d94sm(p—87rf de sing =167

(c) Set
2
V:{(x,y,z)\x2+y¢+%<l}

Since V - F = 3, the divergence theorem gives

JJF -AdS = Jf V -FdV = 3Volume(V)
S Vv

. . .1 a2 2 2 . .
The volume contained in the ellipsoid, ;‘—2 + Z—z + i—z =1, of semiaxes 4, b and c is %mzbc.
Inourcasea=1,b=c=2,s0

HF -A1dS = 3Volume(V) = 3 x ‘3&(1)(2)(2) _ 16

which is exactly what we found in part (b).
The volume of the ellipsoid V can also be found by observing that, in V,

e x runs from —1 to 1 and
e for each fixed —1 < x < 1, (v, z) runs over the disk y? + z? < 4(1 — x?), which has
area 47t(1 — x?).

That is
V={(xyz)| -1<x<1, y®+22<4(1-22)}

so that

1
Volume(V) = f dx Jf dydz
-1

Y2 422<4(1—x2)
1 1 1
= dx47r(1x2):2><471f dx (1-x%) =8m {15}
-1 0
_l6n
-3
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S-14: Set
V:{(x,y,z)\x2+y2<2, 0<z<2x+3}

Let’s try the divergence theorem. Since

ox 0z
= 3x2 +3y* + 2z

V.F= a—(x3 + cos(y?)) + g—y(y3 + ze*) + i(Z2 + arctan(xy))

the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives

gp.ﬁdszwv.pdv

2x+3
= J dxdy f dz (3x* + 3y* + 2z)
x24y2<2 0

J dxdy {3(x* +y?)(2x +3) + (2x + 3)?}
x24y2<2

dxdy {9 + 12x + 13x* + 9y* + 6x° + 6xy°}
x24y2<2

9(27) + J dxdy {13x% +9y*}
x24+y2<2

because 12x, 6x° and 6xy? are all odd under x — —x. To evaluate the final remaining
integral, let’s switch to polar coordinates.

V2 27T
fj {13x% 4+ 9y?} dxdy = J dr rj do {13(rcos 6)* + 9(rsin0)?}
0

0
x24y2<2
V2 27T
=J dr r3f do {13 cos® 0 + 9sin® 0}
0 0
Since
2 2 2 1 in(?2 27
f Coszedezf cos(20) +1 4o [sin(20) 017 _
0 0 2 4 2],
27T 27T . ) o
f sin? 6 df :f 1-cos(20) ;[0 sin(20)]7"
0 0 2 2 4 .

we finally have

4
HF-ﬁds =187 + (\f) {13 +9} = (18 +22)7t = 40mt
S

For an efficient, sneaky, way to evaluate S(z)n cos? 6 df and SS” sin? 0 df, see Example 2.4.4
in the CLP-4 text.
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S-15: Solution 1 (divergence theorem): SetF = (x +y,x+z,y+z). Then V - F = 2. That’s
really simple. So let’s try using the divergence theorem.

o SetS={(xyz)|x*+z>=4,0<y <3} Wearetocompute {{; F-ndS, with f
denoting the outward normal to S. S is not the boundary of a solid, so we cannot
compute {{. F- i dS by applying the divergence theorem directly. The figure on the
left below shows the part of S that is in the first octant.

y=3 z y=3
S
5D/ j
3Dy y 1
2, 2 _
Y =4 | .y

o On the other hand S, is “almost” the boundary of
V={(xyz) |x + 72 <3}
The boundary, 0V of V consists of three pieces — S and the two disks
Di={(xyz2)|x*+22<4,y=0} D,={(xyz2)|x¥*+2"<4y=3}

The figure on the right above shows the parts of S, V, D; and D, that are in the first
octant.

The outward normal to D, is j and the outward normal to D; is —j, to the divergence

theorem gives
|| v-Eav=|[[F-nas
v ov
:JJF-ﬁdeLJJF-dejLJJF
S D, D

SinceV-F=2andF-j=x+z,

HF nds_mzdv_ H (x +2) dxdz - H (—x —z) dxdz

X2 4+z2<4 X2 4+z2<4

[

= 2 volume(V) = 2(712%)3 = 247

Solution 2 (direct evaluation): Let’s parametrize the surface by

r(0,y) =2cosfi+yj+2sinfk 0<60<2m, 0<y<3
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Then

= (—2sinf, 0, 2cos )
_( , 0)

ndS = g— g—;d(?dy = +(—2cosf, 0, —2sinf)dbdy
To get the outward normal, we want the minus sign. So
AdS = (2cosf, 0, 2sin6)dody

and, since
F(r(6,y)) = (2cos0+y, 2cos +2sinf, y + 2sinb)
the specified flux is

27T r3
JJF-ﬁdS:J df | dy (2cosf+y, 2cosf +2sinf, y+2sinf) - (2cosh, 0, 2sinb)
0 JO

r27T r3
= J do | dy (4c0829+2yc059+2ysin9+4sin2 0)
0 Jo

r27T r3

= dé | dy (4+2ycosf +2ysinb)

0 Jo

Since {27 d6 cosf = {27 d6 sinf =0,

27T 3

HRﬁdS:z}J def dy = 4(27)3 = 247
0 0

S

S-16: The question highlights that the vector field has divergence 0. That strongly
suggests that we use the divergence theorem. Set n

S
Ve {(xya) 0<z<1- (2 +y))
. D

n
Then the boundary, 0V, of V consists of two parts, namely S (with normal pointing
upwards) and the disk

D={(xy0)|x*+y*<1}

(with normal pointing downwards). The divergence theorem (Theorem 4.2.2 of the

CLP-4 text) gives
”F nds—HVde H (—-k)d
= Jf(x + %) dxdy
D
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Switching to polar coordinates, the flux is

1 27T 1
HF.ﬁdS:Jdrr d9r2:27rfdrr3:27r}1 x
0
S

N

0 0

S-17: As F looks complicated, we will probably want to avoid evaluating the flux integral
directly. Let’s first compute the divergence of F, to see if it looks wise to use the
divergence theorem instead.

0 . 0 , _2 0
V. -F= g—x(tanﬁ+sm(y3)) +@(e )+E<Z) =1

Looks good! We cannot yet apply the divergence theorem, since S is not the boundary of

a solid region V. To help us choose a solid V whose boundary at least includes S, here is
a sketch. S is the top of the “ice cream cone”

e

Note that the the paraboloid z = 2 — x? — y? and the cone z = 4/x2 + y? intersect along
the circle x> + y?> = 1, z = 1. Probably the simplest solid whose boundary includes S is

V={(xyz2)|1 <z<2-x% -7 xz—i—yzgl}
The boundary 0V of V consists of S (with upward pointing normal) and the disk
D={(xyz)|*+y*<1,z=1}

with normal —k. So the divergence theorem gives

.AdS = 2 _ ( (—k
gf«* ds J‘J/JVFdV ﬁF(k)dS

D
V-F Fk=z
([ — — ([ — —
:h 1 dV+J 1 ds
J J
1% D

As D is a disk of radius 1, {§, dS = 7. To compute the volume of V, we’ll slice it into a
stack of horizontal “pancakes”. Since z = 2 — x? — 2 is equivalent to 1/x2 + y2 = /2 — z,
the pancake at height z is a circular disk of radius v/2 — z and hence of cross-sectional
area 71(2 — z). So the volume of V is

Jf dV:fn(Z—z) dz:_g(z_z)z‘l :g
v
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and the flux

Lo T 3
ffF-ndS— 2—|—7r—27r
S

S-18: As F looks complicated, we will probably want to avoid evaluating the flux integral
directly. Let’s first compute the divergence of F, to see if it looks wise to use the
divergence theorem instead.

2
y

0

V-F:a( (xe_z)—i—i(sinythzz):yz—kxz

cosz + xy?) + pw

Looks promising. Furthermore S is the boundary of the solid region

V:{(x,y,z)|x2—|—y2<z<4}

So the divergence theorem gives

gF.ﬁdszg V-dezfﬂ(x2+y2) dv

To compute the triple integral, we’ll use the cylindrical coordinates (,0,z). The
z-coordinate runs from 0 to 4. For each fixed 0 < z < 4 (see the blue disk in the figure
below — which shows the part of V in the first octant), (x,y) runs over 0 < x> +y? < z,

z
|
|
|
|
|
|

T
which in cylindrical coordinates is 0 < 7> < z or 0 < r < /z. So the flux and the triple
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integral are

JSJF AdS = Hj(xz +y?)dV

27T
J dzf drr do 2
—27TJ dzf dr

43
=2 d —_2

nf Z 7(3X4
_327T
3

S-19: If we were to evaluate this integral directly using, for example, spherical
coordinates, our integrand would contain

tan(x) = tan (2sin ¢ cos 6)

That’s not very friendly looking. So let’s consider using the divergence theorem instead.
To start,

V-F= a—(ey-i-xz) —I—g—y(zy—ktan(x)) —|—i

2 _ =
o 8z<z 1) =4z

That’s nice and simple. So let’s move on to consideration of S. The part of S in the first
octant is outlined in red in the figure on the left below.

X

The surface S is not closed, and so is not the boundary of a solid, so we cannot apply the
divergence theorem directly. But we can easily come up with a solid whose boundary
contains S. Let

v={ (x,y,z)‘x2+y2+22<4, 0<z<1}
The boundary 0V of V consists of three parts — S, the bottom disk

Dy ={(x,y,2) ‘x + 2 <4,z=0}
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and the top disk
D= {(vy2) [ #+P <3 z2=1}

The outward normal to Dy is k and the outward normal to Dj is —k. So the divergence
theorem gives

fJ V-FdV:!JF-ﬁds:fsjp-ﬁds+£tflz-12ds+£!1?-(—R)ds

On Dy, z=0sothatF-(—k) = —(02—1) =1andon Dy, z=1sothatF-k=12-1 = 0.

[[r-nis- jﬂ%dv IE

The constant z cross-section of V is a disk of radius v4 — z2 and hence of area 7r(4 — z2)
and Dy, is a disk of radius 2 and hence of area 47t. So

4-1

1

JJF-ﬁdS:f (4z) 7r(4—22)dz—47t:47t[222—z—} — 47 =37
0 410

S

S-20: The divergence of F, namely,

_ 02 o - LY.
V«F_ax(x z+cos7ty)+ay(yz+sm7rz)+az(x v°)

=2xz+z

is a lot simpler than F itself. So let’s use the divergence theorem (Theorem 4.2.2 of the

CLP-4 text).
JJF-ﬁdS = JBJ V. -FdV = JBJJ(ZJCZ—#Z) dv

As B is invariant under x — —x while 2xz is odd under x — —x, the integral {{{, 2xzdV
is zero. To help set up the limits of integration for {{{, zdV, note that, in B,

o (x,y) runs over the rectangle -1 <x < 1,0 <y <2and
o for each fixed (x,y), zruns over 0 <z < 3 —y.
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So

1 1
:—%J dr | duu? withu =3 -y, du = —dy
-1 3
1 1 13 33 1
=-3) =53],
26
-3

S-21: The vector field F looks very complicated. That strongly suggests that we not
evaluate the integral directly. So let’s start by computing

a_ 2 a_ 2 5 0 2
V- F_8 (x + cos(z ))+8y (y—i—ln(x +z ))—|—az(q/x +y?)
=2

That’s really simple, which suggest that we use the divergence theorem. But the surface
S is not closed, and so is not the boundary of a solid. So we cannot apply the divergence

theorem directly. But we can easily come up with a solid whose boundary contains S. Let
n

S

V={(xy2)|0<z</1-22— P+ <1}
—D
n

Then the boundary, 0V, of V consists of two parts, namely S (with normal pointing
upwards) and the disk

D={(xy0)|x+y*<1}
(with normal —k). The divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives

HF nds_ﬂ V.FdV — ”
fﬂzdv+ﬂ\/mdxdy =2 Snt’+ Hmdxdy

Switching to polar coordinates, the flux is

4 1 27 4 1 4 1
JJF-ﬁdS:—n—I—f drr d@r:—n—i—ZnJ drr® = w4+ 2n= =271
3 0 0 3 0 3 3
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S-22: (a) By the divergence theorem (Theorem 4.2.2 of the CLP-4 text), the outward flux
of F through the boundary of E is

HF.ﬁdszH V FdV
:Jff(—xz—yZJrél)dV

To evaluate this integral we switch to cylindrical coordinates. In cylindrical coordinates

E={(rcosf,rsinf,z)|0<z<4, 72<z}

4 \z 27T
JJF-ﬁdS:JdZJ drrf d@(—1’2—|—4)
0 0 0

OE
Zﬂf dzf 4r—r
z2

So

(b) The boundary of S consists of two parts — S, but with downward pointing normal,
on the bottom and the disk

D={(xy,z) ‘z—4x—|—y 4}

with normal k, on top.

e s et

So, by part (a),

—n—JJFAdS— ”F nds+”1: kds = - HF nds+ﬂ 4z ds
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Since z = 4 on D, and D is a disk of radius 2,

HF-ﬁds - —%n+16ffd5 _ % 6 = B
3 3 3
S D

S-23: (a) Since

0 X B 1 3 x(2x) 2P yr 4 2?
ox 2+ 2+ 222 [+ y2 4 2272 2 2+ 2+ 222 [+ g2 + 222
0 y B 1 3 y(2y) X2 =2P 42
Wiy 2+ 2P a2+ 2P 22 p 2+ 2P [ty 422
0 z 1 3 z(2z) x4 yr-27?
32 202424 2P7 2424222

oz 2+ 2+ 2272 2+ y2 422
the specified divergence is
(=22 42 +2°) + (¥ -2 +22) + (P +y° -22%) _
[x2 + 2 + 22 N

if (x,y,z) # 0 and is not defined if (x,y,z) = 0.

(b), (c) Set
Vi={(xyz2) |+ {y-272+z2<9}
Vo={(xyz)|*+(y-2)2+22<1}

Here are side views of both V; and V5. Both Vj and V; are spherical balls centred on

z z

Sy
/ (0.2,0) fﬁ%
Vs

Y Y
Vi

(0,2,0). The difference between them is that V; has radius 3 while V, has radius 1. In
particular (0,0,0) is not in V5. So V - F is well-defined and zero throughout V; and, by
the divergence theorem (Theorem 4.2.2 of the CLP-4 text),

JJF-ﬁdS:ff V- -FdV =0
[ Vs

On the other hand, (0,0,0) is in V;. We cannot blindly apply the divergence theorem to
V1 — V -F(x,y, z) is not defined at the point (x,y,z) = (0,0,0) in V4. We can work
around this obstruction by
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o choosing a number p > 0 that is small enough that the sphere

So={(xyz2) | P+y*+2=p"}

is completely contained inside V; (for example, p = % is fine)
o and then removing the interior of S, from Vj.

This produces
Vs={(xy) [ +(y-2"+2" <9 P +y’+2">p"}

whose side view is sketched below.
z

The boundary of V3 consists of two parts

o the sphere S;, with outward normal and

o the sphere S, with inward normal fi = —|—;‘

The divergence V - F is well-defined and zero throughout V3 so that, by the divergence

theorem,
o:mV.dezHF.ﬁds+HF
Vs S Sp

So

[frnss= [ (G)os=[[ ()-(3)as= oo [ 3

Sp

:—471 =4
,0 P

since S, is a sphere of radius p and hence of surface area 47702,

(d) The flux integrals Sgsl F-fidSand “52 F - dS are different, because the one point,

(0,0,0), where V - F fails to be well-defined and zero, is contained inside S; but is not
contained inside S,.
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S-24: The vector field F looks pretty complicated. But its divergence
V- F=2+3+1=6

is very simple. So let’s use the divergence theorem (Theorem 4.2.9 of the CLP-4 text). It

says
JJF -AdS = JEJJV -FdV = JEJJ6 dV = 6 Volume(E)

For any fixed 0 < X < 2, the cross-section of E with x = X has side view

z z=2+y
y=2
E
Y
That cross-section has area 2 x 2f* = 6. Consequently the volume of E is 2 x 6 = 12 and

JJF-ﬁdS:6x12:72
S

S-25: (a) The divergence is

_J 2y 4 O (B2 7
V.-F= o (zarctan(y”)) + 5}/(2 In(x*+1)) + %

(3z) =3

(b) The complexity of F and the simplicity of V - F strongly suggest that we use the
divergence theorem to evaluate {{; F - fidS. However, S is not a closed surface and is not
the boundary of a solid. The figure on the left below is a sketch of the part of S in the first
octant.

On the other hand S is part of the surface of the solid
V = { (x,y,2) \ x2+y2+22 <4, z> 1}

which is sketched on the right above. The boundary of V consists of two parts:
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o the original surface S, but with upward, rather than downward, normal and
o thedisk D = { (x,y,z) | x¥* + y* < 3, z = 1 } with normal —k.

So the divergence theorem (Theorem 4.2.9 in the CLP-4 text) gives

{!VJF-ﬁdS:JJ v.dezsg dv

— —J!F-ﬁdS-i—fDJF-(—f() dS = 3 Volume(V)

Thus

~Fk
—
JJF -AdS = -3 Volume(V) + Jf -3 dSs
D

S
= —3 Volume (V) — 3 Area(D)
= —3Volume(V) — 97

since D is a circular disk of radius 1/3. To compute the volume of V, we slice V into thin
horizontal pancakes each of thinkness dz. The pancake at height z has cross-section the
circular disk x? + y? < 4 — z2. As this disk has area 77(4 — z2), the pancake has volume
(4 — z%) dz. All together

2 3 2
Volume (V) = J dz 71(4—22) = 7T {42 — %] =77 {4_ g] - 5_7T
1 1

and

JfF-ﬁdS = —35?”—9%: —14rn
S

S-26: Let’s try the divergence theorem. Set

V={(vy2) |+ +2*<3}

Then the boundary of V is S, but with outward pointing normal. Since
V.-F= a—(xy2+y426) + i(yzZer‘lz) - i(zx2 +xyt) =P+ 22+ 22
0x oy 0z

and because S is oriented inward, the divergence theorem (Theorem 4.2.2 of the CLP-4

text) gives
JSJFﬁdS = —fvﬂdeV = —Jlf(xz—kyz-i-zz)dv
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Switching to spherical coordinates (see Appendix F.3 in the CLP-4 text)

JJF-ﬁdS:—J dpf d(p d9p sin ¢
S
- .
=27 J dp p4] {f de sinq)}
0 0

= -2 :%}0 [—cosq)]:

364/3
—571'

S-27: (a) The divergence of F is

0 0 . 0
V- F= a(—ny) +@(y2+sm(xz)) +&(x2+y2) =-2y+2y+0=0

(b) Call the specified surface S and set
V={(vy2) |+ +(z-12)*<13%,z>0}

The boundary, 0V, of V consists of two parts — S, with outward normal, and the disk
D={(xyz)|?+y*<13*-122=5%, z=0}

with normal —k. By the divergence theorem, the desired flux is

ijnds 1[:7de f[
mOdwﬂx + y?)dxdy

—0+J drr d@r
0 0

5% 625
— g = =
£ 2"

S-28: The boundary of the solid V enclosed by S and z = +1 consists of three pieces: S,
the top disk
Si={(xvyz)|¥*+y¥*<2z=1}

and the bottom disk
S2={(vy2)|+y’ <2 z=-1}
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On S1, fi = kand

F-ﬁ:F-R:xy—z—z2

=xy—2
z=1 Y

so that, denoting D = { (x,y) | x* +y*> <2},

!jF -AdS = g(xy —2)dxdy = —2 Area(D) = —4r7

Here we have used that the integral {{, xy dxdy = 0 because xy is odd under x — —x.
On Sy, i = —k and

A

Fa=-Fk=—(xy—z-2%)

z=-1

fJF -AdS = Jf(—xy) dxdy =0
S D

By the divergence theorem (Theorem 4.2.2 in the CLP-4 text),

HF-ﬁds:HV.FdV—HF-ﬁdS—”F-ﬁdS:0—(—4n)—0:4n
S 14 51 S

so that

since
V-F= a—(x +e¥%) + a—(Zy,z-i—sin(xz)) + i(xy—z —z%)
ox oy 0z
=1+2z-1-2z
=0

S-29: Direct Solution. The surface is given by the implicit equation f(x,y,z) = 0 with
f(x,y,z) = x? + y*> + 22> — 1. Hence, by (3.3.3) in the CLP-4 text,

AdS — Vf dxdy — 2xi + 2yj + 4zk

vr. T e dxdy

This  has positive k component. Assume that it is the desired f, though this was not
specified in the question. Since

i j k

V x F = det g g—y g
x2—y—1 eV 423 2xz+2°

= —3zzi—2zj+f<

Sy
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we have

P +k). 2x1+2yj +4z(x,y) k

J V xF-AadS = JJ —3z(x,y)%1 — 2z(x,y) ] + 12(x,7) dxdy
x24+2<1
Jf < - gx z(x,y) —y + 1) dxdy
x24+y2<1

Since y is an odd function of y and x z(x,y) = x\/ 3(1—x2 —?) is an odd function of x,
they both integrate to zero. Hence

JJVXF nds = Jf ldxdy=n

x2+y2<1

Tricky Solution. Let V be the solid x> + y? + 2z2 < 1, z > 0. The surface of V consists of S
with upward pointing normal and the disk D = { (x,y,z) | z=0, x> +y*> < 1 } with
normal —k. By the divergence theorem, Theorem 4.2.2 in the CLP-4 text,

oo s [[9or b -9 o
gvxp.ﬁds:gvxpf(dszgdszn

S-30: Let S’ be the disk x> + y? < 3, z = 0 (with fi the downward pointing normal) and
let V be the portion of the ball x> + y? + (z — 1)? < 4 with z > 0. Then, by the divergence

theorem, UF nds—HJV FdV - ﬂ
s

Because x is odd under x — —x and y is odd under y — —y,

[[frav = Jffsav - [[xasas—

Hence

so that

JJF.ﬁdS = 4J dxdy = 4 Area(S’) = 4 x n(\@)z =127
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S-31: Call the hemisphere 0 < z < /4 — x2 — y?, H. Call the bottom surface of the
hemisphere D and the top surface S. The disk D has radius 2, area 47, z = 0 and the
outward normal —k, so that

UF fds = - “F kdxdy = “dxdy_

_ ¢ 2y, 0 2 0 22
V.-F= o (xy )+ay(x y)%—a (1) =x"+y
the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives

HF nds—ﬂvmv HF nds—mxw )V — (~4r)

To evaluate the remaining integral, let’s switch to the cylindrical coordinates (7,6, z). In
cylindrical coordinates, the equation x? + y? + z? = 4 becomes % + z2 = 4. So

2 Va2 27 2
ffF~ﬁdS:47T+J dzf drr d972:4ﬂ+2ﬂf dzéli(\/4—zz)4
0 0 0
S

As

0

2
1 .12
:47r+§f dz (16 — 82% +z*) :4n+g[16z—§z3+—25]
0

3 5 Jo
188

S-32: Let S¢, Sy and S denote the top, bottom and curved surfaces of D respectively. On
the top surface, z = 5 and the outward normal to D is k, so that

JJF ndS = ff (15 — 5ye®) dxdy = 15 ff dxdy = 157

x24+12<1 x24+y?<1
The integral over y was zero because y 1s odd under y — —y. On the bottom surface,
z = 0 and the outward normal to D is —k, so that
JJF nds = — Jf (3%x0—0xye’)dxdy =0
x2+y2 <1

Again, the integral over y was zero because y is odd under y — —y. As

ox

the divergence theorem gives

gp.ﬁds:fﬂv.pdv_gp.ﬁds_ﬂlg.ﬁds

Sp

V-F = —(x+xyef) + ay(.’/ 2¢°) + S (32 —yze*) = (1+ye) +yze* + (3 —yze* —ye*) =

:Jﬂz}dV—15n—o=4xn12x5—15n=5n

343



S-33: LetV={(xvyz)|x*+1y?+22<a®x>0,y>0,2z>0}.

z

2+ y? + 2t =

Then 0V consists of

° thex:Oface{(x,y, ‘y2+22< 2,x:0,y20,Z>0}withnormalﬁ:—i,
o they =0face { (x,,2) |x*+22 <a?, x>0,y =0, z >0 } with normal A = —j,
o thez=0face { (x,y,2) | ¥* +y?> <a®, x>0,y 20, z= 0} withnormal A = -k,

and the first octant part of the sphere Call it S.

Then

f”v FdV — Uf [24+1+z-22]dV = U v = Ltd 1 s
83 6
/2 243
Jf k)dxdy = Jf 2x+02)dxdy—2f drrf d9rcos(9—2f rPdr =" 3
0

face face

JJPF-(—}) dxdz = —JJ(O+OZ) dxdz=0

y=0 y=0
face face
a /2 a a3
J(F (-1)dydz = Jf—(y—ka) dydz = —J drrf do rsinf = _J P2 dr = -3
J 0 0 0
x=0

face face

By the divergence theorem

HF-ﬁdxdy:U V-FdV—ﬂF-(—i)dydz—ﬂp(—j)dxdz—ﬂ - (k) dxdy
S v x=0 =0 i

face face face

S-34: (a) On the cylindrical surface S1, use (surprise!) cylindrical coordinates. Since the
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cylinder has radius v/2, we may parametrize it by

r(6,z) = V2cos0i++/2sinfj+zk

%(9,z)z—ﬁsin9i+\@cosﬁj
or
— =k
82(9'2)
. _,or or
ads = i—6(9,z) X &(9,2) df dz
i j k
= +det | —1/2sin0i +2cosf® 0| dodz
0 0 1

= +(V2cosfi+v2sin6j) df dz
To get the inward pointing normal, choose the minus sign. So
F-fdS = [vV2(cosf —zsin0)i+ v2(sind +zcos0)j+ (- )k| - [ — v2cos01—+v2sinj] dodz
= —2[(cos@ — zsin0) cos 0 + (sin6 + zcos f) sin 6] df dz
= —-2dfdz
On the intersection of the sphere and cylinder

=43y =4-2=2

so z runs from —/2 to v/2 (see the tigure below) and

V2 27T
Hp.ﬁds:—zf dz do = —8V2m
. -2 0
1

(b) Observe that V - F = 3. So

JJJV-FdV = fﬂmv

The horizontal cross-section of V at height z is a washer with outer radius v4 — z2
(determined by the equation of the sphere) and inner radius V2 (determined by the
equation of the cylinder).
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(0,v/2,V2)

(0,v4 — 22, 2)
_,/

T

So the cross-section has area 77(v/4 — 22)2 — n(ﬁ)z = 11(2-2%) and
V2 V2 73/2
JJJV-FdV :3“ dVv = 3f m(2—z%)dz = 67TJ (2-2*)dz =6m(2v2 - =)
—/2 0 3
v v
= 827

(c) By the divergence theorem

!JF.ﬁdS:L/UV.FdV—ilfF.ﬁdS:m\/En

S-35: By the divergence theorem

|[E-aas=|[[[v-Bav
ov 14
So by Gauss’ law

H V-Edvzzmﬂ pdV = JH[V-E—anp]dV:o

This is true for all solids V for which the divergence theorem applies. If there were some
point in R3 for which V - E — 471p were, say, strictly bigger than zero, then, by continuity,
we could find a ball B, centered on that point with V - E —47tp > 0 everywhere on B..
This would force {{f; [V - E —4mp] dV > 0, which violates {ff,, [V - E —47mp] dV =0
with V set equal to B.. Hence V - E — 471p must be zero everywhere.

S-36: By the divergence theorem

!Vfr.ﬁds = fi V- rdV = fifV-(xi—l—yj—sz() dV = JJJSdV = 3 Volume(V)
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Our gemetric explanation starts with the observation that the volume of the cone with
vertex (0,0,0) and base a tiny piece of surface dS is % times the area of the base times the
height of the cone. The height of the cone is |fi - r|, where r is a point in dS. So the volume
of the cone is %|ﬁ -r|dS.

n

dsS

(0,0,0)

First assume that (0,0,0) is in V and V is convex. Then

e fi-r > 0, and the volume is %ﬁ -rdS.
e the cone is contained in V and
e V is the union of all the tiny conical pieces with dS running over JV.

So ,
Volume(V) = gﬁ[r-ﬁdS
oV

To generalise to the case that V is not convex or (0,0,0) is not in V, write V as the
difference between a large convex solid and one or more smaller convex solids.

S-37: (a) We'll parametrize the sphere using the spherical coordinates 6 and ¢.

x = 3sin ¢ cos 6
y = 3sin@sin®
z =3cos ¢

with 0 < 0 < 27,0 < ¢ < 7. Since

(g—g, %, %) = (—3singsinb, 3singcosh, 0)
(2_;()’ %' %) = (3cos pcosB, 3cos psinf, —3sin @)

(3.3.1) in the CLP-4 text yields

ox 0y 0z ox oy 0z
= == = —, =, — ) dbéd
80'89'69)X(aq)'8(p'§q)) ¢
+(—3singsinf, 3singcosf, 0) x (3cos pcosh, 3cos ¢sinf, —3sin ) dode

ﬁdSzi(

+( —9sin? pcosh, —9sin® gsinf, —9sin ¢ cos (p) dode

= F9sin¢(singcos b, sin@sinb, cos (p) déde
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To get an outward pointing normal we need the + sign. For example, with the + sign,
the z-component is 9sin ¢ cos ¢ = % sin(2¢) so that the normal is pointing upward when
0 < ¢ < 7, i.e. in the northern hemisphere, and is pointing downward when 7 < ¢ < 7,
i.e. in the southern hemisphere. (As a further consistency check, note that Ao, ¢) is
parallel to r(6, ¢).) So

2T 7T

ij-ﬁdS = 9J dQJ dg sin ¢ (0,0,3sin ¢ cosf + 3cos ¢)- (sinpcosf, sin gsinf, cosq))
0 0

S

27T T
= 27J dQJ d¢ (sin® ¢ cos ¢ cos 6 + sin ¢ cos® @)
o Jo

ys 27T
= 547Tf dg sin ¢ cos® ¢ since f cos0dd =0
0 0

= —187[ cos® ¢]
=367

T
0

(b) Set
V={(vyz2)eR |+ +22 <9}
Since

0
V~F—E(x+z) =1

the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives

HF-ﬁdS:fHV-FdV:H dV=§7r33=367r
S 14 \%4

5-38: Denote by V' the cube specified in the problem. Then 0V consists of S together with
the face F in the plane z = 0, oriented with the normal being —k.

z ~

n =k
T (0,1,1)

(1,1,0)

7 st e 1) 4 2 e
V.F—a—x(ycos(y)—i-z 1)+&y (x+1+1)+az(xye)

Z2
= < (we)
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the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives

HF nds—ﬂ V.Fdv - H
1 1 1 ,
:J dx [ dyJ dz — xye f de dy xye*

o Jo 0 0 z=

1 1 z—1 1 )
J dx | dy xyeZ + f dxf dy xye*
z=0 0 0

1
:J dx yxye

=HH

z=0

=1

S-39: (a) The equation of the surface is G(x,y,z) = z — xy = 0. So one normal to the
surface at (1,1,1) is (VG)(1,1,1) = (—y, —x )}( 1) =(11 1) = (-1,-1,1) and a unit

upward pointing normal at (1,1,1) is M—}} %( ,1).
(b) For the surface G(x,y,z) = z — xy, so that, by (3.3.3) in the CLP-4 text,

fds = + YO Y2 iy = 4 (—y,—x,1)dxdy
VG(x,y,z) k

The “+4” sign gives the upward normal, so the specified upward flux is

JJF nds = Jf (y,x,3)- (—y—x,1)dxdy = Jf (3 — x* —y*) dxdy

x24y2<9 x24y2<9

Switching to polar coordinates, the flux is

3 27T 3
HF-ﬁds :JO drrL de (3—1%) = 2nL dr (3r—r’) =2m (332 - 13%) = - 2I¢
S

(c) by direct evaluation: Parametrize the specified surface using the cylindrical
coordinates 6 and z.

x = 3cosf
y = 3sinf
z=2z
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with 0 < 0 <27 and 9sinf cos 0 < z < 10. Then, using (3.3.1) in the CLP-4 text,

Z—;:(—Ssin(),?;cos(),O)
2; (0,0,1)
2; ?—3((:059 sinf, 0)
dS:% %d9d2—3(C059 sinf, 0) do dz

(We have taken the + signin idS = i% X %d@ dz to give the outward pointing
normal.) So the specified flux is

) (yx3)

7T

JJF ndS—3f d()f dz 351n9 3cosb, 3) (cos@,sind, 0)
cosOsmG

27T
—18[ dGJ dz sinf cos6
cosfsinf

=18 d9 [10 =9 cos fsin 6] sin 6 cos 6
0

27T

= -9x18 dO sin?0 cos®6
0

27T 1 (27
sincef sinfcosf df = 5 J sin(20) d6 =0
0 0

1 27T
= 9 x18 x ZJ df sin?(26)
0

_ _g d@ 1— cos(46)
2 Jo 2
81 {g B sin(40)r”

2 |2 8 o
_ 8
2

For an efficient, sneaky, way to evaluate Sgn df sin?(26) see Example 2.4.4 in the CLP-4
text.

(c) using the divergence theorem: Note that if x> + y?> < 9, then |x| < 3 and y < 3 so that
lxy| <9 < 10. Set

S

{(xy2)| ¥+ =9 xy<z
={(xy2) | ¥ +y* <9, xy <
Note that the boundary, 0V, of V consists of three parts:

o the side S, with outward pointing normal (which is the surface and the normal
specified in part (c) of the question)
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o the bottom, which is the surface S of part (b), with downward pointing normal
(which is opposite the normal specified in part (b)) and

o the top, which is the surface St = { (x,,z) | ¥* + y* <9, z = 10 }, with normal
i =k

Here is a sketch of the part of 0V that is in the first octant.
z ST
g S

<l

Note that V - F = 0. So the divergence theorem yields

Xz

:
0— Hv-de
JV
r
_ JFﬁdS
v
[ N
_ JF-ﬁdS—HF-ﬁdSJFffF-de
s S 5

This implies

HF-ﬁdszHF.ﬁdS—gF-Rds

S S
_ 27
7 ” 3ds
x24+y2<9
271 2 8lm
= —3n3 ="

S-40: (a) The divergence of F is

V F= S(x+siny) + 5z +y) + &)
=242z
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(b) Set

V:{(x,y,z)\x2+y2<25,0<z< 25—x2—y?}
ST:{(x,y,z)\x2+y2+22:25,z>0}
SB:{(x,y,z)\x2+y2<25,z=0}

Note that the boundary, 0V, of V consists ot two parts — St with upward normal, and Sg
with normal —k. We are to find the flux through St with upward normal. By the
divergence theorem, it is

HF nds_HVde H (-k)d
[

since F -k = z2 = 0 on Sp. We'll compute the volume integral by expressing it as an
iterated integral, with the z integration on the outside. In V, z ranges for 0 to 5. The set of
points at exactly height zin V is { (x,y,z) | x* + y*> < 2522 }. So

JJF ndS—f dz f dxdy (2 +2z) sz (2+2z) J dxdy

x2+y2<25—22 x2+y2<25—22

L dz 71(25 — 2) (2 + 22)

since §.2, 2,5 _,» dx dy is the area of a disk of radius v25 — 22

xZ4y
5

= nJ dz (50 — 22* + 50z — 22°%)
0

- 7t<50><5 25—3+505—2—254) 53<2—%+5—§) - 71—53(‘—L+§)

3 2 4 3 2 32
23 1
=U53 = 479- 71
i 6

(c) To start, consider any closed surface S that is the boundary of a solid V. Use

o the outward pointing normal for S,

o |V| to denote the volume of V, and

0 Z= |17| §§§,, z dV to denote the z-component of the centroid (i.e. centre of mass with
constant density) of V.

Then, by the divergence theorem

JJF.ﬁdS:JJ V-FdV:JJJ(ZJrZz)dV:ZJJJdV+2JszdV

= 2|V|+2|V]z
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This takes the value —9 if and only if

9
AVIz=-9-2|V| = z2=—-——1
V|z=-9-2|V] 2=

One surface which obeys this condition is the unit cube (with outward normal) centred
on (0,0, — 12—1) )

S-41: (a) The constant z cross-section of the cone at height 0 < z < 1 is a circle of radius
2z. So we may parametrize the cone by

r(6,z) =2zcos0i+2zsinfj+zk 0<6<2m 0<z<l1
Since

3—5: (—2zsinf, 2zcos 6, 0)
%: (2cosb, 2sinb, 1)
% % % = (2zcos @, 2zsinf, —4z)

(3.3.1) in the CLP-4 text yields that the element of surface area for this parametrization is

dS = |& x &|dodz = 2z|(cosf, sinf, —2)|dodz
= 2+/5zdfdz

In our parametrization the condition x < y becomes 2z cos 6 < 2zsin 8, which, for z > 0,
is equivalent to tan 6 > 1. So the specified integral is

1 /2 1
Jf22d522\f5j dzf d@z?’:@J dzz3:@
S 0 /4 2 0 8

(b) Let’s first do some strategizing. We have to compute a flux integral over a surface that
is not closed. There are two potential sneaky attacks that come to mind.

o The first uses Stokes” theorem. But the flux integral in Stokes’ theorem is of the
form {{, V x A - A dS. So to be able to apply Stokes’ theorem in the current
problem, F has to be of the form V x A. That is, F has to have a vector potential. We
know that in order for F to have a vector potential, it must pass the screening test
V -F = 0. Our F = z k fails this screening test. So we can’t use Stokes’ theorem.

o The second uses the divergence theorem. But the flux integral in the divergence
theorem is over the boundary of a solid. That is not the case for our S. So in order to
apply the divergence theorem in the current problem, we have to enlarge S to the
boundary of a solid. There are many ways to do this. But they all appear fairly
complicated. So it does not seem wise to use the divergence theorem.

So it looks like we have to evaluate the flux integral directly. To do so, we have to
determine fi dS for the specified rectangle. Look at the sketch of S below. It is part of a
plane, and that plane is invariant under translations parallel to the x axis. As the plane
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(5,0,4)

(5,2,0)
does not pass through the origin, the equation of the plane has to be of the form

by + cz = 1. For (0,0, 4) to be on the plane, we need ¢ = }1. For (0,2,0) to be on the plane,
weneed b = 3. So S is contained in the plane G(x,,z) = § + % = 1 and equation (3.3.3)
in the CLP-4 text gives that

(0,1/2,1/4)

VG(vy,2) ~dxdy = + 1

nds =+
VG(x,y,z) -k

dxdy = +(0,2,1) dxdy

The problem specifies that the normal is to be upward, i.e. is to have a positive
z-component. So
ndS = (0,2,1) dxdy

Again looking at the sketch of S above we see, as (x,y, z) runs over S, (x,y) runs over
R={(xy)|0<x<50<y<2}
Thus our flux integral is
nds

K—JZAA —— -~ 2 5
ij-ﬁdS:Jf (4—2y)k-(0,2,1)dxdyzf dyf dx (4 —2y)
0 0
S R

2 22
:J dy 5(4 - 2y) = 54y~ y?| =20
0 0

(c) The divergence of the given vector field is V - F = 2z, which is pretty simple. So let’s
use the divergence theorem. If V = { (x,y,2) ‘ 0<x<10<y<20<z<3 }, the
divergence theorem says that

gp.ﬁdszjvf v.dezzwzdv

This integral would be easy enough to evaluate directly, but we don’t need to. The
average value of z (i.e. the z-coordinate of the centre of mass with constant density) is 3,
by symmetry. Since V has volume 6, that average value of z is also

_ 1 3
z—6ff zclV—2
1%
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So §{§, zdV =9

f!FﬁdS :2fifde: 18

S-42: (a) For the surface z = f(x,y) = 1 — x> — y?, with an upwards pointing normal,
fdS = [~ fue(x,y)dx — fy(x,y) + k]dxdy = [2x1 +2yj + k] dxdy
by (3.3.2) in the CLP-4 text. So the specified upward flux is

ﬂp.ﬁds
1

- H {la(y® +2%) + bxz]i + [c(x* + 2%) +dyz] j + x* k}
x2+y2<1
{2xi+2y] + Kk} 2 dxdy

z=1—x2—

= Jj {[2ax(y*+2%) + 2bx°z] + [2cy(x*+2%) + 2dy°z] + x2}2:1_x2_y2 dxdy

x242<1

Jf {Zﬂx(y2 + Zz)}ZZl_xz_yz dxdy =0

x24y2<1

because the integrand is odd under x — —x and
JJ {2cy(x* + ,zz)}zzl_xz_y2 dxdy =0
x2+y2<1
because the integrand is odd under y — —y. So that leaves
JJ F-AdS = Jf {2bx%z + 2dy°z + x2}z=1—x2—y2 dxdy
(%1 x2+y2<1

We’ll switch to polar coordinates to evaluate the remaining integral.

1 27T

fj F-fdS = J dr rf de {2brzz cos? 0 + 2dr*z sin? 6 4 r? cos? 0}22142
0 0

01

Now
27T 27T . 27T
f coszédezf cos(20) +1 4o _ [sin(20) L 0170 _
0 0 2 4 21,
27T 27T 1 _ 27
J sin2 0 do — f 1— cos(20) 40 — 6 sin(20) _
0 0 2 2 4 |,
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For an efficient, sneaky, way to evaluate S(Z)n cos? 6 df and SS” sin? 0 df, see Example 2.4.4
in the CLP-4 text. So, we finally have

1

JJF -AdS = J dr {27tbr3(1 —1?) +2mdr3(1—1?) + nr3}
0

o

:2nb[i—a +27‘L’d[

1
1_6 + 1T =—-+

1} 1 nn mb+d)
4 4 6

(b), (c) Here is a side view of 01, 03 and 03.

03

g9, z:x2+y2—1

Set

xzylz)‘0<2<1—x2_y2, x2+y2<1}

Vo= {
Ve={(xyz) | P+ -1<z<1-x*-y*, ¥*+y* <1}

Then 0V}, = 01 U 03 and 0V, = 071 U 02, all with outward pointing normals. Since the
divergence of F is

R S 02 2 02
V.F= ax[a(y +z )—i—bxz]—l—ay[c(x +z )—l—dyz]+az[x]—(b+d)z

the divergence theorem gives

H F-ﬁdszgh v.dez(b+d)gfzdv

o1u03
H F-ﬁdszﬂ V-dez(b+d)fﬂzdv
(% 891%) VC VC
Now on V}, z > 0 and z > 0 except on 03. So {ff, zdV > 0and {f, ., F-fidS is zero if

and only if d = —b. That’s the answer to part (b).

On the other hand, V, is even under z — —z so that {ff;, zdV = 0. Consequently
SSUW o F R dS is zero for all 4, b, ¢, d. That’s the answer to part (c).
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S-43: We will be using the divergence theorem in both parts (a) and b. So as a prelimary

. ;e . o (xy,z)—(ab,c)
calculation, let’s find the divergence of H(x,y,z) = Pt bt DT for any
(a,b,c). If (x,y,2z) # (a,b,c),
V H(x,y,z)
_J xX—a N 7 y—>
X [(x—aP+(y =02+ (2= W[(x—aP+(y-b)?+(z- o)

0 zZ—cC
0Z[(x—a)2+ (y — b2 + (z— )
[(x—a2+(y—b)2+(z—0)?] — (x—a) }(2(x —a))
[(x—a2+ (y )2+ (z— )]
. [(x—a>2+<y—b>2 (z—c)?] - (y—b) 3(2y)

[(x—a)> + (y—b)>+ (z—¢)?]
+K —a)? +( b)? +2%] — (z—¢)3(2(z—¢))
[x—a y b)2+ (z —c)? >/2

3[(x—a)?+ (y—b)>+ (z—¢)?] — —3(y —b)?>—3(z —¢)?
[(x—a)2+(y—b)2+<z—c

If (x,y,z) = (a,b,¢), H(x,y, z) is not defined and hence V - H(x, y, z) is also not defined.

(b) By the above preliminary computation with (a,b,c) = (3,2,2), V - G is defined and
zero for all (x,y,z) # (3,2,2), and, in particular for all (x,y,z) in

V={(vyz)|x¥+2/ +32"< 16 }

So, by the divergence theorem,
JjG-ﬁdSsz V.-GdV =0
S Vv

(a) Because (1,1,2) is inside V, we cannot use the argument of part (b), to conclude that
the integral is zero. Let ¢ > 0 be small enough that

Se={(vy2) | (x=22+(y-1)*+(z-1)?=¢"}

is completely contained inside V, as in the sketch below.
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Set
Ve={(x,y,2) ‘ X227 +322 <16, (x -2+ (y—1)2 +(z—1)2 = ¢ }

The boundary, 0V¢, of V consists of two parts — S and S, with the normals as in the
figure above. The divergence V - F of F is well-defined and zero throughout V.
Consequently, the divergence theorem gives

o= |[[v-Fav = [[F-ads+ [[F-nas
1% S Se
JJF-ﬁdS:—ffF-ﬁdS
S Se

The unit normal to S, at the point (x,y,z) on S; is

A= [(r-2)i+ -1+ (- DK

(Recall that [(2 —1)i+ (y —1)j+ (z—1) k| =eon S,. So, on S,

Foa= -1 ([(x_z)z(i?;:)(zzfé)_1)2]3/2> Jx-2)i+(y-1)j+ -1k
:_1< (x =22+ (y—1)%+ (z 1) )
e\ [(x=2)2+ (y—1)2+ (z—1)2]*"?
1
-2

Hence

ﬂpﬁds = —H (—é) ds = 81—2(47'(82) = 47
S Se

S-44: This was part of Theorem 4.2.9 in the CLP-4 text. To prove it apply the divergence
theorem, but with F replaced by a x F, where a is any constant vector.

fJ(axF)-ﬁdS:fJfV-(axF)dV

5@
fﬂ (Vxa)-a-(V «<B)]dv
ff (VxF)d :—a-J(£V><FdV

To get the second line we used the vector identity Theorem 4.1.4.d in the CLP-4 text. To
get the third line, we used that a is a constant, so that all of its derivatives are zero. For all
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vectors a- (b x ¢) = (a x b) - ¢ (in case you don’t remember this, it was Lemma 4.1.8.a in
the CLP-4 text) so that
(axF)-A=a-(Fxn)

prnds_—a fﬂvxpdv
—a. {JfondSJrffJVdeV}—O

In particular, choosing a =1, j and k, we see that all three components of the vector
.0 F xndS + {§§,V x FdV are zero. So

Jf VdeV:—ffondS:JJﬁdeS
Q oQ) oQ)

which is what we wanted show.

and

S-45: Pressure is force per unit surface area acting normally into a surface. So the force
per unit surface area is —pn. The total force acting on S is

_gpﬁdsz_g Vpdv

We are assuming that p is a constant, so that Vp = 0 and the total force is zero.

S-46: Let S, denote the sphere x2 + y2 + 22 = 42 and V, denote the solid inside it, which is
the ball x> + y? + z2 < a%. Then, by the divergence theorem, Theorem 4.2.2 in the CLP-4

text,
a +2a JJF ndS—fJ V. .FdV

Now, for very small a, V - F is almost equal to V - F(0,0,0) on all of V;,, and the integral
SSSVa V -FdV will be

V -F(0,0,0)Volume(V,) + O(a*) = %71113V -F(0,0,0) + O(a%)

Here O(a*) is an error term that is bounded by a constant times a*. This is consistent with
the above equation if and only if V - F(0,0,0) = 3.

S-47: Note that, since z2 — 2az = (z — a)? — a?,

S={(xyz|?+y¥+(z-a)?=4a*2z>0}
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Let V be the solid
V={(xy2) | +y¥+(z-a)?<4a’ z>0}

It is the interior of the sphere of radius 2a centred on (0,0, a). The surface of V (with

outward normal) is the union of S (with normal pointing away from the origin) and the
disk
B={(xy0)|x*+y*<3a*}

with normal —k. Hence, by the Divergence Theorem

HF-ﬁds = Jﬂn-FdV—ﬂF- (—k)ds
S 14 B
= JJJ(ZX%—Zerl)dV—JBJ(—B—x) ds

Both V and B are invariant under x — —x and under y — —y, so
8§y xdv = {f{,ydV = ([ xdS = 0 and

[[r-nas [[fava f o

To evaluate the integral over V, we note that z runs from 0 to 32 and that the cross section
of

V={(xyz)|0<z<3a, X +y? <4a® - (z—a)?, z>0}
with fixed z is the circular disk x? + y? < 4a®> — (z — a)? = 3a® + 2az — z2, which has area
(V302 + 2az — 22 )2. So

3a

JJF -AdS = f 7(\/302 + 2az —zz)zdz + 3 Area(B)
0

S

3a
= nf (302 + 2az — z%) dz + 371(3a°)
0

2 273
:n(3a2x3a+2ax 9%—711) —|—97m2

= 97a® + 97ra’
S-48: (a) Let S denote the boundary of R. Then “the total flux of F = Vu out through the

boundary of R” is given by the integral

I = f J F.-AdS
S
Thanks to the divergence theorem,
Py Pu Pu
I_H V-de_ﬂ V.Vudv_ﬂf(axfrayz +55)dvV =0
R R R
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(b) Similarly, “the total flux of G = uVu out through the boundary of R” equals

Izﬂc-ﬁdszﬂ V- -GdVv
S R

Here G = uF (using the notation from part (a)), so by the vector identity of Theorem
4.1.4.c in the CLP-4 text,

V-G=V-(uF)=(Vu) -F+u(V-F)
But F = Vu,so V- F = Au = 0 as in part (a), giving
V-G =|Vuf+0

= oo =[G o) ()

In conclusion,

S-49: (a) This is a classic case for the divergence theorem. The flux we want equals

N Ing.ﬁdszg V.dezJﬂ<2x+2_2>dvzzjﬂxdv

The solid R clearly has reflection symmetry across the plane x = 0. So the x-coordinate
of the centre of mass of R, i.e. the average value of x over R, i.e.

WpxdV  [figxdV
fodV — VoI(R)

X =

is zero. Hence
[=2%Vol(R) =0

Alternatively, here is a direct evaluation of 2 {{{,, x dV. The base region x*> + (y — 1)* < 1
is the circular disk of radius 1 centred on (0, 1). In polar coordinates it is
r?cos? 0 + (rsinf —1)2 < 1 or r*—2rsinf+1<1 or r<2sinf

Because the disk is contained in the upper half plane, the polar angle 6 is restricted to
0 < 0 < 7. So, in cylindrical coordinates, the solid R is described by

0<O<m, 0<r<2sinb, 0<z<r*sin?0
Hence
~TT 2sinf r2sin? 6
[=2 f f (rcos@)dzrdrdf
JO=0 Jr=0 z=0
~TT 2sin 6
=2 f r*sin? 6 cos § dr d@
JO=0 Jr=0
(7 25sin° @ 64 (™ 64 rsin® 977
=2 in” 0 cos 0 de = — in’0cos0df = —
Joss sin” 6 cos [ 5 } 5 Jos sin’ 6 cos 5 [ 3 }9:0
=0
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(b) using part (a): We have

gp.ﬁdsz ﬂ F.ﬁd5+HF.ﬁds+HF.ﬁd5

Sbottom Stop Sside
On Spottom, z = 0 and the outward unit normal is i = —k, so F- i = 0. Hence
Jj F- ndS—JdeS—O
bottom Sbot

On Siop, z = ¥?, s0 F = (2x,2y, —2y?) and, by (3.3.2) of the CLP-4 text,
AdS = (0, —2y,1) dxdy

Hence (by the Hint)

JJ F-AdS = Lf[—élyz — 2y%] dxdy

251n9
:—6J J r sin? 6 rdrdf
6=0

4 T T
= —62— sin® 9 do = —245 f sin*9do = —24§§ J sinZ 9 do
4 Jo—o 6 Jo—o 64 Jo—o
531 531 15
=251 J d6 = 24|g 5| = —5'n

The conclusion is
. N . N 15
|| B -sas = [|Fonas— [[Fonas— [[Foadas = Jn
Sside S Stop Sbot
(b) by direct evaluation: Use the polar equation r = 2sin 6 to parametrize Sg;qe:
r(0,t) = (rcosf,rsinb,t) = (2sinf cos,2sin’ 6, t), 0<0<m0<t<y?=4sin*f

Then using (3.3.1) in the CLP-4 text,

(91- or 4sin? 0 cos? 6 4sin? 0 _2t
F-AadS = ( ) do dt = det |2(cos? 8 — sin? 6) 4sinfcosf 0 | dodt
00 0 ’ :

4sin? 6 cos? 0 4sin? 6
de 2 ) .
2(cos” 6 —sin“0) 4sinfcosf
= [165sin® 0 cos® § — 8sin” O cos? O — sin”0) | dO dt
= [16 sin> 0(1— sin? 0) cosf — 8 sin? 0(1-2 sin? 0)] do dt
= 8[251n39c0s6 —2sin® 0 cos O — sin 6 —|—25in49} de dt

] de dt
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SO

7T 4sin* 0

Jf F-AdS = SJ J [251n39c059 —2sin° O cosf — sinZ 0 —i—251n46] dt do
0—=0 Ji=0

Sside

7T
= 32[ [Zsin79cosé)—251n96c056—sin66+Zsin89} de

0=0
;.8 - 10 T T T
:32[25”n 6 _,sin 9] —32f sin69d9+64f sin® 0 do
8 10 Jo 0—0 6=0
531 7531 .
= _3264_157[ + 64§61§T[ (by the Hint as above)
B 157r
= 5.

(b) Offset polar alternative: We can also parametrize S using cylindrical coordinates
translated so that the centre of the base of the cylinder, namely (0,1,0), plays the role of
the origin. Then, looking at the figure

we see that

x = rcosf y=1+rsinf z2=1z

In these coordinates, the base region, x> + (y — 1)? < 1,z = 0, of the cylinderis 0 < r < 1,
z = 0. So we can parametrize S by

x=cosf, y=1+sinf, z=t 0<0<2m, 0<t<(1+sinf)?

By (3.3.1) in the CLP-4 text,

i i k
gxﬁdet[ 0 0 1](c056,sin6,0),

ot oo —sinf cosf 0
R _ Or Or B .
AdsS = —3 X 3 dtd6f = (cosf,sin6,0)dt de
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where we have chosen the sign to give the outward pointing normal. So

r2t  ~(1+sin@)
JJF-ﬁdS = J [cos® 0 +2(1 +sin0) sin 6] dt do
0=0 Jt=0

r27
] [(1+5sin8)?cos® 0 + 2(1 + sin 0)* sin 0] o
0

r27T
J [2sin 6 cos® 0 + 6sin? 0 + 2 sin* 6] do
0

| T T
:——cos 9‘ +12J sin 9d9—|—4j sin* 6 d6
0 0
37 15

To get the third line, we used that the integral over 0 < 6 < 27t of any odd power of sin 6
or cos 0 is zero.

-50: The circle x* + y? = 4y, or equivalently, x> + (y — 2)? = 4, has radius 2 and centre
0,2). On the bottom surface, z = 0 and the outward normal is —k, so that

ffF-ﬁdS = —JJF-IA(dxdy = —Jf(2x+3y) dxdy
D D D

By symmetry, the centre of mass, (¥, ), of the circle is (0,2). Here ¥ and i are the average
values

7= §ip xdxdy 7= §ip y dxdy
§ip dxdy §ip dxdy
of x and y over D. As the disk D has area 47,

fjxdxdyzélmzzo J ydxdy = 4ny = 8n
D

UF-ﬁds = —4mr(28 +37) = —4m(2x 043 x2) = —24r7
As

0 0 0
V-F= a—x(x—l—xzy)+a—y(y—xy2)+§(z+2x+3y) = (1+42xy) + (1 —2xy) + (1)

=3

the divergence theorem gives

HF nds_ﬂ V.Fdv - HF Ads

JJJES dV — (—24m) = 3Vol(R) +24m =3 x 10+ 247

= 30+247T
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Solutions to Exercises 4.3 — Jump to TABLE OF CONTENTS

S-1: (a) Expressing the left hand side as an iterated integral, with y as the inner

integration variable, we have

g%w) duxdy —

1 1 af
J, o Uo a W”]

1
[ dx [£(x,1) — £(x,0)]

JO
by the fundamental theorem of calculus

1 1
( f(x,1) dx—f f(x,0) dx
0

JO

(b) Define Fi(x,y) = f(x,y) and F,(x,y) = 0. Then. by Green'’s theorem

Jf%(x,y) dxdy = —JT [%(x,y) - %_I;(x’y)} dx dy
R

R
(
= _ - [Fi(x,y) dx + Fx(x,y) dy]
<

=—| floy)dx
JOR

The boundary of R, oriented counterclockwise, is the union of four line segments.

C; from
C, from
Cs from
Cy4 from

Y

(0,0)to (1,0) (g 1) Cs (1,1)
(1,0) to (1,1)
(1,1) to (0,1) Gl R G
(0,1) to (0,0)

4 (1,0)36

Now x is constant on Cp and C4 so that

C

f(x,y)dx = . f(x,y)dx=0

So, using —Cj3 to denote the line segment from (0,1) to (1,1)

L [ avay—-| [l remass | reen) @]

[ fepdr- | s
G G
1 1
= J f(x,1) dx—J f(x,0) dx
0 0

365



j be a counterclockwise parametrization of C by arc length.
+1/(s) j is the forward pointing unit tangent vector to C at

S-2: Letr(s) = x(s) i+ y(s)
= (
¥/ (s)1— x'(s)]. To see that 1(s) x k really is fi(s), note that

Then T(s) s) = x'(s
r(s) and fi(s) = r'(s) x k
y'(s)i—x'(s)]

e has the same length, namely 1, as r'(s) (recall that r(s) is a parametrization by arc

length),

e lies in the xy-plane and

e is perpendicular to r'(s). (Check that ¥'(s) - [y/(s)1 — x(s) j] = 0.)

e Use the right hand rule to check that r'(s) x k is fi rather than —#.

n(s)

r'(s)

S-3: (a) Parametrize the circle by x = acos6, y = asin6,0 < 6 < 27t. Then
dx = —asinfdf and dy = a cos 6 df so that

1 (xdy—ydx 1 [*®a?cos?0df+a?sin’0df 1 [
T 212 ox 2 cos2 2 gin2 =ox), 49=1
2n ] x2+y 27 Jo a? cos? 0 + a? sin* 0 27 Jo
(b) The boundary of the square has four sides — one with y = —1, one with x = 1, one
with ¥ = 1 and one with x = —1.
dy=0
<_1>1) y;I (171)
dl‘: xr=
1 -

(=1,-1) gm0 (1,—1)

To evaluate the integrals over the four sides

o parametrize the y = —1 part by x so that r(x) = xi —j, ¥'(x) =1, with x running
from —1to 1,

o parametrize the x = +1 part by y so thatr(y) =1+ yJ, ¥'(y) = j, with y running
from —1to1,

o parametrize the y = +1 part by x so thatr(x) = x7+j, ¥'(x) = 1, with x running
from 1 to —1, and

o parametrize the x = —1 part by y so that r(y) = —i+yj, '(y) = j, with y running
from1 to —1,
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so that the integral

y=-1 part x=-+1 part y=-+1 part x=-1 part

———

1 §xdy—ydx_if1 —(—1)dx+ijl (1)dy +LJ—1 —(1)dx+if_1 (—1)dy

2 ] x24y? 2w )y x24+1 2m ) 1+4y? 2m)y 241 2w )i 142
C

-

(c) As in part (a) with a = +/2, but with 6 running from 0 to 7, the outer semicircle gives

1

1
—=4— arctan x + g] =1

=] X

-1

1 ”a2c0529d9+azsin29d9_if”de_l
271 Jo a2 cos2 0 + a2 sin? 0 27 Jo 2

Y

dh

As in part (a) with a = 1, but with 6 running from 7 to 0, the inner semicircle gives

Ly

Yy
dy=0

Il
o

]
dy

1 0a2c0529d9+azsin29d9_ifodg_*l
277 ) a2cos20 + a2sin? 0 2w J,; 2

The two flat pieces each give zero, since on them y = 0 and dy = 0. So

1 (xdy—ydx 1 1 _
) ey T2l to=0
C

S-4: The two partial derivatives

6_( x )_ (¥ +y3) —x2y) P -AP
ox\x2+y2/) (x2 + y2)? (24 y2)?
5_( -y ): (P +y?) - (y)2y) _ -
oy \x? 4 y? (x2 + 112)? (x2 + y2)2

are well-defined and equal everywhere except at the origin (0, 0).

Short discussion: Were it not for the singularity at (0,0), the vector field of the last
problem would be conservative and the integral { F - dr around any closed curve would
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be zero. But as we saw in parts (a) and (b) of Q[3], this is not the case. On the other hand,
by Green’s theorem (Theorem 4.3.2 in the CLP-4 text), the integral around the boundary
of any region that does not contain (0,0) is zero, as happened in part (c) of Q[3].

Long discussion: First consider part (c) of Q[3]. The curve C is the boundary of the region
R={(xy)|l1<x*+y*<2,y=>0}

The partial derivatives g—x (ﬁ) and < <x2 e > are well-defined and equal everywhere
in R. So by Green’s theorem

xdy —ydx _ Jf 0 -y _
ang CaZry? ox x2+y 8y<x2+y2) dxdy =0
C

which is the answer we got before.

We cannot apply Green’s theorem in this way for parts (a) and (b) of Q[3] because the
singularity at (0,0) is inside the curve C for both parts (a) and (b). On the other hand
suppose, for simplicity, that 0 < a < 1. Denote by C,, C;, the curves of parts (a) and (b),
respectively. Define R to be the set of points that are inside C;, and outside C,. That is,

R={(xy)|-1<x<1, -1<y<1, 2+y*>a*}

Then the boundary, JR, of R consists of two parts. One part is Cp,. The other part is C,,
but oriented clockwise rather than counterclockwise. We'll call it —C,,.

Y

R Gy

A
\/ z

Again the partial derivatives g—x (ﬁ) and g—y (xz_——i—yy2> are well-defined and equal
everywhere in R. So by Green’s theorem

1 xdy ydx 0 -y B
2 J a2y Jf{éx x2+y 8y<x2+y2)} drdy =0
OR

Consequently

O_ngxdy—ydx_i xdy—ydx 1 § xdy —ydx
27 x2+y2 2n )] x242 27 x2 4 12
R Cp —Ca
_ 1 fxdy—ydx 1 [xdy—ydx

2 f a2 yr 2m ) ar4yR
G, o8
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and we conclude that the answers to parts (a) and (b) should be the same.We did indeed
see that in Q[3].

S-5: Solution 1 (direct evaluation): Here is a sketch of C.
(0,3) _v2% (3.3

z=0Y A z=3

(0,0) 4= (3,0)

The square consists of four line segments.

e The bottom line segment may be parametrized r(x) = (x,0), 0 < x < 3. So the line
integral along this segment is

3 dr 3
JOF(r(x))~adx:L(O,O)~(1,O)dx:O

e The second line segment may be parametrized r(y) = (3,y), 0 < y < 3. So the line
integral along this segment is

3 r 3 3
| F(r(y))-j—ydy: [ ovton - ©vay= | evay-2

e The third line segment may be parametrized r(t) = (3 —1,3), 0 <t < 3. So the line
integral along this segment is

3 dr 3 3
JOF(r(t))-adt:L (93—1)?,6(3—1t)) (~1,0) dt:—fo 9(3—t)>dt = —81

e The final line segment may be parametrized r(t) = (0,3 —t), 0 < t < 3. So the line
integral along this segment is

3 dr 3
foF(r(t))-adtzjo(0,0)-(O,—l) dt =0

The full line integral is
%F-dr20+27—81+02 —54
C

Solution 2 (Green'’s theorem): We apply Green’s Theorem.
j€x2 2 dx + 2xy dy — Pgdxfd P(zx )= 2P
] Yy yay ) . Y15\ =Y oy Yy

r3 3
= | dx J dy [2y — 2x?y]

JO 0
r3
= | dx [9- 9x2]
JO
33
=27—-9— = -54
3
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5-6: Call the trapezoid T.

(O’ _2>'

By Green’s theorem,

§(x siny® — y?) dx + (x%y cos y* + 3x) dy
C

.
{s—x(xzycosy2 +3x) — S—y(x sin 2 —y2)} dx dy

r

(2xy cosy? + 3 — 2xy cos y* + 2y) dx dy

I
o P R P—

r

3+2y)dxd
Y y

[

T

The integral {§.-(2y) dx dy vanishes because 2y changes sign under y — —y while the
domain of integration is invariant under y — —y. The integral {3 dx dy is 3 times the
area of the trapezoid, which is its width (1) times the average of its heights

(3[2+4]) =3.S0

%(xsiny2 —y*)dx + (x*ycosy® +3x)dy =3 x1x3=9
C

S-7: (Using Green’s theorem:) By Green’s theorem (Theorem 4.3.2 in the CLP-4 text), using
D to denote the half-disk 0 < y < V4 — 12,

123 4 4, .3 Jf 0 (1as 4
§<3xy xy)dx-l—(xy + %) dy = (xy* + x°y?) — ay<3xy xy)]dxdy
C

= JJ (x* + 262y + y*) dxdy = Jf (2 + yz)z dxdy
D D
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Switching to polar coordinates

612

1 2 T 7
§ <§x2y3 — x4y) dx + (xy* + x°y?) dy = f dr rj de r* = e
0 0
C

%
. 3

(Using direct evaluation:) Write C as the union of Cy, the straight line from (—2,0) to (2,0),
and C,, the half-circle r(6) = x(0)i+y(0)j = 2cosfi+2sinhj,0< 6 < . Asy =0at
every point of C1, §, (3x%y° — x*y) dx + (xy* + x°y*) dy = 0 and

I= L (%x2y3 — x4y> dx + (xy* + x°y?) dy
- | *[(3x(02y(0 —x(0)'y(0)) ¥ (6) + (x(0)y(0)* + x(6)y(6)?)y'(6) o
= Jn [(125 cos? fsin® 8 — 2° cos* f sin 9) (—2sin0)

3
+ (2°cos Osin* 0 + 2° cos® O'sin” ) (2 cos 9)] de

7T
25 J <§ cos2 0 sin* 0 + 4 cos* 0 sin? 9) do

T
=2° f sin?(26) (% sin? 0 + cos” ) dé
0 1
= 24f sin?(26) <§[1 —cos(20)] + [1 + cos(26)]> do
0
since cos(260) =2cos?’0 —1 =1—2sin’@

25 7
=3 sin?(20) [2 + cos(260)] do
0
25 7
=3 [1 - cos(40) + sin?(20) cos(26)] d6
0
2° 1. 1.3 32
=3 [0 ~1 sin(40) + g sin (29)}O =37

S-8: Let’s use Green'’s theorem. The rectangle, which we shall denote R, is
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So Green’s theorem gives

§ (3y* + 2xey2) dx + (2yxzey2) dy = fj s_x (2yx26y2) - ai (3y* + 2xey2)] dxdy
c R ’
[ 2 2
= JJ dxye¥ — 6y — 4xye¥ } dxdy
)L
3 1 31
= -6 ( dxf dyy:—6f dx -
J 0 1 2
=—6

S-9: (a) The curves y = x* + 4x + 4 and y = 4 — x> meet when

P tax+4=4-—x> — 2x%+4x=2x(x+2)=0

So the curves intersect at (0,4) and (—2,0). Here is a sketch.

y )y =a*+4r+4

(b) Let
R={(xy)eR*|x?+4x+4<y<4-x* 2<x<0}
By Green’s theorem (Theorem 4.3.2 in the CLP-4 text)

§xy dx + (¢ + x?)dy = dq {%(ey +x%) - g—y(xy)} dxdy
C R

0 4—x?
= ( dx J dy x
J-2 x2+4x+4

Joo
437"

- __7_T} 2

8

)
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S-10: The integral that would be used for direct evaluation looks very complicated. So
let’s try Green’s theorem. The curve C is the boundary of the triangle

T={(ry)|0<x<1,0<y<2x}

Y (1,2)

(0,0) (1,0) *
So
{(v* - eV +sin x)dx + (nye_?/2 + x)dy}
{G2xye ¥ +x) - g—y (> — e +sinx) }dxdy

- J {(2ye™ +1) — (2y +2ye ") Jdady

2x
dxf dy {1 -2y}
0

= [ dx{2x- 4x2}

S-11: Here is a sketch of the two curves in question.

Y
‘.‘ y=3—x2+2z
(0,3)
R
(3’ 0) ,"'
P
y=x2—4z+3 “‘,

Note that the curves y = x> — 4x + 3 and y = 3 — 2 + 2x intersect when
x> —4x+3=3—-x>+2xo0r2x> —6x =2x(x —3) =0orx =0, 3.
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The integrand for direct evaluation looks complicated. So let’s use Green’s theorem with
Fi(x,y) =2xeV +V2+ 2, K(x,y) = x>(2+¢¥) and

R={(xy)|x*—4x+3<y<3-x"+2x, 0<x<3}

By Green’s theorem, which is Theorem 4.3.2 in the CLP-4 text,

[ VT ena = [ {575
C (%
R

oy

= ff {2x(2 4+ €¥) —2xe¥} dxdy
R

3 3—x%42x
=4 dx J dy x
Jo x2—4x+3

r3
=4 | dx (6x—2x*)x
JO

- 3
=4 (223 - lxﬂ
2 0

=54

5-12: Direct evaluation will lead to three integrals, one for each side of the triangle. The
integral from (0,0) and (1, —2) and the integral from (1,2) to (0,0) will each contain six
(nonconstant) terms. This does not look very efficient. So let’s try Green’s theorem.
Denote by T, the triangle y (1,2)

T={(xy)|0<x<1 -2x<y<2} (0,0)

(1a _2)
It has boundary 0T = C, oriented counterclockwise as desired. So, by Green’s theorem,

JF~dr= [ {By*+e7¥ +sinx)dx + (1x* + x — xe ) dy}
C J

oT
.
= J {S (A +x—xeV) - g—y (3y* + 7Y +sinx) }dxdy

J

= fj{(er 1—eY)— (By—eY)}dxdy
= r‘J{x — 3y + 1}dxdy
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Now
f dxdy = Area(T) = 2 (4)(1) = 2

ff ydxdy =0 since y is odd under y — —y

ffxdxdy def dyx—félx dx—é

So
10
S-13: Set
_y A X R
F= 2+ 2 +x2+y2]

(a) Green’s theorem must be applied to a curve that is closed, so that it is the boundary of
a region in IR%. The given curve C is not closed. But it is part of the boundary of

2

R={(xy)| -2<x<2 ¥ +1<y<2}

Here is a sketch of R.
Yy
(—2,2) L < (2,2)
\ R
C Yy = 2 +1
T

The boundary of R consists of two parts — C on the bottom and the line segment L from
(2,2) to (—2,2) on the top. Note that F is well-defined on all of R and that

Op _Op_¢_ x 0 ¥

ox 2 oyt T oxxl w2 dyx2+2

_ (P4t —x(20) | (2 4y?) —y(2y)
(22 +12)? (x2 +2)?

=0
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on all of R. So, by Green’s theorem (Theorem 4.3.2 in the CLP-4 text),

- L | _J |
Jc x2+y2dx+x2+y2dy_“<ax1:2 ayF1>dXdy  Frdr
R

2 2
2
= F.-dr = Fidx = — ————dx sincey=2onlL
J—L J—z ! J_z x2 44 4
Ly

= — J_l oI dx with x = 2u, dx = 2du

1 T
= —alrc’camu)_1 = _E

In the second line, we used the notation —L for the line segment from (—2,2) to (2,2).

(b) This question looks a lot like that of part (a). But there is a critical difference. Again C
is not closed and again it is part of the boundary of a simple region in the xy-plane,
namely

R={(xy)| —2<x<2, ¥*-2<y<2}

This R is sketched below.

y =% —2
c Y

We cannot continue as in part (a), using this R, because g—ng - g—yFl is not zero througout

R. In fact, it is not even defined throughout R — it is not defined at (0,0), which is a point
of R. We can work around this obstruction by

o choosing a number p > 0 that is small enough that the circle C, parametrized by
r(f) =pcosfi+psinfj 0<6<2m

is completely contained inside R (ror example, p = 1 is fine)
o and then removing from R the interior of Cp.

This produces the “deformed washer”
W:{(x,y)\ —2<x<2, 2 -2<y<2, x2+y2>p2}

that is sketched below.
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(—2,2) == (2,2)

VoA
U/~

y xr° —
C

The boundary of W consists the three parts — the curve of interest C on the bottom, the
line segment L from (2,2) to (—2,2) on the top, and the circle —C,, (that is C, but oriented
clockwise, rather than counter-clockwise) around the hole in the middle. Now

g—pr_ - (%Fl is well-defined and zero throughout W. So, by Green’s theorem (Theorem

4.3.2 in the CLP-4 text),

Y *_a= ([ (Lr-L _J. _f .
fcx2+y2dx+x2+y2dy—JJ(asz a]/F1>dxd]/ LF dr _CPF dr
W

:f F-dr—i—f F-dr
-L Co

We have already found, in part (a), that { ; F-dr = —7. So it remains only to use

r(0) = pcosfi+ psinfj
¥ (0) = —psinfi+ pcosbj

to evaluate

0

Lp F.dr — fzﬂF(r(e)) ¥ (0) do

A I‘/G
(6) -

27T 1 1 P A <
:J <_Esin92+5c059j>-(—psin9i+pcosf)j)d9: do
0

All together

-y * q— | F dr= T iop= T
ch2+y2dx+x2+y2dy_f_LF dr—I—fCPF dr = 2—{—271— >

(c) No, F is not conservative. We found, in parts (a) and (b), two different values for the
integrals along two paths, both of which start at (—2,2) and end at (2,2). So F does not
have the “path independence” property of Theorem 2.4.6.c in the CLP-4 text and cannot
be conservative.
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S-14: The given integral is of the form SC F - dr with

F=(2xe! +V2+x%)i+x*(2+¢¥)j

If we were to try to evaluate this integral directly, then on the y = x> — 4x + 3 part of C,

the integrand would contain x?e¥ = x%e*’ ~4+3_That looks hard to integrate, so let’s try
Green’s theorem. The parabolas y = x?> — 4x + 3 and y = 3 — x? + 2x intersect at (x, )
with

X2 —4x4+3=3-x>42x «— 2x>—6x=0 < 2x(x—3) =0
<~ x=0o0orx =3

The curve C is the boundary of
R = { (x,y) {O<x<3, x2—4x-|—3<y<3—x2+2x}
It is sketched below.

y=a>—4x+3

y=3—2%+2

By Green’s theorem (Theorem 4.3.2 in the CLP-4 text),
f (2xe¥ + V2 + x*)dx + 2% (2 + ¢¥)dy
C

:H [g_x(xz(zﬂy)) _%(2xey-|—\/§+x2)}dxdy
R
:ff (2x(2+€¥) — 2xe¥) dxdy

3—x242x 3

_4f dxj dyx:4j dx x[(3 — x* 4+ 2x) — (x* — 4x + 3)]
2—4x+3 0

1

:4f dx (6x* —2x°) = 4(2x 3~ 55%) =54
0

S-15: (a) Denote by

— Ry={(x,y)|(x-2+y*<1}

the interior of the circle C;. Note that (0,0) is not in Rp. Consequently, Qy — P, =0
everywhere in Ry and, by Green’s theorem (Theorem 4.3.2 in the CLP-4 text),

Iz—der—Jf —Py)dxdy =0
G
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o)
N 20
/.

(b) We cannot blindly apply Green’s theorem to I3 = SC3 F - dr because (0,0) is in the
interior of Cs, so that Qy — P, is not identically zero in the interior of C3 — it is not even
defined throughout the interior of C3. We can work around this obstruction by
considering the interior of C3 with the interior of C; removed. That is, by considering

Ry={(xy) |+ (y-2?<9 ¥ +y*>1}

It is sketched on the right above. The boundary of R3 consists of two parts

o the circle C3, oriented counterclockwise, and

o the circle —Cy. That is, the circle C; but oriented clockwise, rather than
counterclockwise.

Then Qy — P, is well-defined and zero throughout R3 and, by Green’s theorem,

r
Cs -G

3
r

= F-dr—f F-dr
JC3 Cq

~
= F.-dr—
JC3

SOSC3F-dr:7'(.

(c) Again, we cannot blindly apply Green’s theorem to Iy = SC4 F - dr because (0,0) is in
the interior of C4. This time we cannot remove the interior of C; from the interior of Cy,
because C; is not contained in the interior of C,. Instead we pick a number p > 0 which is
small enough that the positively oriented circle

Co={(ny [+ =p"}
is completely inside C4. Then we can define
Ri={(xy) | (x-2%+(y-22<9 2 +y*=p*}

It is sketched on the left below. We can now argue as in part (b). The boundary of Ry
consists of two parts

o the circle C4, oriented counterclockwise, and
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o the circle —C,. That is, the circle C, but oriented clockwise, rather than
counterclockwise.

Then Qy — P, is well-defined and zero throughout R4 and, by Green’s theorem,
0= Jf (Qx — P,) dxdy
Ry

:J F-dr—i—f F.dr
o -C,

:J F-dr—J F-dr
Cy C

0
SOSC4F-dr:SCPF-dr.

To complete our computation, we have to determine SCP F - dr. We can do so by repeating
the same “removing a small disk containing (0,0)” argument for the third time. Set

Rs={(xy) |+ <1, K’ +y* >0}

Then the boundary of Rs consists of C; and —C,, and, as Qy — P, is well-defined and zero
throughout Rs,

SOSC4F-dr:SCPF-dr:7T.

Y Y
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S-16: (a) If (x,y) # (0,0), we have

0 -7, a<y—x> 8<x+y>

T\ )y \2
(P - -0)2y) (P 4y?) - (x+y)(2y)
(2 +32)° (2 +y2)°
=0
(b) Parametrize Cg by
r(f) = Rcosfi+ Rsinf] 0<6<2m
So
F(r(60
- o .o
f F.dr:f E{(cosejtsin@)i—i—(sinf)—cos@)j}.(r—RsinGi—l—Rcosf)}A)d6
o 0
‘ 27T
:f (—1) do
0
=27

(c) If F were conservative, the line integral SC F - dr would be 0 for any closed curve C, by
Theorem 2.4.6.b in the CLP-4 text. So F is not conservative. Note that F is not defined at
(x,y) = (0,0) and so fails the screening test V x F = 0 at (x,y) = (0,0).

(d) Denote by R the interior of the triangle C. It is the grey region in the figure

)
(0,1) (1,1)
C
* (1,0) @

Note that (0,0) is not in R. So Qy — Py is defined and zero throughout R. So, by Green’s
theorem (Theorem 4.3.2 in the CLP-4 text),

LF-dr:JJ(Qx—Py)dxdy:0

(e) Note that (0,0) is in the interior of triangle C specified for this part. So Qx — P is not
defined in that interior and we cannot apply Green’s theorem precisely as we did in part
(d). We can work around this obstruction by

o picking a number r > 0 that is small enough that the circle C;, of radius r centred on
(0,0), is completely contained in the interior of the triangle C.
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o Then we work with the region R defined by removing the interior of the circle C,
from the interior of the triangle C. It is the grey region sketched below.
Y

(0,1)

(1,1)
The boundary of R consists of two parts

o the triangle C, oriented counterclockwise, and

o the circle —C,. That is, the circle C,, but oriented clockwise, rather than
counterclockwise.

Then Qy — P, is well-defined and zero throughout R and, by Green’s theorem,

0= Pf (Qx — Py) dxdy

J

R
r

= F-dr—i—f F.-dr
JC —C,
-

= F-dr—J F.dr
Jc .,

So §cF-dr = (. F-dr. By part (b), withR =7, {- F-dr = —27,s0 {- F-dr = 27

S-17: (a) The given integral is of the form {- F;(x,y) dx + F»(x,y) dy with

0F, OF
131(x,y):\/1+7x3 E(x,y) = 2xy? + 12 &_ch_&_ylzz 2

As C is R with
R={(xy) |2 +y2<1)

Green’s theorem (Theorem 4.3.2 in the CLP-4 text) gives
oF, O0F

L V14 x3dx+ (2xy2 +y2) dy = L Fi(x,y)dx + FE(x,y)dy = if (— - —) dxdy

ox oy
=2 fJ y? dxdy
R
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Switching to polar coordinates

27T 1
f\/l—l—x3dx+(2xy2+y2)dy:2f dGJ drr(rsin6)2
C 0 0
27T 1 1 T
_ ) 3| i_r
—2[() df sin 9] [Ldrr]—2n4 >

To do the 0 integral, we have used

o 27 11— cos(26) 0 —sin(20) /2727
. 2
sin“ 0 df = J V) de = | — =7
JO 0 ( 2 > [ 2 }0

For an efficient, sneaky, way to evaluate Sén sin @ df, see Example 2.4.4 in the CLP-4 text.

(b) It is again natural to use Green’s theorem. But Green’s theorem must be applied to a
curve that is closed, so that it is the boundary of a region in R?. The given curve C is not
closed. But it is part of the boundary of

R={(xy)|x*+y* <1, x>0}

Here is a sketch of R.

Yy
(0,1)
C
Ly &
x
2?2 +yt=1
(07 _1>

The boundary of R consists of two parts — C on the right and the line segment L from
(0,1) to (0, —1) on the left. Note that F = F; 1 + F, ] is well-defined on all of R and that we
still have, from part (a),

ox oy 4
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on all of R. So, by Green’s theorem (Theorem 4.3.2 in the CLP-4 text),

ox oy

= Jf 2y dxdy + J Fdy
-L

24y2<1
x>0

1
= H yzdxdy+f y*dy
1

x24y?<1

f V1+x3dx+ 22 +y?) dy = H (@—@)dxdy—f F.dr
C L
R

by symmetry for the first integral and
since x = 0 and dx = 0 in the second integral
w2

173

In the second line, we used the notation —L for the line segment from (0, —1) to (0,1).

S-18: First, here is a sketch of the curve C.

We'll evaluate this integral in three different ways.

(1) Direct evaluation: To evaluate the integral directly, we’ll parametrize C using y as the
parameter. That is, we’ll make y(t) = t:

Nk
N
N

Nk

r(t) =x(t)i4+y(t)j = costi+t] —
Y (t)=x'(t)i+v'(t)

y'(t)j=—sinti+]
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So the integral is

f (x® +ye*)dx + (xcosy +€*) dy
o

rrt/2 d 4
[ {02 + s o)+ [x(e) costyt) + 0 T
rt/2
= { cos t+teC°St} sint + [cos t_i_ecost}}dt
J—m/2
rrt/2
= —cos? tsint + cos? t — tCOStsint-l—eCOSt}dt
J—m/2
rrt/2
= {COS t4+ — |:COS t+teCOSt] }dt
J—m/2 3
= 7/ {cos (2t) +1 d [cos3t+tecost”dt
J—m/2 df 3
sin(2t) cos> t /2
= _ t cost]
[ 4 +2+ 5 Tl L,
3
2

For an efficient, sneaky, way to evaluate Sff/z cos? t dt see Example 2.4.4 in the CLP-4
text.

(2) Green’s (or Stokes’) theorem: The curve C is not closed so we cannot apply Green’s
theorem directly. However the boundary of the region

R={(vy)|0<x<cosy —7/2<y<7/2}

(sketched below) consists of two parts, one of which is C. The other is the line L from

(0,7/2) to (0, —7/2).
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So Green’s theorem gives

f (x* +ye*)dx + (xcosy +€*) dy
C

.
= f{é—(xcosy+ex)—a—(x2+yex)}dxdy—f(x2+yex)dx+(xcosy+ex)dy
% ox oy L

-
= Jcosydxdy—f dy sincex =0anddx =0on L
J L

R
r7t/2 cosy —t/2
= dyJ dx cosy — dy
J—m/2 0 /2
r7t/2
= dy cos?y + 7
—m/2
(/2 cos(2y) + 1
/2 2
_ [sinQ2y) |y
o |: 4 * 2i| —7t/2 T

(-

(-

(3) (Sort of) conservative fields: The given integral is {- F - dr with
F = (x2 +ye*)i+ (xcosy + ) j. The curl of this field is

i j k
V x F = det e g—y 2| =cosyk
x?>+ye* xcosy+e* 0

So F violates our screening test and consequently is not conservative. But it violates
the screening test only because of the term x cos yj. This suggests that we split up

F=G+H with G=(x*+ye*)i+e'j, H=xcosyj

Then G is conservative with potential g = ’3—3 + ye* and H is pretty simple, so that it is
not hard to evaluate §- H - dr directly. Using the parametrization r(t) = cos t1+ 1},
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NI

<t < 7 as above,

JFdr:f G-dr—l—f H . dr
C C C

:ng-dr+fH-dr
C C
/2 dy

— g (x(/2)) — g (x(~7/2)) + LT/Z (1) cos(y (1)) (1) d
= 8(0,7/2) — g(0,—7/2) + fﬂz cos? tdt

—7/2
/2 2t) +1
:E_<_E>+f cos(2t) +1 .
2 2 /2 2
in(2t) t77/2
:7T+[sm( ) ]

4 5 —t/2

S-19: Call the region enclosed by the curve R. By Green’s theorem, Theorem 4.3.2 in the

CLP-4 text,
%xdy ydx = = Jf p )) dxdy = = JJdedy A

as desired. The curve x>/3 + y2/3 = 1 may be parametrized in the counterclockwise
orientation by x(#) = cos® 6, y(#) = sin®6, 0 < 6 < 27. Then

A= % Exdy—ydx
C
1 27T 1 27t
) —y(6)x'(0)) d6 = EJ (3cos465in29 + 3sin* § cos? 0) do
JO 0
27T 27T
= % ( sin?0 cos? 0 do = 3J sin2(29) do
2.)0 8 0
3 27-( 3 1 . 27 371'
~ %) (1 cos(46)) d6 = — |6 — 7 sin(40)| ~ = ==

S-20: If we use D to denote the disk inside the circle C then we want

fﬁ dr—A%G dr—jEF AG) dr—Jf (F— AGZ_&a—y(F AG)1 | dxdy

to vanish for all disks D. We used Green’s theorem, which is Theorem 4.3.2 in the CLP-4
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text, in the last step. This is the case if and only if

0 0
(4G22 =5 (F-AG)

— Cllx+y) - AQx-3y) = j—y[<x+3y> ~Alx+y)
—1-2A=3—-A

— A=-2

S-21: (a) Parametrize the circle r(0) = (cos 6, sin ). Then

F(r(0)) = sin® 07 — cos0sin® 0§
dr
a8

F(r(9)) - %(9) = —sin* 0 — cos? B sin?§ = —sin? @

27T 27T o B
%F.dr:f F(x(6)) .E(Q) dgz_f sin29d9:—J 1 —cos(20) 4
0 do 0 0 2

0) = —sinfi+ cos0]

C

For an efficient, sneaky, way to evaluate Sén sin® 6 df see Example 2.4.4 in the CLP-4 text.

(b) Denote by W the washer shaped region between the circle x> + y?> = 1 and the ellipse
% gy 55 = 1. It is sketched below. By Green’s theorem

§ cn_§ dr_[[ 2——$1dﬂw

For the specified F
0 0 o xy? 0 y?
FrLE i R o ST A Ry
ox oy OX (x2 +y2)° Y (x2 4+ 42)
v, w2y %, P(2y)
(22" (@242 (24 (a2 p?)]
_ Y24y 4% -3 4 ) + 4y
(2 +y2)”
=0
Consequently
§F.dr—§F-dr:0 = §F-dr:§F.dr: -7
Co C Co C




W
xC  |Co
\/
5-22: Observe that
0B 0k _ i(#) _@_(—_}/)
ox dy  ox\x2+y?) dy\x?+y?
_ () —x(20) | (P4t —y(2y)
(x2+12)° (x2 +12)°

except at (0,0), where F is not defined. Hence by Green’s theorem (Theorem 4.3.2 in the
CLP-4 text), §, F - dr = 0 for any closed curve that does not contain (0, 0) in its interior. In
particular, §Cl F - dr = 0. On the other hand, (0,0) is contained in the interior of Cy, so we

cannot use Green’s theorem to conclude that §Cz F.-dr=0.

Let C3 be the circle of radius one centred on (0,0) and denote by W the washer shaped
region between the circle C; and the circle Cs. It is sketched below.

an
r

By Green’s theorem (Theorem 4.3.2 in the CLP-4 text),

45 dr—3E dr—ﬂ 2——F1]dxdy—o

So §, F-dr = §, F.dr. Parameterize C3 by x = cos 0, y = sinf. Then

= cosfi+sinf]j 0<6<2m
= —sinfi+cosfj
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so that

27T
ﬁF-drz%Fdr: dél1=2mr

0
Cy C

-23: (a) Let Cy be the line segment from (0, 1) to (0,0), C, be the line segment from (0, 0)
to (1,0) and C; be the curve y = 1 — x? from (1,0) to (0,1).

Then

J xds:f 0ds=0
C1 C1

1 1
J xds:J xdx = =
Co 0

OnCs;y=1- x? so that % = —2x and

ds = 4/dx? +dy? =4/1+ <%>2dx: V1+4x2dx

N

and
1
J xds:J x\V/1+4x2dx
Cs 0
1 1 1
1442372 = 2 (53/2 _1
[12( +4x°) ]0 1515 ]
All together

1 1
ds = = + —[5%/2 1] ~ 1.3484
Lx s= 5+ ]

(b) By either Stokes’ theorem or Green’s theorem

J F.dr= fj (x? + cos(y?)) — j—y(sin(xz) — xy)] dxdy = ff3x dxdy
R

1—x2 1 1 1 3
— — — 2 e _— = —
—3f0 deO dyx—Sfo dx (1—x%)x 3[2 4} 1
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S-24: (a) If (x,y,z) is on the curve, it must obey both z = x + y and z = x? + y? and hence
it must also obey x% + y?> = x +y or (x —1/2)2 + (y — 1/2)2 = 1/2. That’s a circle. We can
parametrize the curve by

x(0) = %—I—\—ﬁcosf)
y(0) = %—i—\%sin@
z(0) =x+y= 1+\%[c059+sin9]

with 0 < 6 < 27t. As 0 runs from 0 to 277, (x(8),y(6)) runs once around the circle without
crossing itself so that (x(6),y(6),z(6)) runs once around the curve without crossing
itself. As (x(2m),y(2m),z(27)) = (x(0),y(0),z(0)), C is a simple closed curve.

(b) (i) The vector field F = x%1 + yzj + 3% k is conservative (with potential
134+ 1y +36%). So §.F-dr = 0.

(b) (ii) Note that the question did not specify the orientation of C. It should have. We’ll
stick with the most commonly used orientation — counterclockwise when viewed from
high on the z-axis. The vector field G = 3¢” k is conservative (with potential 3e*). So
§c G - dr = 0 and, using the parametrization
1 1 1 1 1 1 “
0)=|z+—=cosf|i+ |z +—=sinf|j+ |1+ —=sinf + —=cosf |k
r(6) [2+ﬁcos ]1+[2+ﬁsm }]4—[ +ﬁsm +ﬁcos ]
1 1 1 1 .
Y (0) = ———=sinfi+ —cosfj+ |—=cosf — —=sinf | k
©)=-7 V2 L@ NG ]

of part (a), we have

ng-dr jP(F—G)-dr
C C

r270

|, w02 0) + =07y (0)] a0

0
27T
[ 1 1 . 321 . 1 1 21

Jo { — [E + \—@sm(?} \—ﬁsm9 + [5 + \/—ECOSQ} Ecos@}d@

Because the integral of any odd power of sin 8 or cos 6 over 0 < 6 < 27t is zero (see

Example 4.4.6 in the text),

27
1.5 1 2
§F-dr—f0 {—Esm 9—1—5(:05 9}d9

c

=0

since (see Example 2.4.4 in the text)

27T 27T
J cos2 0 df = f sin?0 do = 71
0 0
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-25: By Green’s Theorem

\(ng —y)dx —2x3dy = Jf 6x y(y —y)} dxdy = Jf 1—6x 3y]dxdy
C

where R is the region in the xy-plane whose boundary is C. Observe that the integrand

1 — 6x2 — 3y is positive in the elliptical region 6x? + 3y? < 1 and negative outside of it.
To maximize the integral {{, [1 — 6x* — 3y*] dx dy we should choose R to contain all
points (x,y) with the integrand 1 — 6x% — 3y? > 0 and to exclude all points (x,y) with the
integrand 1 — 6x2 — 3y* < 0. So we choose

R={(xy)|6x*+3y* <1}

The corresponding C is 6x% + 3y* = 1.

&> <&

Solutions to Exercises 4.4 — Jump to TABLE OF CONTENTS

S-1: We are to show that §-[¢pV ¢ + ¢V ¢] - dr = 0. Suppose that C = 0S. Then, by Stokes’
theorem

j€[¢V¢+ PpV¢] - dr = f V x [pVy + pV¢] -7 dS
C S

We will show below that V x [¢Vip + pV¢] = 0. This will imply that
§cloVY + V] - dr = 0. One way to see that V x [V + ¢V ] = 0 s

V x [¢Vy + Vo] =V x [V(¢y)] (by part (c) of Theorem 4.1.3 in the CLP-4 text)
=0 (by part (b) of Theorem 4.1.7 in the CLP-4 text)

Another way to see that V x [¢Vy + ¢pV¢] = 0 is

V x [V + V| = Vo x Vi + ¢V x (V) + Vi x Vo + ¥V x (V)
=VoxVip+VipxV¢  since ¢V x (V) =9V x (Vp) =0
=0

S-2: (a) Observe that x(t) = cost and y(t) = sint obey x(t?) + y(t)> = 1. Then

z(t ) y(t)? = sin’ t. So we may parametrize the curve by r(t) = (cost,sin t,sin? t) with
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0 <t <2m Then
¥'(t) = (—sint, cost, 2sintcost)
F(r(t)) = (cos®t —sint, sin®t + cost, 1)
F(r(t)) - t'(t) = —sintcos® t + sin®  + sin® t cos t + cos?  + 2sin t cos ¢

g ld a3 ~
=1+ ga[cos t + sin” t] + sin(2f)

27T 1d
ng-dr = J 14 = —[cos® t +sin’ t] 4 sin(2t) ; dt
0 3dt

C
27

1 1
= [t + Z[cos> t +sin®t] — > cos(2t)]

3 0

=27

(b) Let S be the surface z = f(x,y) with f(x,y) = y? and x> + y? < 1. Since C is oriented
counter clockwise when viewed from high on the z-axis, Stokes” theorem requires that

we use the normal fi to S with positive z component. Hence

A dS [-%—%Jrk] drdy = | - 2yj+k| dxdy
i ik
VxF=det| & % 2| =2k
-y y+x 1

V xF-AdS =2dxdy
ng-dr:fJVxF-ﬁdS:2 J dxdy
C S x24+12<1

=27

S-3: We apply Stokes’ theorem. First,

i

— 0
V xF=det | & 5
ye* x+4e*

A

=(1+e'—e)k=k

D~
N S

Note that r(t) = x(t)i+ y(t)j + z(t) k obeys x(t) + y(t) + z(t) = 3, for every t, and that
x(£)i+y(t)] = (14 cost)i+ (14 sint)j runs counterclockwise around the circle of

radius 1 centered on (1,1). So we choose S to be the part of the plane
G(x,y,z) = x +y +z = 3 with (x —1)2 + (y — 1)? < 1. Then, by Stokes’ Theorem,

jEF-dr:ﬂvxF-ﬁd5=ﬂ12-ﬁds
C S S
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with

AdS =+ 1A(dxdy:i( +j+ k) dxdy

As (1 +cost)i+ (1+sint)jruns counterclockwise around the circle
(x —1)2+ (y — 1)? < 1, Stokes’ theorem specifies the plus sign and

JE-dr = H drdy = 7

C (x=1)2+(y-1)*<1

S-4: The boundary of S is
S={(xyz2)|z=0, x2+y2:4}
and can be parametrized

r(f) =2cosfi+2sinfj 0<6<2m

=>

oS

So, by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text)

JJV x F-AdS = §F~dr
S oS
F(x(6)) ' (6)

27T - % N - N
=J (—2sinfi+2cosfj—2cosbk) - (—2sinfi+2cosfj) do
0

27T

=4 de
0

=87

S-5: The boundary of S is the circle x2 + yz =4,z = 0. Let C be this circle, oriented by the
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parametrization x(f) = 2cost, y(t) = 2sint, z(t) = 0. By Stokes’ theorem

r 27T dr
J V xF-AdS = F-drzf F(2cost,2sint,0) - —(t) dt
Je 0 dt
r27 .
= (07 +2cost(3+2sint)j+2sintk] - [ —2sinti+ 2cos ] dt
Jo
r27T
= [12cos? t + 8 cos? tsint| dt
Jo
r2m
= [6 + 6 cos(2t) + 8 cos? tsin t] dt
Jo
r 27
= 6t+3sin(2t)—§cos3t}0 =12r

For an efficient, sneaky, way to evaluate S(Z)n cos? t dt, see Example 2.4.4 in the CLP-4 text.

S-6: Let S be the portion of the paraboloid z = f(x,y) = 4 — x> — y* with
x2 4 (y —1)2 < 1 and let i be the upward normal to S. For this surface

fdS = (- fe(x,y)i— fy(x,y)j+k)dxdy = (2x1+2yj + k) dxdy
by (3.3.2) in the CLP-4 text. As (x,y,z) runs over S, (x,y) runs over the circular disk
D={(xy) |+ {y-1)7<1}

For the given vector field

i j k

0 0 0

VxF:det ox @ 0z

Xz X Yz
=zi+xj+k

so that, by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text),

ffF-dr:J V xF-fAdS
C S

z=f(xy)
f_/H
- Jf [2x (4 — x* —y?) +2xy + 1] dxdy

By oddness under x — —x, all terms integrate to zero except for the last. So

ﬂgF dr = £J dxdy = Area(D) =7

C
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S-7: The surface
>0,z=(1-x*)(1-y%)}
=(1-2)(1-y)}

Note that when x = lorx = —lory =lory = —1,wehavez = (1 —x?)(1 - y?) = 0. So
the boundary of S, call it C, is the boundary of the square —1 < x,y < 1, z = 0, oriented
counterclockwise. Here is a sketch of C.

<_171) 7l (171)

dz=0 dx=0
r=—1 Y A z=1

(=1,—1) gm0 (1,—-1)

y=-1

Apply Stokes’ theorem. Observing that z = 0 on C so that F = —yi + x%j,

ffoFﬁdS:ﬂngr:ﬁyi—I—x?’j]'dr
S C C
1 1 —1 -1
:J _(_1)dx+f (1)3dy+f —(1)dx+f (—1)*dy
-1 -1 1 1

y:—l side x=1 side y:l side x=-—1 side

=8

S-8: We shall apply Stokes” Theorem. The curl of F is

i j k
VxF=det| & & £ | =Q+y)i-(z+y)j+(0+2)k
¥ —yz siny—yz xz+2y

The curve C is a triangle. All three vertices of the triangle obey x +y +z = 1. So the
triangle is the boundary of the surface S = { (x,y,z) [x >0, y>0,z=1-x-y >0 }.

Z A
n

x
The equation of the surfaceisz = f(x,y) =1 — x —y. So, by (3.3.2) in the CLP-4 text,

fAdS= (- fii—f,j+k)dxdy
= (i+j+k)dxdy
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Here 11 is the upward pointing unit normal. The set of points (x, y) for which there is a
corresponding (x,y,z)inSisT={ (x,y) |x >0, y >0, x +y < 1 }, which is a triangle

of area 1. Since V x F-fidS = [2+y)i— (z+y)j+ (0+2)k] - (1+j+k)dxdy = 2dxdy,

%F-dr:JJVxF-ﬁdS
C S

= fJZ dxdy =2Area(T) =1
T

5-9: Stokes’ theorem, which is Theorem 4.4.1 in the CLP-4 text, says that
§c F-dr = {{o V x F-dS for any surface S whose boundary is C. For the given vector

field
i ] k
V x F(x,y,z) = det | & a—y z
-z X Yy
=i-j+k
Choose
s={(xy2)|z=y T+5+5<1}
2 1}

:{(x,y,z)]z:y,’ﬁl—z%—y <

to be the part of the plane z = y bounded by the ellipsoid.

(2,0,0)
T
As S is part of the plane z = f(x,y) = y, (3.3.2) of the CLP-4 text, gives that
AdS = +(—fx, —fy, 1)dxdy
= +(0, -1, 1)dxdy
As C has the standard orientation (counter-clockwise when viewed from high on the

z-axis), we want fi to have a positive z-component. So idS = (0, —1, 1)dxdy. From the
second form of S given above, we see that as (x,y,z) runs over S, (x,y) runs over

D:{(x,y)\%eryzgl}
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Consequently, Stokes’ theorem gives that

ndS
3EF dr—fj 0 -1, 1)dxdy

= 2f dxdy = 2 Area(D)

The ellipse D, that is ’2—2 + yz < 1, has semi-axes 4 = 2 and b = 1 and hence area
rtab = 27t. Finally

ﬂgF -dr =2 Area(D) =4n

S-10: Note that the curve of part (a) is a simple closed curve that lies in the plane
X +y +z = 2 and is oriented in a counterclockwise direction as observed from the
positive x-axis. The curve of part (a) encloses a triangle. Two of the sides of the triangle

z

(0,0,2)

Lo
Ls

(0,2,0)

(2,0,0) Ll

T

are (0,2,0) — (2,0,0) = (—2,2,0) and (0,0,2) — (0,2,0) = (0, —2,2) so the area of the
triangle is
1 1 i j k 1
=1(-2,2,0) x (0,-2,2)| = =det |[-2 2 0| =5[(444)=2V3
2 2 0 o 2

So let’s do part (b) first.

(b) We are not told explicitly what C; is, so we certainly can’t do a direct evaluation.
Instead, let’s use Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text). The curl of F is

i ]k
VxF=det |3 & g_]
2 22 P
=2yi+2zj+2xk




The upward pointing unit normal to E is fi = i+\7/4§r k. So, by Stokes’ theorem,
I :f F.dr— Hv «F-AdS = H (2yi+ 2z + 20 k) - T K g
G V3
R R
5 =2onR 4
—
-~ +z+x)dS = —Area(R) = 4V3
= g (FF273)ds = —Area(R)

(a) Denote by T the triangle enclosed by C;. By the computation that we have just done
in part (b)

4
I :f F.-dr = —Area(T) =8
! G V3 (D)

S-11: (a) Observe that

o the curve C; is one quarter of a circle in the xy-plane, centred on the origin, of
radius 2, starting at (2,0,0) and ending at (0,2,0) and

o the curve C; is one quarter of a circle in the yz-plane, centred on the origin, of
radius 2, starting at (0,2,0) and ending at (0,0,2) and

o the curve Cj is one quarter of a circle in the xz-plane, centred on the origin, of
radius 2, starting at (0,0,2) and ending at (2,0,0).

Here is a sketch.

(2,0,0)

T
(b) C lies completely on the sphere x> + y? + z2 = 4. So it is natural to choose
S={(xy2)|P+y*+z22=4,x>0,y>0,2z>0}

and to parametrize S using spherical coordinates

(6, ¢) = 2cosfsin @i+ 2sinfsingj+2cos ¢k, 0<6< g, 0<¢< g

Since
or . A A
Fi —2sinfsin @i+ 2cosfsingj
5_; = 2c056cosqoi—|—251n9c05(pj—2sin¢f<
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so that

A

i j k
Jdr  Or o J .
%xa—:det —2sinfsing 2cosfsin g 0
i 2cosfcosp 2sinfcosgp —2sing

= —4cos@sin® i —4sinfsin® ¢ j — 4sin ¢ cos ¢ k
(3.3.1) in the CLP-4 text gives

—}—g X ﬁ
0 " og

fdS dfdg = F4(cosfsin ¢ i+ sinfsin ¢ j + cos ¢ k) sin ¢ dode

We want fi to point outward, for compatibility with the orientation of C. So we choose
the + sign.
fidS =4(cosfsingi+sinfsingj+ cosgk)sing dodg = 21(6, ¢) sin ¢ dode

(c) The vector field F looks too complicated for a direct evaluation of the line integral. So,
in preparation for an application of Stokes” theorem, we compute

i j k
2 2 2
V x F = det ox 6_y oz .
y+sin(x?) z—3x+log(l1+y?) y+e?
= -4k

So, by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text),

JF-dr:JJVxF-ﬁdS
C
S

/2 /2 . N
=J dq)J df (—4k) - (cosfsingi+sinfsingj+ cos ¢ k) 4sin ¢
0 0

/2 /2 2 /2
:—16J dgof de cosgosing0:167—TCOS ¢
0 0 2 2

0
= -4

S-12: (a) The boundary, 0S5, of S; as specified in Stokes” theorem (Theorem 4.4.1 in the
CLP-4 text) is the circle 1/x2 + y2 = 4, z = 4 oriented clockwise when viewed from high
on the z-axis. That is, we can parametrize 0S; by

r(t) = 4costi—4sintj+4k, 0<t<2rm
So

F(r(t)) -dr = (16sint, 16cost, —16sint cos tcos(—16sint)) - ( —4sint, —4cost, 0) dt
= —64dt
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and, by Stokes’ theorem,

27T
f V xF- nds_§§ F(r(t)) -dr=—-64| dt=-1287

0
05,

052,

V- S

(b) The boundary, 0S,, of Sy consists of two parts, a circle in the plane z = 4 and a circle
in the plane z = 1. We'll call the first part 0Sy,. It is the same as 0S;. We'll call the second

part 0Sy;. It is the circle 4/x2 + y? = 1, z = 1 oriented counterclockwise when viewed from
high on the z-axis. We can parametrize it

r(t) = costi+sintj+k, 0<t<2rm
So, on 05y,
F(r(t)) -dr= (—sint, cost, sintcostcos(sint)) - (—sint, cost, 0) dt
=dt
and, by Stokes’ theorem,

27T
fJV x F-AdS = j@ F(r(t)) -dr+ § F(r(t)) -dr= —1287T+f dt
S, 952 055, 0
= —1267

S-13: Denote by

S={(vyz)|z=x+4 x2+y2<4}
the part of the plane z = x + 4 that is contained in the cylinder x> + y?> = 4. Orient S by
the downward pointing normal fi = \/LE (1,0,—1). Then C is the boundary of S. The part
of C and S that are in the first octant are sketched below.
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We may parametrize S by

r(x,y) = (x,y,x+4) with x® +1? <4

So,
i ]k
T —det |10 1] =(~1,01)
xoa9 010

and, by (3.3.1) in the CLP-4 text,
or o dxdy = (1,0, —1) dxdy

We have chosen to “—" signin idS = i% X g—; dxdy to give the downward pointing

normal. As the curl of F is

i j k
VxF=det| & g—y ¢ ]
x> +2y sin(y)+z x4+ sin(z?)
=-1-j-2k

Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text) gives

%F -dr = fJV xF-AadS = Jf(—l,—l, —2)-(1,0,-1) dxdy = dexdy =4n
C S S S

S-14: (a) Note that all three vertices, (2,0,0), (0,2,0) and 0,0, 2), lie in the plane
x +y +z = 2. So the entire path lies in that plane too. In part (b) we will need to

z

(2,0,0)

T

evaluate a line integral that clearly cannot be computed directly — we will need to use
Stokes’ theorem. So let’s use Stokes’s theorem in part (a) too. First, we find

A

1

0
VXF:det [ﬁ
22

QN S

] =2yi+2zj]+2x1

RN@' V=
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Let S be the triangular surface that is contained in the plane x +y +z = 2 and is
bounded by Ly, L, and L. Orient S by the normal vector fi = \% (147 + k). Then,

x+y+z)

N 2
2yi+2zj+2x1) - (+j+k) = 75(

1
VxF A=—
NeL
and, by Stokes’ theorem,
ng dr = fJV xF-AdS = ijj(x%— +2z)dS = ifde _ 4 Area(S)
R / BRI ARG
C S S S
The triangle S is half of the prallelogram with sides (0,2,0) — (2,0,0) = (—2,2,0) and
(0,0,2) — (2,0,0) = (—2,0,2). The area of the parallelogram is

(=2,2,0) x (=2,0,2)| = |(4,4,4)| =43

So
23 =28

ek

%F-dr:
C

(b) Let S be the specified surface. Then, as in part (a),
4 4 ~
— || dS = —Area(S
f J V3 )

2
F-drszVxF-ﬁdSz—fJx—i— +2z)dS =
$ =)ty rzas ==
C S S S
=443
S-15: Let’s try Stokes’ theorem with
F=(z+ ! 14+xzj+ (3xy— i k
B 14z J v (z+1)2
The curl of F is
i j k
V x F = det % g_y %
2—1—11? Xz 3xy—ﬁ
1 1 . .
e )itk

= (Bx—x)i— (3]/ e

Write
S={(xvy2)|z=flxy) =1-2"y, ¥ +y* <1}
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For S, with the upward pointing normal, by (3.3.2) of the CLP-4 text

AdS = (- fir, —fy, 1)dxdy
= (2xy, x*, 1)dxdy

zZ

so that
—
V x F-fadS = {4x%y + (x* — 3x%y) + (1 — x*y) } dxdy

and, by Stokes’ theorem,
JF dr—fJVxF nds = f {4x*y + x* = 3x*y + 1 — x%y} dxdy
C

x2+y2<1

x24+y2<1

So
JF-dr: Jf {x*+1}dxdy =+ fj x? dxdy

x2+y2<1

To evaluate the final remaining integral, let’s switch to polar coordinates

27T
Jf x?dxdy = Jdrrf de rcos()

x2+]/2<1
27T
J dr 13 dO cos?0
0 0

Since
27 271 + cos(26) 6 sin(20)]*"
f COSZOdH:J ————=df = |-+ =7
0 0 2 2 4 Jo
we finally have Sé drr? Sén df cos?6 = T and
51

7T
Fdr=nt ="
Jc T I T

For an efficient, sneaky, way to evaluate Sgn cos? 0 df, see Example 2.4.4 in the CLP-4 text

S-16: We are to evaluate a line integral around a curve C. We are told that C is the
boundary of a surface S that is contained in the plane x 4+ y + z = 1, but we are not told
precisely what C is. So we are going to have to use Stokes” theorem. The curl of F is

i
= 2yi+42zj+2xk

T~
Qr\J S

V x F = det S—X
2
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and, by (3.3.3) of the CLP-4 text with G(x,y,z) = x+y +z,

ds = VG dxdy V3 dxdy

VG .
hdS = + —dxdy = +(1+7 dxdy =+—(1+7+k)dS
fi tog pordy (147 + k) dxdy \f(l j+k)

Because C is oriented in a clockwise direction as observed from the positive z-axis

z

x
looking down at the plane, fi is to point downwards, so that

ﬁdS:—\—@(i j+k)ds

On S we have x + y 4+ z = 1, so that Stokes’ theorem gives

since S has area 5.

S-17: We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. That certainly suggests that we should not try to evaluate the
integral directly. To see if Stokes’ theorem looks promising, let’s compute the curl

i j k
V x F = det = S % | =k

—y+e*sinx y* ztanz

That’s suggestive. Next we need to find a surface whose boundary is C. First, here is a
sketch of C. We can choose the surface S to be the union of two flat parts:

405



(2,2,0)

T

o the quadralateral Q in the yz-plane with vertices (0,0,0), (0,1,1), (0,1,2) and
(0,2,0) and
o the triangle T in the xy-plane with vertices (0,0,0), (0,2,0) and (2,2,0).

The normal to Q is —i and the normal to T is —k. Then Stokes’ theorem gives

Lp.dr:”vxp.ﬁds
H ds+ﬂ (—k)d
st

= —Area(T)

base helght
1 —N
1722
= -2

-18: The integral looks messy. Let’s compute the curl of

F = (z+sinz)i+ (x> — x%y)j+ (xcosz —y) k

to help gauge if Stokes” theorem would be easier.

A

i j k
VxF=det| & & . = —i+j+(3x* —2xy) k

z+sinz x°—x%y xcosz—y

That’s a lot simpler than F. For the surface z = f(x,y) = xy?, with downward pointing
normal (since C is traversed clockwise)

fdS = —(— fu, —fy, 1) dxdy = (v* 2xy, —1) dxdy
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by (3.3.2) of the CLP-4 text, So, writing

Sz{(x,y,z)!z:xyz, x2+y2<1}
D={ () |47 <1)

Stoke’s theorem gives

J F-dr:JJVxF'ﬁdS:JJ{—y2+2xy—3x2+2xy}dxdy
C
S D

J {3x% +y* — 4xy} dxdy

x24y?<1

To evaluate this integral, switch to polar coordinates.

1 27T
f F.-dr = —J drrj de {3r2c0520—|—rzsin29—4rzsin0c086}
C 0 0

1
:—47Tf drrd = —

since S sinfcosfdf = 5 SO sin(26) d6 = 0 and So sin?0 df = So cos?0df = 7. (See
Example 2.4.4 in the CLP-4 text.)

S-19: Here is a sketch of the part of S in the first octant.

(L‘/
The boundary, 05, of S is the circle 2+ yz =1,z = 1, oriented counterclockwise when
viewed from above. It is parametrized by

r(0) = cosfi+sinfj+k 0<6<2n

So Stokes’ theorem gives

JJVXF ndS—ﬂgF dr

a8
F(x(t)) r(t)

27T Ve A ~ - N ~
= f (—sin26i+cos3 07+ (mess)k) - (—sinfi+cosfj) db
0

27
= f (sin3 0 + cos* 0) do
0
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The integral of any odd power of sin 6 or cos 6 over 0 < 8 < 27 is zero. (See Example
4.4.6 in the CLP-4 text.) In particular, S(z)n sin® 0 df = 0. To integrate cos* § we use the trig
identity

20) +1
cos’ 0 = cos(26) +1 2) *
cos?(28) + 2 cos(20) + 1
4

1 cos(40) +1 cos(20) 1
2 T g
cos(40) n cos(20)

8 2

— cos*l =

+

4
_3
B

Finally

. 2T /3 cos(40)  cos(26) 37
Hvxr«‘-nds_f 5+ 2+ ) ="

5-20: We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. That certainly suggests that we should not try to evaluate the
integral directly. As we are to use Stokes’ theorem, let’s compute the curl

i j k
Vdeet[ g g—y z ] = 2?1 —2%j — (ycosx + xcosy )k
xsiny —ysinx (x—y)z?

Next we need to find a surface whose boundary is C. First, here is a sketch of C. We can

(0,0,1) o (Om21)
(7/2,0,1) S,
S, )
~ (0,7/2,0) ¥
(7/2,0,0)

choose the surface S to be the union of two flat parts:

o the rectangle Sy in the xz-plane with vertices (0,0,0), (7/2,0,0), (7/2,0,1) and
(0,0,1) and

o the rectangle S in the yz-plane with vertices (0,0,0), (0,0,1), (0,7/2,1) and
(0,7/2,0)
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The normal to Sy is —j and the normal to S is —i. Then Stokes’ theorem gives

JF-dr:J V xF-fadS
C

ffm s [for
[ dxfdmf [
J dx— J dy3

S-21: (a) Here is a sketch.

(b) We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. That certainly suggests that we should not try to evaluate the

integral directly. Let’s try Stokes’ theorem. First, we compute the curl

i j k
V x F = det g_x gy %
12sz—|—sin(x2) T +sin(y?) 5(x+1)(y +2)
3 . 2 3z 2z N
= (5(x+1) 1+x>17 (5(y+2) 1+y>]+ (— A+ 2 + (1—|—y)2>k

Next we need to find a surface S whose boundary is C. We can choose the surface S to be

\I\)

p
(e)

~

the union of two flat parts:
o the triangle Sy in the xz-plane with vertices (0,0, 0), (
ices (0,0,0), (0,0,2), and (0,3,0)

o the triangle S, in the yz-plane with vertices (0,0,0),

Note that
o The normal to S, specified by Stokes’ theorem is —j. On S, we have y = 0, so that
Thy) = 8.

V x F-j simplifies to —(5(0 +2) —
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o The normal to S specified by Stokes’ theorem is —i. On S, we have x = 0, so that
V x F - simplifies to (5(0 + 1) — 135) = 2.

So Stokes’ theorem gives

8 -2
f_/% f_/%
F-dr=||VxF-fidS= || VxF-(-j)dS+ || VxF-(-1)dS
— 8 Area(Sy) — 2 Area(S,) = 8%(2)(2) _ 23(3)(2)

=10

S-22: The boundary, 0S, of S is the circle x? + y?> = 1 oriented counter clockwise as usual.
It may be parametrized by r(0) = cos 01+ sin6j, 0 < 6 < 27r. By Stokes’ theorem

27T dr
JfoF~ﬁdS:§F-dr:J F(r(@))-@(e)de
S oS 0
27T
= J (sin#,0,3cosf) - (—sinb,cos6,0)db
0

_Jzn 2 1 1—cos(20) — {0 sin(29)]27r

sin?0do = — do
0 0 2

= -7

2 4

0

For an efficient, sneaky, way to evaluate S(z)n df sin? 6, see Example 2.4.4 in the CLP-4 text.

S-23: The given surface is an ellipsoid centred at (x,y,z) = (0,0,1). It caps a curve C in
the plane z = 0, given by x? + y?> = 4. This is a circle of radius 2 centred at the origin,
oriented counterclockwise when viewed from the positive z-axis.

Method I — double Stokes’: Let D denote the plane disk x> + y? < 4, z = 0. Using Stokes’
theorem twice gives

||cnas=[|vxEads—fFar—[[v<Fads—|[c nas
S C D D

S

Now in D we have i = k and z = 0, so on this surface,

0 0 1
G A= (VxF) k=det ¢ 5 ¢

2 2 2
(xz —ycosz) xe? xyze TVIE|

= [3x%* +3y*cosz|__, = 3(x* + )
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Hence, using polar coordinates,
2 2
HG ndS = HB(XZ +y?) dxdy = 3f J (r?)rdrd@ = 3(2m)(4) = 247
g 73 =0 Jr=0
Method II — single Stokes’: By Stokes” theorem
|| e as=[|vxFads—§F-ar
S S C

Parametrize the circle C using

r(6) =2cosfi+2sinfj, 0<6<2n
to obtain q
dr = d—;d() = (—2sinfi+2cosfj)do.
Then since z = 0on C,
F((6)) v (0)
27T~ N N -~ e ~
—2sinfi+2cosfj) do

ffG.ﬁdS :L (—(2sin6)%1 + (2cos0)°f) - (

27T
= 16f (sin*6 + cos* 6) do
0

By the double angle trig identities

cos? 0 = M sin2f = LS(ZG)
2 2
we have
2 2
1 — cos(26 1 26
Sin49+cos46:[ CO:( )] +[ +C(;S( )]
1 cos?(20) 1 1-+cos(46)
_§+T_§+T
So
27T 3 1 3
f G.ﬁdS:16J (——I——cos(49)> df =16 x > x (271) = 247
0 4 4 2
S
S-24: Note that )
i j k
VxF=det| & &|=2i+2zj+2xk
22 x2 yz
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Let D be the disk in the plane x 4y + z = 3 whose boundary is C and let

A = % (i +j + k) be the upward unit normal to D. If the circle is oriented
counterclockwise, when viewed from above, then, by Stokes” theorem (Theorem 4.4.1 in
the CLP-4 text),

§F-dr:JJV><F-ﬁdS:\%Jf(zyi‘i‘zzf+2xm'(i+j+ ) dS
D D

C
=3onD

:\/%gzm dS:Z\/§£de:2\/§ﬂR2

S-25: Solution 1: Let S’ be the bottom surface of the cube, oriented with normal k. Then,
by Stokes’ theorem, since 0S = 05/,

J VxF-ﬁdSzﬂgF-dr: §F-dr:JfV><F-ﬁdS
S/

S oS 28’
Since
i ] k
V xF=det| £ % 2 =(, ¥ —xz)
xyz xy? x%yz
andA=konS andz=—-1on$

1 1
— [ @[ averen
z=-1 —1 —1

1 1
ijxF-ﬁdS:f dxf dy (-, , ¥ —xz) -k
-1 Ja
S/

1 1 1 4
:f dxf dyyzzzxzf dyy* = =
-1 Ja 0 3

Solution 2: The boundary of S is the square C, with sides Cy, - - -, Cy4, in the sketch
(-1,1,-1) Cs (1,1,-1)

04\ \CQ

(—1,-1,-1)" ¢, (1,—1,-1)

By Stokes’ theorem,

J VxF-ﬁdS:\(fF-dr
S C
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Parametrize C; by x. That is, r(x) = xi —j — k, =1 < x < 1. Since ¥'(x) = 1, and

y=z=-1lon(Cy,
xyz

Ll F.-dr = fl F(r(x)) -r'(x) dx = J_ll F(r(x)) -idx = fl m dx

=0 (since x is odd)
Parametrize C, by y. That is, r(y) =1+ yj—k, —1 <y < 1. Since ¥'(y) = j,and x = 1 on
G,

Xyz

1 1 /—T y3 1
f F'deJ F(r(y))idy:f y- dy= {g} 3
C -1 -1 —1

Parametrize C3 by x. That is, r(x) = xi + j — k with x running from 1to —1. (If you're
nervous about this, parametrize by t = —x. Thatisr(t) = —ti+j—k, —1 < t < 1.) Since
(x)=i,andy=1,z=—-10onGC;s,

L3 F-dr= L_l F(r(x)) -1

Parametrize C4 by y. That is, r(y)
r(y) =j,and x = =1 on Cy,

xyz

S G —
dx = f x(1)(=1) dx =0  (since x is odd)
1

= —i+yj — k, with y running from 1 to —1. Since

xy? .
[ poae [ v o= [T TR = [5] -5

All together

fJVxF-ﬁdS:J F-dr+J F-dr+J F-dr+f F.-dr=—
g Cy G (@) Cy 3

S-26: Let’s try Stokes’ Theorem. Call F = yi — xj + xy k. Then

i j k
V xF =det | £ (gly 2| =xi-yj—2k
y —x xy
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Now compute fi dS in the (1, v)-parametrization.

r(u,v) = (1cosv,usinv,v)

0

i(u,v) = (cosv,sinv,0)

or .

a—v(u,v) = (—usinv,ucosv,1)

or Or ! J k )

&_1,[ X % = det COS U sinv 0| = (smv,—cosv,u)
—usinv wucosv 1

AdS = (sinv, —cosv, u) dudov

Since u > 0, we do indeed have the upward pointing normal. So, Stokes” theorem tells us

fydx—xdy—l—xydz:f F-dr:JJVxF-ﬁdS
C C
S

1 27T
f duf dv (ucosv, —usinv, —2) - (sinv, — cosv, u)
0 0

1 27T 1 27T
f du dv (2usinvcosv —2u) = [J du u] [J dov (Sil’lZU—Z)]

0 0 0 0
(—4m) = 21

NI—

S-27: Given the form of F, direct evaluation looks hard. So let’s try Stokes’ theorem, using
as S the part of the plane G(x,y,z) = x + 2y — z = 7 that is inside x? — 2x + 4y? = 15.
Then

VVGC-;R dxdy = +(i+2j — k) dxdy

As C is oriented counterclockwise when viewed from high, Stokes’ theorem specifies the
upward pointing normal so that AdS = — (i +2j — k) dxdy.

From the observations that

i j k
V x F = det 2 % 2 =xi—(z+2x)k
e +yz cos(y?) —x? sin(z2) + xy
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and that we can rewrite x?> — 2x + 4y? = 15 as (x — 1)? + 4y? = 16, we have

%F-dr:‘[ V xF-adS

S
— q [xi — (z + 2x)K] rexeny ~1,-2,1)dxdy
(x—1)2+4y2<16
= q [—x — (=7 +x+2y+2x)]dxdy
(x—1)2+412<16
= q [7 —4x —2y| dx dy

J
(x—1)2+4y2<16

To evaluate the integrals of x and y we use that, for any region R in the xy—plane

§{g xdxdy o §Srydxdy
Y Area(R)

re Area(R)

Our ellipse is ( ) + gz =1and so has area nab = 771 x 4 x 2 = 87 and centroid
(f,?):(l,O).So,usng_{ xy) | & ( 22 \1}

3€F-dr:J [7 —4x —2y| dx dy

R
= Area(R){7 — 4x — 277}
4x1-2x0]=24n

= 8m[7 —
S-28: (a) The curl is
i j k
VxF=det| & S % | =0-2x)j
24+ x>+z 0 3+x*z

(b) We are going to use Stokes’ theorem. The specified curve C is not closed and so is not
the boundary of a surface. So we extend C to a closed curve C by appending to C the line

segment L from (2,0,0) to (0,0,0). In the ~figure below, C is the red curve and C is C plus
the blue line segment. The closed curve C is boundary of the surface S that is the union
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of

o the triangle Tj in the yz-plane
normal vector —7 and

with vertices (0,0,0), (0,0,3) and (0,1,0) and with

o the triangle T, inAthe xy-plane with vertices (0,0,0), (0,1,0) and (2,0,0) and with

normal vector —k.

So, by Stokes’ theorem

LF.dHLF.dr—I
gl
g

T
=0

F. dr—ffoF nds

A

V xF- dS—|—JV><F —k)ds

(1—-2xz)j-(—8)dS+ |[(1—-2x2)j- (~k)dS
[

Consequently the integral of interest

0
JF-dr:—JF-dr:—J(Z—kxz)dx sincedy =dz=z=0onL
C L 2

0

= JZ(Z + xz) dx =

S-29: (a) by direct evaluation: The curl of G is

372
X 20
2x+—} = —
{ 3], 3
P ]k
0 0 0 A
V x G = det ox @ oz =21
X -z y
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The part of S in the first octant is sketched in the figure on the left below. S consists of
two parts — the cylindrical surface

Si={(xvyz)|y¥+22=9,0<x<5}
and the disc
So={(xy2)|x=0y*+z<9}

The normal fi to S always points radially outward from the cylinder and so always has i
component zero. The normal of Sy is —1. So the flux is

JIVXG ndS-JfZi ﬁdS—l—JfZl —-1)d
—_zf ds

= —2(n32) = 187

(a) using Stokes” theorem: Let’s use Stokes” theorem. The boundary ¢S of S is the cirlce
yz + 22 =9, x = 5, oriented clockwise when viewed from far down the x-axis. We’ll
parametrize it by r(6) = (5,3 cos 6, —3sin ). Then Stokes’ theorem gives

-
JfoG-ﬁdSz G dr
J

0S
r270

J (5,3sin6,3cosb) - (0, —3sin6, —3 cos ) db
0

J (—9sin29—9c0529)d9
= —187

(b) This time we’ll use the divergence theorem. The surface S is not closed. So we’ll use
the auxilary surface formed by “topping S off” with thecap T = { (5,y,z) | y¥* + 22 <9 }.
If we give T the normal vector i, this auxiliary surface, the union of S and T, is the
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boundary of V = { (x,y,z) | y* + 2% <9, 0 < x <5 }. So the divergence theorem gives
|[F-nds+ [[F-nas = [[F-nas
S T ov

=g V-Fdv

=0

since V - F = 0. Thus the flux of interest is

JJF-ﬁdS = —ffF-ﬁdS = —JfF-idS = —JJ(2+z)dS
S T T T
=2 Jf ds since szdS = 0, because z is odd
T T

since T has area 97t

= —187m
S-30: (a) Since
o % is defined when x # 0 and
is defined when In x is defined, which is when x > 0 (assuming

o 1% — p(1+2%)Inx
that we are not allowed to use complex numbers) and
o y”yZ = ¢TIy is defined when Iny is defined, which is when y > 0 and

o cos’(Inz) is defined when In z is defined, which when z > 0

the domain of F is
D={(xyz)|x>0,y>0,2z>0}

(b) The domain D is both connected (any two points in D can be joined by a curve that
lies completely in D) and simply connected (any simple closed curve in D can be shrunk

to a point continuously in D).
= (2x - 1/x)1A(
)

(c) The curl of F is
k
2

s 0z
4y cos®(Inz

(d) The integrand for direct evaluation looks very complicated. On the other hand V x F

is quite simple. So let’s try Stokes’ thoerem. Denote
S={(xyz)|2<x<42<y<4z=2}

The boundary of S is C. Because of the clockwise orientation of C, we assign the normal

vector —k to S. See the sketch below
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Then, by Stokes’ theorem,

%F-drzfsfvxF-ﬁdS:JJVxF-(—lA()dS:—JJ(Zx—%)dS

C

4 4
:—J dxf dy 2x—1)=—] dx2(2x-1) :—2[x2—1nx}
2 2

=-2 [12 - 1n2} =2In2-24
(e) Since V x Fis not 0, F cannot be conservative.

S-31: (a) By the vector identity V - (V x G) = 0 (Theorem 4.1.7.a of the CLP-4 text). So
we must have

(axe’z + byz) + a (y* — xe¥z?)

0 0
0=V -F=_—(xz)+— =

ox oy
=z + (axe¥z + bz) + ( — 2xe¥z)
=(1+b)z+ (a—2)xe¥z

Soweneeda =2and b = —1.

(b) Note that the boundary, 05, is the circle X2+ y2 =1,z =0, oriented
counter-clockwise. Also note that, if we knew what G was, we would be able to use
Stokes’ theorem to give

gpﬁdszg(vxc)-ﬁdszjgc-dr

0S

So let’s find a vector potential G. That is, let’s try and find a vector field
G = G114+ G2j + Gz k that obeys V x G = F, or equivalently,

O_C%_@:F‘l:xz

oy 0z

Gy G _ .,
W+ pe =F =2xe’z - yz
an 0G1_ o 2_ y2
e ay—l—"g,—y xe’z
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Let’s also require that Gz = 0. (If this is mysterious to you, review §4.1.2 in the CLP-4
text.) Then the equations above simplify to

_% Xz
oz
% = 2xe¥z — yz
an aGl 2 Y 2
ox oy 77

Now the first equation contains only a single unknown, namely G, and we can find all
Gy’s that obey the first equation simply by integrating with respect to z:

2
Gy, = —% + N(x,y)

Note that, because % treats x and y as constants, the constant of integration N is allowed
to depend on x and y.

Similarly, the second equation contains only a single unknown, Gy, and is easily solved
by integrating with respect to z. The second equation is satisfied if and only if

1
Gy = xeVz* — Eyz2 + M(x,vy)

for some function M.

Finally, the third equation is also satisfied if and only if M(x,y) and N(x,y) obey

0 xz? 0 z?
(= 9 (xevz2 —YE — % — xeV?
6x< > +N(x,y)) 3 <xe 2= +M(x,y)> Y- —xeVz
which simplifies to
ON oM )

g(x/]/) - 6_y(x’y) =Y

This is one linear equation in two unknowns, M and N. Typically, we can easily solve
one linear equation in one unknown. So we are free to eliminate one of the unknowns by
setting, for example, M = 0, and then choosing any N that obeys

Integrating with respect to x gives, as one possible choice, N(x,y) = xy?. So we have
found a vector potential. Namely

G= (xeyz2 — %yzz> i+ (xyz — %'%)]A

We can now evaluate the flux. Parametrize 0S by

r(6) = cos01i+sinfj
' (0) = —sinfi+ cos6j
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with 0 < 6 < 27. So

r
Jf F-4dS=¢$G-dr
S 55
G(x(0)) r'(0)
r270 I % ~ ~ ~

=] <cos€sin29]>~(
SZH

b

(271 — cos(26) 1+ cos(26)

sinZ 0 cos? § do

~ o 2 2
1 27T
=5 { — cos?(26)} do
0
1 (%" 1+ cos(49)
== ———24deb
R
11 27T
=— =27 since f
42 0
T
T4

—sinfi+ cosfj) df

de

cos(46) d6 =0

5-32: Considering that there are ten line segments in C, it is probably not very efficient to
use direct evaluation. Two other possible methods come to mind. If F is conservative, we
can use F’s potential. Even if F is not conservative, it may be possible to efficiently use

Stokes’ (or Green'’s) theorem. So let’s compute

i j k
VxF—det|d & %
y 2x—10 0

=

As V x F # 0, the vector field F is not conservative. As V x F # 0 is very simple, it looks
like Stokes’ theorem could provide an efficient way to compute the integral. The left

tigure below contains a sketch of C.

y (4,5)
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The curve C is not closed, and so is not the boundary of a surface, so we cannot apply
Stokes’ theorem directly. But we can easily come up with a surface whose boundary
contains C. Let R be the shaded region in the figure on the right above. The boundary 0R

of R consists of two parts — C and the line segment L. The normal of R for —k (since R
is oriented clockwise). So Stokes’ theorem gives

fCF-dHLF-dr:gvxF-(—R) ds:g(ﬁ)-(—ﬁ) dS — —Area(R)

R is the union of 5 triangles, each of height 1 and base 1. So

Area(R)sz%xlxlzg
If we denote by —L the line segment from (0,0) to (5,5), we can parametrize —L by

r(t) =1(5,5),0<t<1land
F(x(t)) v (1)

1 - A —_—
J F-dr:J (5t1+ (10t —10)}) - (51 + 5j) dt:J
—L 0 0

25
2

1 3
5(15t —10)dt = 25 (E _ 2)

All together

JF-dr:—Area(R)—f F-dr:—Area(R)—I—f F-dr:—§—§:—15
C L -L 2 2

S-33: If we parametrize the curve as

x = 2cost Yy = 2sinf z = x> = 4cos’ 0 0<0<2m

then the term sin x(6)? x'(6) in the integral will be sin (4 cos® ) (—2sin6). That looks
hard to integrate. So let’s try Stokes” theorem. The curl of F is

i i k
V x F = det 2—x %y % = —x1+zk
sinx? xz z2

The curve C is the boundary of the surface
S={(xy2) }x2+y2 <4, z:xz}

with upward pointing normal. For the surface z = f(x,y) = x?, (3.3.2) in the CLP-4 text
gives

nds

I
H

[~ felxy) 1= fy(x,y) ] + K] dxdy
[ —2x7 + k] dxdy

I
H
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Since we want the upward pointing normal
fdS = [ —2xi+k]dxdy
So by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text)

ff dr—JJVxF fdS = Jf (—xi+ x2 k) - [-2x1+k] dxdy

x2412<4
=3 Jf x? dxdy
x24y2<4
Switching to polar coordinates
2 27T
jEF'dr:3 [) drr . d r* cos* 6

C

[ 2 27
=3 J 3 dr J cos2 0 do
0 0

A 27T
J cos(26)+1d0

4
1) 2

=12

For an efficient, sneaky, way to evaluate Sgn cos? t dt see Example 2.4.4 in the CLP-4 text.

5-34: By Stokes” Theorem,
§;E-dr:f (V xE)-AdS
C

so Faraday’s law becomes

This is true for all surfaces S. So the integrand, assuming that it is continuous, must be
Zero.

c ot
direction of G(xp). Let S be a very small flat disk centered on xo with normal f (the
vector we picked). Then G(xp) - i > 0 and, by continuity, G(x) - i > 0 for all x on S, if we

have picked S small enough. Then {f¢ <V x E + %%—?) -fidS > 0, which is a

contradiction. So G = 0 everywhere and we conclude that

10H
E —
V x +C6t 0

To see this, let G = (V x E+1 aH) Suppose that G(xg) # 0. Pick a unit vector fi in the
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S-35: The curl of the specified vector field is

VxF=Vx(zi+xj+1y°2°k)

For every t, we have x(t) = z(t) and x(t)? + y(t)? + z(t)> = 2. So the specified curve is
the intersection of the plane x = z and the sphere x> + y? + z?> = 2. This curve is the
boundary of the circular disk

D={(xyz)|x=z ¥+ +2" <2}

The curve is oriented so that (x(t),y(t)) = (cost,v2sint) runs in the standard
(counterclockw1se) direction. So the unit normal to D used in Stokes theorem has
positive k component. Since the plane x — z = 0 has unit normal + -1 7 L(1,0,-1), the unit

normal used in Stokes’ theorem is i = % (—1,0,1). By Stokes’ theorem

ij dr_ﬂvxF ndS—\fJJ 3y%2%,1,1) - (~1,0,1) dS
fﬂl 7

The disk D is invariant under the reflection (x,y,z) — (—x,y, —z). Since y?z% is odd
under this reflection, {{,, y*z> ds = 0 and

§F-dr = \% J ds = \%Area(D)
D

Because the centre of the ball x? + y? + z? < 2 (namely (0,0, 0)) is contained in the plane
x = z, the radius of the disk D is the same as the radius of the sphere x? + > + z? = 2. So
D has radius v/2 and

%F-dr = \%Area(D) = —n(\/i)z =27

S-36: The curl of the vector field F = zi + xj — yk is

VxF=-1+j+k

The unit normal to the plane x + y + z = 1, with positive k component as required by
Stokes’ theorem in this case, is fi = \% (1,1,1). If we denote by D the circular disk
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x+y+z=1,x%+y*+ 2% < 1, then Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text)
says

%zdx—kxdy—ydz: 3€F-dr: JJV x F-AdS :Jf(—l,l,l)-\%(l,l,l)ds
D D

C C

1
= \/—gArea(D)

A reasonable guess for the centre of the disk is %(1, 1,1). (This guess is just based on
symmetry.) To check this we just need to observe that it is indeed on the plane

x +y+z = 1 and that the distance from (1,1,1) to any point (x,y, z) obeying
x+y+z=1and x*> + y? + z?> = 1, namely

is the same. This also tells us that D has radius \/g and hence area %n. So the specified

. . . 2_71—
line integral is e

S-37: (a) We parametrize S in cylindrical coordinates:

r(r,0) =rcosfi+rsinfj+rk with0<r<1,0<0<m

(b) We compute
or fyons T
5—c0561+sm9]—|—k
or A .
%——rsmez—i—rcosw
R or or R A -
ndS:ig><%drd(?:i(—rcos@z—r51n9]+rk)drd9

To calculate the downward flux, we use the minus sign. We find

T 1

ij-ﬁds :f dOJ dr (rcos@,rsin@, —2r) - (rcos,rsinf, —r)
0 0

S

T 1 1
= f dGJ dr 3r2 = 71
0 0 r=0

=TT

(c) Solution 1: Let P be the path along line segments from (1,0,1) to (0,0,0) and from
(0,0,0) to (—1,0,1). Here is a sketch. P is in blue.
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(1,0,1)

Then
der—i—J F-dr:fJVxF'ﬁdS
C P 8

by Stokes” Theorem. Along P, the vector field F is orthogonal to the curve so that
SP F - dr = 0. Note that V x F is the vector field v from part (b). Thus

| Frar=[[vadas—n
C
S

(c) Solution 2: Let L be the line segment from (1,0,1) to (—1,0,1) and let
R = {(x,y,z)}x2 +y2 <ly=0z=1

Here is a sketch. £ is in blue and ‘R is shaded.
(—1, 0, 1)

Then
JF-dH—f F-drzﬂvxp(—ﬁ)ds
c c
R

by Stokes” Theorem. Along L, the vector field F = j is orthogonal to the curve (which has
direction —1 so that { ¢ F-dr = 0. Note that V x F is the vector field v from part (b). Thus

LF-dr: —Lfv-lzds = gzzds :2g dS =2Area(R) =7
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S-38: Let S’ be the portion of x + 1 + z = 1 that is inside the sphere x> + y? + z2 = 1. Then
0S = 0S', so, by Stokes’ theorem, (with fi always the upward pointing normal)

” < F) ndS—§F dr—§ dr—f (V % F)-fdS

s’
As
i j k
VxF=det| & & & |=-20+j+k)
y—z z—x x—yY

and,on S, fi = (i i+ f()
g(v < F) AdS = g(—zfg) dS = —2v/3 x Area(s)

S’ is the intersection of a plane with a sphere and so is a circular disk. It’s center
(X¢, Ye, zc) has to obey x. + y. + z. = 1. By symmetry, x; = y, = z¢, S0 Xc = Yo = 2¢ = %
Any point, (x,vy,z), which satisfies both x + y +z = 1 and x*> + y?> + z2 = 1, obeys

1\? 1\? N> ., , 5, 2 2 1 2
(x—§> <y 3> -1-(2—5) =x"+y +z —§(x+y+z)—|—3——1—§—|—§—§

, %) So the radius of

\O| =

Q=

That is, any point on the boundary of S’ is a distance \@ from (% ,

S'is %, the area of S’ is %n and

4
V xF)-AdS = —2v3 x Area(S') = ——nt
[[x® () =~

L o . 4
Solutions to Exercises 5 — Jump to TABLE OF CONTENTS
S-1: (a) True. For any constant vector a = (a1, az,a3),

i ] k

axr=det |a; ay az| = (a2z—azy)i — (a1z — asx)j + (a1y — ax)j
Xy z

This vector field does indeed have divergence 0.
(b) True. This is our conservative field screening condition Theorem 4.1.7.b.
(c) True. This is one of our vector identities, namely Theorem 4.1.4.c.

(d) False. The trap here is that F need not be deﬁned at the origin. We saw, in Example
3.4.2 of the CLP-4 text, that the point source Fg = E ‘3 % had flux 47tm through every sphere
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centred on the origin. We also saw, in Example 4.2.7 of the CLP-4 text, that the
divergence V - Fg = 0 everywhere except at the origin (where it is not defined). So if we
choose m to be a very big negative number (say —10'%’) and add in a very small vector
field with positive divergence (say 1071 (xi + yj + zk)), we will get the vector field

F= —10100# + 10719 (x3 + yj + zk) which has divergence V- F = 3 x 10719 > 0
everywhere except at the origin. The flux of this field through the specified sphere will be
—47t x 101% plus a very small positive number.

(e) True. The statement that “the flux out of one hemisphere is equal to the flux into the
opposite hemisphere” is equivalent to the statement that “the flux out of the sphere is
equal to zero”. Since V - F = 0 everywhere, that is true by the divergence theorem.

(f) That depends.

{f k = 0, then % =0, so that § = Tis a constant. So r(s) = sT + r(0) is part of a straight
ine.

If x > 0, then, because the curve is in a plane, the torsion T is zero and the Frenet-Serret
formulae reduce to . .

dT - dN .

— =N — = —«T

ds ds

Now consider the centre of curvature c(s) = r(s) + 1N(s). Since

de dr 1dN 1 .
ds ds +; ds =T(s) ;(_KT(S)) =0
c(s) is a constant and
(s) —¢| = =
K

which says that the curve is part of the circle of radius 1 centred on c.

(g) False. We saw in Examples 2.3.14 and 4.3.8 of the CLP-4 text that the given vector
field is not conservative.

(h) False. For example, if P = —y, then §-F - dr = — § y dx is the area inside C. See
Corollary 4.3.5 in the CLP-4 text.

(i) False.

If % = ais a constant, then v(t) = at + v(. Integrating a second time,
r(t) = 3at? 4+ vot + 1o. This is not a spiral, whether or not the speed is constant. (In fact,
for the speed |v(t)| = |at + vy| to be constant, a has to be 0, so that r(t) = vot +rpisa

straight line.)

Another way to come to the same conclusion uses

25 . .
a(t) = S0 T+ (S 1) N

As the speed % is a constant, it reduces to




As a(t) is a constant, its direction, N(t), is also a constant. The normal vector to a spiral is
not constant.

S-2: (a) False. For any constant vector a = (a1, ay,43),

i ] k
axr=det |a; ay az| = (apz —azy)i — (a1z — asx)j + (a1y — axx)j
Xy oz
So
i j k
V x (axr)=det g—x g—y % = 2011 + 2a5] + 2a3k
Az —azy —a1z+asx ary — ax

is nonzero, unless the constant vector a = 0.

(b) False. For example, if f(x) = x?, then
V- (V) =V (Vx}) =V (2xi) =2

(c) False. For example, if F = x%1, then

V(V-F)=V(V-(x*%) =V (2x) =2

(d) False. The trap here is that F need not be defined at the origin. We saw, in Example
3.4.2 of the CLP-4 text, that the point source F = E |3 5 had flux 47tm through every sphere
centred on the origin. We also saw, in Example 4.2.7 of the CLP-4 text, that the
divergence V - F = 0 everywhere except at the origin (where it is not defined).

(e) True. Any simple, smooth, closed curve in IR that avoids the origin is the boundary
of a surface S that also avoids the origin. Then, by Stokes’” theorem,

%F-drzf V xF-AdS=0
C

(f) True. Let S = {r | [r— ¢/ = R } be a sphere. Denote by V = { r | [r — ¢| < R } the ball
whose boundary is S. Let H be one hemisphere of S with outward pointing normal and
let H' be the other hemisphere of S with inward point normal. Then the boundary of V,
with outward pointing normal, can be viewed as consisting of two parts, namely H and
—H’, where by —H’ we mean H’ but with outward pointing normal. Then, by the

divergence theorem
JJF ndsS — JJF nds = JJF nds
J]JV FdV >0
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which implies that SSH F-adS > SSH/ F-AdS.

(g) False. The trap here is that the curve is in R?, not R?. As we saw in Example 1.4.4 of
the CLP-4 text, a helix has constant curvature, but does not lie in a plane and so is not
part of a circle.

(h) False. Even if we restrict F to the xy-plane (i.e. to z = 0), this vector field is not
conservative. We saw that in Examples 2.3.14 and 4.3.8 of the CLP-4 text.

(i) False. For example, the vector field F = x k is always parallel to the z-axis. So its flow
lines are also all parallel to the z-axis. But if the closed curve C consists of the line
segments

o Ly from (0,0,0)
o Lp from (1,0,0)
o Lz from (1,0,1)
o L4 from (0,0,1)

to (1,0,0), followed by

to (1,0,1), followed by

to (0,0,1), followed by
back to (0,0,0),

then
oSLF dr—S0 (xk)-idx = 0sincek L1, dr =idx on L; and
oSLF dr—S0 R .kdz = 1since x = 1and dr = kdz on L, and
o §1, F- dr—_S(l)(f(
o §, F- dr——SO(

— O0sincek 1 iand

-1d
-kdz = 0since x = 0 on Ly.

All together

JF-dr:f F-dr—l—J F-dr—|—J F-dr-l—f F-dr=1
C Ly Ly L3 Ly

(j) True. If the speed |v/| is constant then

d

O_dtM (v-v)=2v-a

dt

S-3: (a) False. r"(#) is the full acceleration. So |t”(t)| is the magnitude of the full
acceleration, not just the tangential component of acceleration. For example, if
r(t) = costi+sintj (i.e. the particle is just going around in circles), the acceleration
r’(t) = —costi—sint] is perpendicular to the direction of motion. So the tangential
component of acceleration is zero, while [r"(¢)| = 1.

(b) T(t) is the tangent vector to the curve at r(t). N(¢) and B(t) are both perpendicular to
T(t) (and to each other) and so span the plane normal to the curve at r(t).

(c) True. This is (half of) Theorem 2.4.7 in the CLP-4 text.

(d) False. The statement V x (V - F) = 0 is just plain gibberish, because V - F is a scalar
valued function and there is no such thing as the curl of a scalar valued function.
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(e) False. For example if F = i, then, by the divergence theorem,

JfF-ﬁdS:fJ V-FdV =0
S \%

Here V = { x,vy,z | x2 + 2 + z2 < 1 } is the inside of the sphere.
y y P

(f) True. If S is the boundary of the solid region E, then we can orient S by always
choosing the normal vector that points into E.

S-4: (a) The helix is approximately a bunch of circles stacked one on top of each other.
The radius of the circles increase as z increases. So the curvature decreases as z increases.

(b) Here are two arguments both of which conclude that f(x) is D.

o If C were the graph y = f(x), then f’(x) would have two points of discontinuity.
The curvature x(x) would not the defined at those two points. The function whose
graph is D is defined everywhere and so cannot be the curvature of the function
whose graph is C.

o The function whose graph is D has two inflection points. So its curvature is zero at
two points. The function whose graph is C is indeed zero at two points (that in fact
correspond to the inflection points of D). So D is the graph of f(x) and C is the
graph of x(x).

(c) For any fixed y, x> + z? = 1 is a circle of radius 1. So we can parametrize it by
x(0) = cos 6, z(0) =sinb, 0 < 6 < 271. The y-coordinate of any point on the intersection
is determined by y = xz. So we can use

r(0) = cos@i+sinfk +sinf cosfj 0<60<2r

(d) We are told that the helical ramp starts starts with the y-axis when z = 0.

o In the cases of parametrisations (a) and (c), z = 0 forces u = 0 and u = 0 forces

x = y = 0. That is only the origin, not the y-axis. So we can rule out (a) and(c).
o In the case of parametrisation (b), z = 0 forces v = 0 and v = 0 forces y = 0 and

x = u. As u varies that sweeps out the x-axis, not the y-axis. So we can rule out (b).
o In the case of parametrisation (d), z = 0 forces v = 0 and v = 0 forces x = 0 and

y = u. As u varies that sweeps out the y-axis, which is what we want.

Furthermore

o we are told that z = v runs from 0 to 5 and that
oxX?+yt=ut>4

So we want parametrisation (d) with domain |u| > 2,0 < v <5.

(e) Straight lines have curvature 0. So one acceptable parametrized curve is r(t) = t1,
0<t<l
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(f) The cube S has six sides. So the outward flux through 0S is 6 and, by the divergence

theorem,
6:UF.ﬁdszﬂ v.dezmcw:c
0S S S

since S has volume one. So C = 6.

(g) For the vector field F to be conservative, we need

F_ o
dy  Ox

0

0 0
— @(ax—l—by) = —x(cx—i—dy)

= b=c
When b = ¢, an allowed potential is 3x? + bxy + %yz. The specified set is

{(a,b,c,d)

a,b,c,dallrealand b = c }

(h) By the definition of arclength parametrisation, the arclength along the curve between
r(0) and r(s) is s. In particular, the arclength between r(0) and r(3) is 3 and the arclength
between r(0) and r(5), which is the same as the arclength between r(0) and r(3) plus the
arclength between r(3) and r(5), is 5. So the arclength between r(3) and r(5) is 5 — 3 = 2.

(i) In this solution, we’ll use, for example —T to refer to the curve T, but with the arrow
pointing in the opposite direction to that of the arrow on T.

In parts (2), (3) and (4) we will choose F to be the vector field

G(x,y) = ——52—i+ ——

—_ 7 7

We saw, in Example 2.3.14 of the CLP-4 text, that V x G = 0 except at the origin where it
is not defined. We also saw, in Example 4.3.8 of the CLP-4 text, that §. G - dr = 27 for
any counterclockwise oriented circle centred on the origin.

(1) Let R be the region between S and T. It is the shaded region in the figure on the
left below. Note that R is contained in the domain of F, so that V x F = 0 on all of
R1. The boundary of R is S — T, meaning that the boundary consists of two parts,
with one part being S and the other part being —T. So, by Stokes” theorem

JF-dr—JFdr:J F.drzﬂvxp.f(ds:o
S T 0R4q =
1

and (1) is true.
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(2) False. Choose a coordinate system so that Q is at the origin and choose F = G. We

saw, in Examples 2.3.14 and 4.3.8 of the CLP-4 text, that the curl of G vanished
everywhere except at the origin, where it was not defined, but that {; G - dr # 0.

(3),(4) False. Here is a counterxample that shows that both (3) and (4) are false. Choose a

coordinate system so that Q is at the origin and choose F = G. By Stokes’ theorem

fG-drsz-drzO
S T

because V x G = 0 everywhere inside S, including at P. So now both parts (3) and
(4) reduce to the claim that {; G -dr = {; G - dr.

We saw, in Example 4.3.8 of the CLP-4 text, that SR G .dr =2m.

To finish off the counterexample, we’ll now show that {; G - dr = —27. Let R; be
the region between U and R. It is the shaded region in the figure on the right above.
Note that V x G = 0 on all of R». including at P. The boundary of R, is —U — R,
meaning that the boundary consists of two parts, with one part being —U and the
other part being —R. So, by Stokes’ theorem

—fG-dr—JG-dr: G.dr:Hvxc-f(dszo
u R OR, .
2

andSuG-dr:—SRG-dr:—Zn

(5) False. For any conservative vector field F, with potential f, {, F - dr is just the

difference of the values of f at the two end points of V. It is easy to choose an f for
which those two values are different. For example f(x,y) = x does the job.

(j) Let S be any closed surface and denote by V the volume that it encloses. Presumably
the question assumes that S is oriented so that S = dV. Then by the divergence theorem

fsfp.ﬁdszafvfp.ﬁdszfﬂvmdv

This is exactly the volume of V if V - F = 1 everywhere. One vector field FwithV - F =1
everywhere is F = x1.

(k) Let C be the counterclockwise boundary of a small square centred on P, like the blue
curve in the figure below, but much smaller. Call the square (the inside of C) S.
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By Stokes’ theorem

J VxF-RdSzj@F-dr
S C

o The contribution to §, F - dr coming from the left and right sides of C will be zero,
because F is perpendicular to dr there.

o The contribution to §. F - dr coming from the top of C will be negative, because
there F is a positive number times 7 and dr is a negative number times i.

o The contribution to §, F - dr coming from the bottom of C will be positive, because
there F is a positive number times 7 and dr is a positive number times i.

o The magnitude of the contribution from the top of C will be larger than the
magnitude of the contribution from the bottom of C, because |F| is larger on the top
than on the bottom.

So, all together, §, F - dr < 0, and consequently (taking a limit as the square size tends to
zero) V x F -k is negative at P.

S-5: (a) False. We could have, for example, V - F zero at one point and strictly positive
elsewhere. One example would be F = x*1 + % + 23k, with S; and S, being the upward
oriented top and bottom hemispheres, respectively, of the unit sphere x> + y? + z2 = 1.

(b) False. The conditions that (1) V x F = 0 and (2) the domain of F is simply-connected,
are sufficient, but not necessary, to imply that F is conservative. For example the vector
tield F = 0, with any domain at all, is conservative with potential 0. Another example
(which does not depend on choosing a domain that is smaller than the largest possible
domain) is F = Vﬂ;wz with domain { (x,y,z) | (x,y) # (0,0) }. That s, the domain is R®
with the z-axis removed.

(c) That's true. Consider any point r(tp) on a parametrized curve r(t). That’s the blue
point in the figure below. The centre of curvature for the curve at r(ty) is

r(to)
T
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¢ = r(ty) + p(to)N(tg). It is the red dot in the figure.

o The radius of the osculating circle is the distance from its centre, ¢, to any point of
the circle, like r(tp). That's |r(tg) — ¢| = |o(to)N(to)| = p(to). The curvature of the
osculating circle is one over its radius. So its curvature is ﬁ = «x(tp).

o The unit normal to the osculating circle at r(() is a unit vector in the opposite
direction to the radius vector from the centre c to r(fg). The radius vector is
1(ty) — co = —p(to)N(tp), so the unit normal is N(tp).

o The osculating circle lies in the plane that best fits the curve near r(fy). (See the
beginning of §1.4 in the CLP-4 text.) So the unit tangents to the osculating circle at
1(tp) are perpendicular to both N(ty) and B(ty) and so are either T(tg) or —T(tg),
depending on how we orient the osculating circle.

(d) False. Kepler’s third law is that a planet orbiting a sun has the square of the period
proportional to the cube of the major axis of the orbit.

(e) True. That’s part (a) of Theorem 4.1.7 in the CLP-4 text.
(f) True. Every domain contains closed surfaces. This has nothing to do with vector fields.
(g) True. We saw this in Example 2.3.4 in the CLP-4 text.

(h) False. Let F be an everywhere defined conservative vector field with potential ¢.
Then V x F = 0 everywhere. If P and Q are two points and if ¢(P) — ¢(Q) = 3 and if C
is a curve from Q to P, then SC F-dr = 3. One example would be ¢(x,y,z) = x, F =1,

P =(3,0,0), Q= (0,0,0).

(i) False. The normal component of acceleration depends on speed, as well as curvature.

(j) False. The curve rj contains only points in the xy-plane. Every r,(t) with ¢ # 0 has a
nonzero z-coordinate.

S-6: (a) False. Changing the orientation of a surface does not change dS at all. (It changes

AdS by a factor of (—1).) So
Hfds:Jerds
°5

S

which is not — {§_ f dS, unless the integral is zero.

(b) False. For every vector field with two continuous partial derivatives, V- (V x F) =0
(see Theorem 4.1.7.a in the CLP-4 text), so the divergence theorem gives

JJ(VxF)-ﬁdszfﬂv-(vXF)dv:o

whether or not F is conservative.

(c) True. Define the vector field F = fi. Then, by Stokes’ theorem,
f fdx:f F.drzﬂvxpﬁdszﬂ (%-f-ﬁ%) - dS
C C oz' oy
S S
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(d) True. The left hand side, (V f) x (Vf), is zero because (V f) is parallel to itself and
the right hand side V x (V) is zero by Theorem 4.1.7.b (the screening test for
conservative fields) of the CLP-4 text.

(e) True. The curve r(t) = (2, 0, 1) + (4, -1, —2) is a straight line. Straight lines have
curvature 0.

(f) True. In general |¢'(t)| = §. Under arc length parametrization t = s so that £ = 1.

(g) True. If F is a constant vector fleld, then, by the divergence thoerem,
|[¥-aas = [[[v-rav—[[[oav -0
S 14 14

(h) False. The statement V x F = (x, y,z) means that F is a vector potential for the vector
field G = (x,y,z). But G fails the screening test V - G = 0 for vector potentials.

S-7: (a) P is the x-component of F. As we travel vertically upward through A, that
x-component decreases. Hence P, < 0 at A.

(b) Q is the y-component of F. As we travel horizontally to the right through A, that
y-component increases. Hence Q, > 0 at A.

()V xF=(Qy— Py)f< and Qy — P, > 0 at A, so that the curl of F at A is in the direction
of +k.

(d) Along the curve C; the magnitude of the angle between F and dr is less than 90°, so
that F-dr>0and |, F-dr > 0.

(e) Along the curve C; the magnitude of the angle between F and dr is greater than 90°,
sothat F-dr <0Oand {, F-dr <O0.

(f) If F were conservative, we would have Scl F-dr = SCZ F - dr. As these two integrals
have opposite signs F is not conservative. (Since F is not conservative, it is not the
gradient of some function. At A, P, > 0 and Q, > 0. So F is not divergence free and is not
the curl of a vector potential.)

S-8: (a) False. The curve r; contains only points with z > 0. Every r(t) with t < 0 has
z < 0.

(b) True. ro(+?) = r1(t) and #* runs from 0 to 1 as f runs from 0 to 1.
(c) True. In general |r'(t)| = 4. Whent =5, & = 1.

(d) False. The curve need not even lie in a plane. For example, as we saw in Example
1.4.4 of the CLP-4 text, the helix r(t) = acosti+ bsintj + bt k has constant curvature
kK = - but is not a circle.

a2+b?
(e) True. If the speed |v| = /v - v of a moving object is constant, then

d
0:$(v'v) =2v-a
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(f) False. If the vector field F(x,y,z) = _—yzi +

' 2 +y21 + XZ'W
Examples 2.3.14 and 4.3.8 of the CLP-4 text that the vector field
conservative.

] + zk were conservative, its

X
x2+y?
——], to the xy-plane would also be conservative. But we saw in

21+

restriction

j is not

2+y 2+2

(g) False. The vector field of part (f), with domain { (x,y, z) ‘ 2 +y?>1 }, provides a
counterexample.

(h) False. The curve x? + y? = 2 can not be shrunk to a point continuously in
{(xy) | *+y*>1}

(i) True. Any curve in { (x,y) | ¥ > x* } can be shrunk to a point continuously in
{(xy) |y>*}

(j) True. By the divergence theorem,

JJVXF-ﬁdSzJ!JV-(VXF)deO

since V - (V x F) = 0 by the vector identity of Theorem 4.1.7.a in the CLP-4 text.

S-9:
(a) True. In general |¥'(t)| = %. Whent = s, % =1.

(b) False. The curve need not even lie in a plane. For example, as we saw in Example
144 of the CLP-4 text, the helix r(t) = acosti+ bsintj + bt k has constant curvature

K= 0 +b2 but is not a circle.
(c) True. See Theorem 2.4.6 of the CLP-4 text.

(d) False. The vector field F(x,y,z) = x2_—+yy2i + xZLerZ]A’ with domain

{(xy2) | +y*>1}
provides a counterexample.
(e) False. The curve rj contains only points with z > 0. Every rp(¢) with t < 0has z < 0.
(f) True. ro(+?) = r1(t) and #* runs from 0 to 1 as f runs from 0 to 1.
(g) True. V - (V x F) = 0 by the vector identity of Theorem 4.1.7.a in the CLP-4 text.
(h) False. A counterexample is f(x,y,z) = x2. Ithas Vf = 2xiand hence V - (Vf) = 2.

(i) False. The curve x? 4+ y? = 2 can not be shrunk to a point continuously in
{(xy) | *+y*>1}

(j) True. Any curvein { (x,y) | y > x* } can be shrunk to a point continuously in
{(xy) |y >}
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S-10: (a) False. Vf = 0 if and only if f is constant. But if f is the constant K, then - f ds
is K times the length of C, which need not be zero.

(b) False. Any curve which lies in a plane has constant binormal. For example, the circle
r(t) = costi+sintj + 0k has constant binormal B = k, but is not a straight line.

(c) True. If r(t) has constant speed, the (%(t‘))2 = 1/(t) - ¥'(t) is constant and

d !/ / / !
0= a(r (1) -2'(t)) =20'() - 1" (1)

(d) False. For the line integral {~ (F x G) - dr to be independent of the path C, the vector
field F x G has to be conservative and so has to obey V x (F x G) = 0. But

o Not all vector fields are conservative. For example, the vector field H = xj obeys
V x H = k and so is not conservative.

o We can make F x G be any vector field through judicious choices of F and G. For
example,if F = xkand G =1, then F x G = xk xi =xj = H.

(e) True. The contribution to §- f ds from an “infinitesmal piece of C” is the value of f on
the piece times the length of the piece. That does not depend on the orientation of the
piece.
(f) False. The two vectors in the cross product % X % are identical. So the cross product
is 0.
(g) False. The integral is completely independent of x(u, v) and y(u, v). In particular if,
for example, x(u,v) = 157u, y(u,v) = 1570, z(1,v) = 0 then

R 1/2
o (1 + (%)2 + ( %)2> dudwo is always exactly the area of D, while the area of S is
1572 times the area of D.

(h) True. If the fluid is incompressible then its flow preserves volumes and consequently
V. F=0.

(i) Not only False, but Ridiculous. The left had side is scalar valued while the right hand
side is vector valued.

S-11: (a) True. That V - (V x F) = 0 is the vector identity of Theorem 4.1.7.a. That
identity is the basis of the vector potential screening test.

(b) False. If F is not conservative, then SC F - dr will depend on the endpoints of C.
(c) True. If Vf = 0, then

%(x,y,z) =0 — f(x,y,2) = g(y,2)
%(x,y,z) =0 = g—i(]/,z) =0 - g(y,z) = h(z)
%(x,y,z) =0 — W(z) =0 = h(z) =C




for some functions g(y, z), h(z) and constant C.

(d) False. The curl V x F is zero for every conservative vector fields F. There are many
nonconstant conservative vector fields, like F(x, y,z) = x1.

(e) True. As S is closed, it is the boundary of a solid region V. Then, by the divergence

theorem,
Hpﬁdszﬂ V. FdV =0
S 1%

(f) True. If {~ F - dr = 0 for every closed curve C, then F is conservative by Theorem 2.4.6
in the CLP-4 text. Consequently, V x F = 0 by Theorem 2.3.9.
(g) True. If the speed |v| is constant then
d » d
= Jv.
VP =G vv) =2va

Since T = ﬁ, T-a = 0 too. Here, we have assumed that the constant |v| is not zero. If the

constant |v| is zero, then T is not defined at all (and a = 0).

(h) False. The trap here is that the curve is in IR?, not R%. As we saw in Example 1.4.4 of
the CLP-4 text, a helix has constant curvature, but does not lie in a plane and so is not
part of a circle.

(i) False. The trap here is that we are told nothing about V - F. As an example, let S; be
the hemisphere
Si={(xyz2) |+ +z2=12>0}

with upward pointing normal and S; be the disk
So={(xy0)|x¥+y* <1}

also with upward pointing normal.

=

S

S

V={(xy2)|0<z<y/x24+1% ¥ +y* <1}

Then the boundary, 0V, of V consists of two parts, namely S; (with normal pointing
upwards) and S, (but with normal pointing downwards). The divergence theorem
(Theorem 4.2.2 of the CLP-4 text) gives

HF-ﬁds—HF.ﬁdszﬂ V. FdV
51 Sy \%
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If V- F > 0 (as is the case, for example, if F = x1) then Sgsl F-fdS — SSSZ F-ndSis
definitely nonzero.

(j) True. This is one of Kepler’s laws. See §1.9 in the CLP-4 text.

S-12: It’s (b). (a) is gibberish — the left hand side is a scalar while the right hand side is a
vector. (c) is also gibberish — the left hand side is a vector while the right hand side is a
scalar. (b) is the vector identity of Theorem 4.1.4.c in the CLP-4 text.

S-13: (a) False. For example, if f(x,y,z) = x2, then Vf=2xiand V-V =2.

(b) Not only false, but ridiculous. The left hand side is a vector while the right hand side
is a scalar.

(c) Not only false, but ridiculous. The right hand side is a vector while the left hand side
is a scalar.

(d) True. That’s the screening test for conservative fields, Theorem 4.1.7.b in the CLP-4
text.

(e) Not only false, but ridiculous. The curl of a scalar function is not defined.
(f) True. That'’s the screening test for vector potentials, Theorem 4.1.7.a in the CLP-4 text.

(g) False.

v. ¢ x 0y 0z
12 Oxx?4y2+2z2 dyx?+yr+z2 dzx?+yr+z2?
_ 1 2x? 1 2y?
42 2242 * 2 +2+22 2442 422
1 27°

Ay 2 24 y? 4 22
C 3[x?+yP 2% —2xr - 2y? 222
22+ 2+ 22

1
_ x2+y2_|_22

(h) False. For any constant vector w = (w1, wy, w3),

i j k
wxr=det |w wy; ws| = (wiz—wsy)i— (w1z—wsx)j+ (w1y — wyx)j
X oy oz
So
i j k
V x (w x r) = det g—x g—y % = 2w1i + 2wyf + 2wsk
Wz — w3y —wWiz—+ W3X WY — WoX
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is nonzero, unless the constant vector w = 0.

(i) True. The given equation is equivalent (by the vector identity Theorem 4.1.4.c in the

CLP-4 text) to
fi V-(fF)dV:(!QfF-ﬁdS

which is true by the divergence theorem.

(j) False. One of the variants of the divergence theorem given in Theorem 4.2.9 of the

CLP-4 textis
JJfﬁdS = JJ Vfdv
oQ Q

Note that the sign on the right hand side is “+”, not “—". In order for the equation given
in part (j) to be true, it would be necessary that {{{, V£ dV = 0 for all smooth scalar
functions f. That’s silly. One counterexample is

fxy=x Q={(xyz) |2+ +2<1}

Then

ands—ﬂ x(xi+yj+zk) s—zﬂx ds
H V== Hf’dv— ] av

The coefficient of 7 is obviously strictly positive in the upper integral and strictly negative
in the lower integral.

S-14: (a) True. If the vector field is F = ai + bj + ck, then f(x,y,z) = ax + by + cz obeys
= V{ and so is a potential for F.

(b) False. For example the vector field F = xi —yj obeys V - F = 0 but is not a constant
vector field.

(c) True, assuming that r(¢) is not indentically 0. If r(¢) and % are orthogonal at all points

of the curve C, then

d dr
L) 1) = 2x(t)- (1) = 0

So x(t)? +y(t)® + z(t)? = r(t) - r(t) is a constant. If r(¢) is not indentically 0, that constant
must be strictly positive. That is x(¢)? + y(t)? + z(t)> = a? for some constant a > 0.

(d) False. The curvature (see §1.5 in the CLP-4 text) is




Changing the orientation of the curve amounts to replacing t by —¢t. This changes the
signs of T and ¥/, but does not change «, because the absolute values eliminate the signs.

(e) False. For example, the vector field F = 0, with domain { (x,y,2) ‘ X2+ yz >0 } isa
conservative vector field (with potential 0) whose domain is not simply connected. As a
less nitpicky example, let F = V f with f = ﬂ;w The biggest possible domain for this

vector field isalso { (x,y,z) | x> +y> >0 }.

S-15: (a) We are to compute the divergence of x2y7 + ¢¥ sin x j + ¢** k. Since
p 24 y J

0

= (x%y) = 2xy
a—y(ey sinx) = e¥ sinx
%(ezx) — xet*

the specified divergence is

V- (x*yi+e¥sinxj+ e k) = 2xy + ¢! sin x + xe*

(b) The specified curl is

i i k

2, 3.3 A 2 I I PR

V x (cosx“i—y’zj+xzk) =det | & & =|=yi-zj
cosx? —y’z xz

(c) In principle, the domain could be any subset of { (x,y,z) | x> + y* > 0 }. We are not
told which subset to use, so, by default, D is the maximal domain

D={(xyz)|*+y*>0}={(xyz2)]|(xy) #(0,0)}

This D is connected (any two points in D can be joined by a curve that lies completely in
D) but is not simply connected (the simple closed curve r(6) = cos 01+ sin67j,

0 < 0 < 2t lies in D but cannot be shrunk to a point continuously in D). So (I) and (IV)
are true. That’s (iii).

(d) False. If the position of the particle at time t is r(t) = cos t1 + sint], then its speed is

the constant 1 but its acceleration is — cos t — sin t j, which is nonzero.

S-16: (a) True. By the vector identity of Theorem 4.1.5.c in the CLP-4 text,

Vo (fVf) = (V) x (V) + [V x(Vf) =0

The second term vanished because of the screening test vector identity of Theorem
4.1.7.b in the CLP-4 text.

(b) True. That's the vector identity of Theorem 4.1.4.c in the CLP-4 text.
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(c) True. To have constant curvature 0 the curve must have unit tangent vector T(s)
obeying

(See §1.5 in the CLP-4 text.) So ¥'(s) = T(s) must be a constant vector. Call it T.
Integrating gives

I'(S) = STO + 19
for some constant vector ry. So r(s) lies on the same straight line for all s.

(d) False. The trap here is that the curve is in R3, not R2. As we saw in Example 1.4.4 of
the CLP-4 text, a helix has constant curvature, but does not lie in a plane and so is not
part of a circle.

(e) True. The vector field F = V f is conservative. So, by Theorem 2.4.6.b in the CLP-4

text, the work integral
f Vf‘dr:J F-dr=0
C C

for any closed curve C, and, in particular, for any circle C.

(f) True. The statement that “the flux out of one hemisphere is equal to the flux into the
opposite hemisphere” is equivalent to the statement that “the flux out of the sphere is
equal to zero”. Since V - F = 0 everywhere, that is true by the divergence theorem.

(g) True. Let S be the boundary of the solid region V. Then, by the divergence theorem
(Theorem 4.2.9 of the CLP-4 text),

fsjvxp.ﬁds:fvﬂv-(vx

But V - (V x F) is identically zero, by the screening test vector identity of Theorem
4.1.7.a in the CLP-4 text. So the integral is zero.

S-17: (a) True. Let F be the vector field. We are assuming that V x F = 0 on all of R®. As a
result, F = V¢ for some potential function ¢. We are also assuming that

0=V -F=V: V¢ = (ax2 + ‘922 + < 2)47. This is the definition of “¢ is harmonic”.

(b) False. Let F be the vector field. We are assuming that F = V¢ for some potential
function ¢. If S is any smooth closed surface, with S being the boundary of the solid V,
then, by the divergence theorem, the outward flux of F through S is

HF nds—ﬂ V. FdV = ” V.V dv = Hj (G + 5+ S)pdv

If, for example, ¢ = x?, then ( preian 022 + 622)4) = 2 and the flux of F through S is twice
the volume of V, which is not zero.
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S-18: (a) True. The vector field V f is conservative and the work done by a conservative
tield around any closed curve is zero.

(b) False. By the vector identity Theorem 4.1.7.a in the CLP-4 text, we have
V. (VxF)=0

for all vector fields F. But V - (xi +yj 4+ zk) = 3.

S-19: (a) - Vf - dr = 0 is the work done along the curve using the conservative force V£.
That work is difference between the potential f at the final point minus the potential f at
the initial point. If the final and initial points are both on the level surface f(x,y,z) =0,
that difference is zero.

(b) The rate of change of the specified vector is

d /
V(1) xx(t) = v'(8) xx(t) + v (t) x v(t)

The first term vanishes because v'(t) = a(t) = f(t)r(t) is parallel to r(¢). The second
term vanishes because v(t) = v(f).

(c) Call the constant vector v x r of part (b) N. This vector is a constant and is
perpendicular to both v(¢) and r(t). In particular

N-r(f) =0

Assuming that N is nonzero, this is the equation of the plane through the origin with
normal vector N.

(d) Yes, as long as T, N, and B are well-defined, since B = T x N.

(e) No. When the maximum speed occurs dt2 = 0so thata = «(t) (& (i‘))2 N(t). If the
speed and (constant) curvature are nonzero, the acceleration is nonzero.

S-20: We apply Green’s Theorem:

f Fdx+ FEdy = ff ( (/Fl) dxdy

a) %L—ydx+xdy = %Jj{l — (-1)} dxdy = Area(R)
R

(b) %J —xdx+ydy = %fdexdy =0 # Area(R)
c
R

(c) Lydx = JJ{ —1}dxdy = —Area(R) # Area(R)
R
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(d) L3y dx +4xdy = Jf {4—3}dxdy = Area(R)
R

S-21: (a) True. Since v = |v| = 1 is constant, we have

dv. .
a:d—Z;T—i-UZKN:OT—i-KN.

Thus 1 = |a| = x|N|,ie., x = 1.

(a) (Again.) Since v - v = |v|?> = 1 for all ¢, differentiation givesv-a = 0,i.e., v L a
always. It follows that [v x a|] = |v||a|sinf = 1 always, because the angle 6 here is

always 7t/2. Thus, for all ¢,

lvxal 1
= = — = 1_
TP T

(b) True . By the divergence theorem, if V is the solid bounded by S,
HVXF-ﬁdsszV-(vxF) dV =0
S v

since V- (V x F) = 0.

(c) False. If F = 0 and G is any nonzero, conservative field, like G = 2x1 = V(xz), then

fﬁF-drz%Gdr:O
C C

for every closed curve C.

S-22: (a) Define Q(t) = r(t) x v(t). Then by the product rule,

@—gx _|_r><_v
ar dr Y dt
=vxv+rx (f(r,v)r).

=0+ f(r,v)(rxr) =0.
It follows that Q) is constant.

(b) By the divergence theorem, where R is the solid cylinder as described,

JJ(xi—ijrzzf()ﬁdS :M(1—1+2z) dvzzfﬂzdv
S R R

The solid R clearly has reflection symmetry across the plane z = 2. So the z-coordinate of
the centre of mass of R, i.e. the average value of z over R, i.e.

WezdV _ {{fzzdV
{f.dV — VoI(R)

7 =
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is 2. Hence
H(xf—yj +22K) - AdS = 22 Vol(R) = 4 Vol(R)
S

By basic geometry, Vol(R) = mr?h = 7tb*2. Hence

”(xi—yHZZR) -AdS = 8nb?
S

(c) By Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text),

§F-dr:JfG-ﬁdS = JfoFﬁdS:JJG-ﬁdS
D D D

oD
— [[(vxF-06)-nds~0
D

for all disks D. Because this is true for all disks D, the integrand must be zero. To see this,
let H=V x F — G. Suppose that H(xp) # 0. Pick a unit vector fi in the direction of
H(xg). Let D be a very small flat disk centered on x( with normal A (the vector we
picked). Then H(xg) - i > 0 and, by continuity, H(x) - i > 0 for all x on D, if we have
picked D small enough. Then {{, (V x F— G) - 1dS > 0, which is a contradiction. So we
conclude that V x F — G = 0 and hence G = V x F.
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