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HOW TO USE THIS BOOK

a Introduction

First of all, welcome back to Calculus!

This book is an early draft of a companion question book for the CLP-3 text. Additional
questions are still under active development.

» How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As
you are working problems, resist the temptation to prematurely peek at the back! It’s
important to allow yourself to struggle for a time with the material. Even professional
mathematicians don’t always know right away how to solve a problem. The art is in
gathering your thoughts and figuring out a strategy to use what you know to find out
what you don't.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section.
Think about it for a while, and don’t be afraid to read back in the notes to look for a key
idea that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you're reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that one
particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few
days. That might have been enough time for you to internalize the necessary ideas, and
you might find it easily conquerable. Pat yourself on the back-sometimes math makes you
feel good! If you're still having troubles, read over the solution again, with an emphasis
on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope that it will
improve their problem-solving skills. In this class, you will learn lots of concepts, and
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be asked to apply them in a variety of situations. Often, this will involve answering one
really big problem by breaking it up into manageable chunks, solving those chunks, then
putting the pieces back together. When you see a particularly long question, remain calm
and look for a way to break it into pieces you can handle.

» Working with Friends

Study buddies are fantastic! If you don’t already have friends in your class, you can ask
your neighbours in lecture to form a group. Often, a question that you might bang your
head against for an hour can be easily cleared up by a friend who sees what you’ve missed.
Regular study times make sure you don’t procrastinate too much, and friends help you
maintain a positive attitude when you might otherwise succumb to frustration. Struggle
in mathematics is desirable, but suffering is not.

When working in a group, make sure you try out problems on your own before coming
together to discuss with others. Learning is a process, and getting answers to questions
that you haven’t considered on your own can rob you of the practice you need to master
skills and concepts, and the tenacity you need to develop to become a competent problem-
solver.

» Types of Questions

Q[1](#): In addition to original problems, this book contains problems pulled from quizzes
and exams given at UBC for Math 317 (Calculus 4). These problems are marked with a
star. The authors would like to acknowledge the contributions of the many people who
collaborated to produce these exams over the years.

The questions are organized into Stage 1, Stage 2, and Stage 3.

» Stage 1

The first category is meant to test and improve your understanding of basic underlying
concepts. These often do not involve much calculation. They range in difficulty from
very basic reviews of definitions to questions that require you to be thoughtful about the
concepts covered in the section.

» Stage 2

Questions in this category are for practicing skills. It's not enough to understand the philo-
sophical grounding of an idea: you have to be able to apply it in appropriate situations.
This takes practice!
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» Stage 3

The last questions in each section go a little farther than Stage 2. Often they will combine
more than one idea, incorporate review material, or ask you to apply your understanding
of a concept to a new situation.

As additional questions are still under active development, we have not yet highlighted a
“representative problem set”.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to
practice is recognizing the level of difficulty a problem poses. Exams will have some easy
questions, some standard questions, and some harder questions.
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Chapter 1

VECTORS AND GEOMETRY IN

TWO AND THREE DIMENSIONS

1.14 Points

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Describe the set of all points (x,y,z) in R? that satisfy

(@) ¥* +y?>+22=2x—4y+4

(b) x> +y> +2z2 <2x —4y +4

QI[2]: Describe and sketch the set of all points (x,y) in IR? that satisfy
@ x=y

b) x+y=1

(0) x*+y* =4

(d) x> +y*> =2y

() X2 +y* <2y

QI3]: Describe the set of all points (x,y,z) in R3 that satisfy the following conditions.
Sketch the part of the set that is in the first octant.

(@ z=x
(b) x+y+z=1
(€ x*+y*>+2z2 =4



VECTORS AND GEOMETRY 1.2 VECTORS

d) x> +y2+22=4,z=1
(e) x> +y> =4
() z=x*+y?

» Stage 2

Q[4]: The pressure p(x,y) at the point (x,y) is determined by x?> — 2px +y> +1 = 0.
Sketch several isobars. An isobar is a curve with equation p(x, y) = c for some constant c.

Q[5]: Consider any triangle. Pick a coordinate system so that one vertex is at the origin
and a second vertex is on the positive x—axis. Call the coordinates of the second vertex
(a,0) and those of the third vertex (b,c). Find the circumscribing circle (the circle that
goes through all three vertices).

QI6](%): A certain quadric surface consists of all points P = (x, y, z) such that the distance
from P to the point (0,0,1) is equal to the distance from P to the plane z + 1 = 0. Find an
equation for the surface, sketch and describe it verbally.

1.2a Vectors

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Leta = (2,0) and b = (1,1). Evaluate and sketch a + b, a+ 2b and 2a — b.

Q[2]: Determine whether or not the given points are collinear (that is, lie on a common
straight line)

@) (1,2,3), (0,3,7), (3,5,11)

(b) (0,3,-5), (1,2,-2), (3,0,4)

Q[3]: Determine whether the given pair of vectors is perpendicular

(@) (1,3,2), (2,-2,2)

(d) (-3,1,7), (2,-1,1)

() (2,1,1), (-1,4,2)

Ql4]: Let a = (ay,a3). Compute the projection of a on i and j.

QI5]: Does the triangle with vertices (1,2,3), (4,0,5) and (3, 6,4) have a right angle?

QI6]: Show that the area of the parallelogram determined by the vectors aand b is |a x b|.
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VECTORS AND GEOMETRY 1.2 VECTORS

Q[7]: Show that the volume of the parallelopiped determined by the vectors a, b and c is

a-(bxc)

QI8]: Verify by direct computation that
@ixj=kjxk=1kxi=j
(b) a-(axb)=b-(axb)=0

Q[9]: Consider the following statement: “If a # 0 and ifa-b = a-cthen b = c¢.” If the
statment is true, prove it. If the statement is false, give a counterexample.

QI10]: Consider the following statement: “The vector a x (b x ¢) is of the form ab + B¢
for some real numbers « and B.” If the statement is true, prove it. If the statement is false,
give a counterexample.

Q[11]: What geometric conclusions can you draw from a- (b x ¢) = (1,2,3)?
Q[12]: What geometric conclusions can you draw from a - (b x ¢) = 0?
Q[13]: Consider the three points O = (0,0), A = (4,0) and B = (b, ¢).

(a) Sketch, in a single figure,

o the triangle with vertices O, A and B, and
e the circumscribing circle for the triangle (i.e. the circle that goes through all
three vertices), and
e the vectors
- (74), from O to A,
- (TS), from O to B,
- O—C>, from O to C, where C is the centre of the circumscribing circle.

Then add to the sketch and evaluate, from the sketch,

e the projection of the vector OC on the vector OA, and
o the projection of the vector OC on the vector OB.

(b) Determine C.
(c) Evaluate, using the formula (1.2.12) in the CLP-3 text,
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o the projection of the vector OC on the vector OA, and
o the projection of the vector OC on the vector OB.

» Stage 2
Q[14]: Find the equation of a sphere if one of its diameters has end points (2,1,4) and
(4,3,10).

QI[15]: Show that the set of all points P that are twice as far from (3,-2,3) as from
(3/2,1,0) is a sphere. Find its centre and radius.

Q[16]: Use vectors to prove that the line joining the midpoints of two sides of a triangle is
parallel to the third side and half its length.

Q[17]: Compute the areas of the parallelograms determined by the following vectors.
(a) <_31 1> ’ <41 3>

(b) (4,2), (6,8)

Q[18](*): Consider the plane W, defined by:

W : —x+3y+3z=6,

Find the area of the parallelogram on W defined by 0 < x <3,0 <y < 2.

Q[19]: Compute the volumes of the parallelopipeds determined by the following vectors.
(@) (4,1,-1), (-1,5,2), (1,1,6)

®) (-2,1,2), (3,1,2), (0,2,5)

Q[20]: Compute the dot product of the vectors a and b. Find the angle between them.
(@ a=(1,2), b=(-2,3)

(b) a=(-1,1), b=(1,1)

(c)a=(1,1), b=(2,2)

(d) a=(1,21), b=(-1,1,1)

(e) a=(-1,2,3), b= (3,0,1)

Q[21]: Determine the angle between the vectors a and b if

(@ a=(1,2), b= (3,4)

(b) a=(2,1,4), b = (4,-2,1)

(c)a=(1,-2,1), b= (3,1,0)

Q[22]: Determine all values of y for which the given vectors are perpendicular.

(@) (2,4), (2,y)

(b) (4,-1), (v.y*)
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(¢ (3,1,1), (2, 5y,y2>

Q[23]: Let u = —21 4 5j and v = ai — 2j. Find « so that
@ ulv

(b) ulv

(c) The angle between u and v is 60°.

Q[24]: Define a = (1,2,3) and b = (4,10, 6).
(a) Find the component of b in the direction a.
(b) Find the projection of b on a.

(c) Find the projection of b perpendicular to a.
QI25]: Compute (1,2,3) x (4,5,6).

Q[26]: Calculate the following cross products.
(@) (1,-5,2) x (—2,1,5)

(b) (2,-3,-5) x (4,-2,7)

() (-1,0,1) x (0,4,5)

Q[27]: Letp = (—1,4,2), q = (3,1,—-1), r = (2, -3, —1). Check, by direct computation,
that

@ pxp=0

(b) pxq=—-qxp

(© px(3r) =3(pxr)

(d) px(q+r)=pxq+pxr

(€ px(qxr)#(pxq)xr

QI28]: Calculate the area of the triangle with vertices (0,0,0), (1,2,3) and (3,2,1).

Q[29](): A particle P of unit mass whose position in space at time ¢ is r(¢) has angular
momentum L(t) = r(t) x ¥'(t). If £’(t) = p(t)r(¢) for a scalar function p, show that L is
constant, i.e. does not change with time. Here ' denotes %.

» Stage 3

Q[30]: Show that the diagonals of a parallelogram bisect each other.

Q[31]: Consider a cube such that each side has length s. Name, in order, the four vertices
on the bottom of the cube A, B, C, D and the corresponding four vertices on the top of the
cube A’,B’,C',D’.

(a) Show that all edges of the tetrahedron A’C’BD have the same length.
(b) Let E be the center of the cube. Find the angle between EA and EC.
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Q[32]: Find the angle between the diagonal of a cube and the diagonal of one of its faces.

QI33]: Consider a skier who is sliding without friction on the hill y = h(x) in a two
dimensional world. The skier is subject to two forces. One is gravity. The other acts
perpendicularly to the hill. The second force automatically adjusts its magnitude so as to
prevent the skier from burrowing into the hill. Suppose that the skier became airborne at
some (xg, yo) with yo = h(xp). How fast was the skier going?

Q[34]: A marble is placed on the plane ax + by + cz = d. The coordinate system has been
chosen so that the positive z—axis points straight up. The coefficient ¢ is nonzero and the
coefficients a and b are not both zero. In which direction does the marble roll? Why were
the conditions “c # 0” and “a, b not both zero” imposed?

QI[35]: Show thata- (b x ¢) = (axb) -c.
QI[36]: Show thata x (b xc¢) = (a-c)b—(a-b)c.
QI37]: Derive a formula for (a x b) - (¢ x d) that involves dot but not cross products.
Q[38]: A prism has the six vertices
A=(1,0,0) A'=(5,0,1)
B =(0,3,0) B = (4,3,1)
C=(0,0,4) C' = (4,0,5)
(a) Verify that three of the faces are parallelograms. Are they rectangular?
(b) Find the length of AA’.
(c) Find the area of the triangle ABC.
(d) Find the volume of the prism.

Q[39]: (Three dimensional Pythagorean Theorem) A solid body in space with exactly
four vertices is called a tetrahedron. Let A, B, C and D be the areas of the four faces of a
tetrahedron. Suppose that the three edges meeting at the vertex opposite the face of area
D are perpendicular to each other. Show that D? = A% + B2 + C2.

b

A a
¢
QJ[40]: (Three dimensional law of cosines) Let A, B, C and D be the areas of the four faces
of a tetrahedron. Let « be the angle between the faces with areas B and C,  be the angle
between the faces with areas A and C and -y be the angle between the faces with areas A

and B. (By definition, the angle between two faces is the angle between the normal
vectors to the faces.) Show that

D? = A% 4 B*4 C? —2BCcosa —2ACcos 8 —2ABcosy
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1.34 Equations of Lines in 2d

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2
Q[1]: Find the vector parametric, scalar parametric and symmetric equations for the line
containing the given point and with the given direction.
(a) point (1,2), direction (3,2)
(b) point (5,4), direction (2, —1)
(c) point (—1,3), direction (-1, 2)

QI[2]: Find the vector parametric, scalar parametric and symmetric equations for the line
containing the given point and with the given normal.

(a) point (1,2), normal (3, 2)

(b) point (5,4), normal (2, —1)

(c) point (—1,3), normal (—1,2)

QI3]: Use a projection to find the distance from the point (-2, 3) to the line 3x — 4y = —4.

Q[4]: Let a, b and ¢ be the vertices of a triangle. By definition, a median of a triangle is a
straight line that passes through a vertex of the triangle and through the midpoint of the
opposite side.

(a) Find the parametric equations of the three medians.

(b) Do the three medians meet at a common point? If so, which point?

1.44 Equations of Planes in 3d

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

QI[1](*): Find the equation of the plane that contains (1,0,0), (0,1,0) and (0,0, 1).

Q2]

QI3]: What's wrong with the question “Find the equation of the plane containing (1,2,3),
(2,3,4) and (3,4,5).”?

Find the equation of the plane containing the points (1,0,1), (1,1,0) and (0,1,1).
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» Stage 2

Q[4]: Find the plane containing the given three points.

(@ (1,0,1), (2,4,6), (1,2,-1)

(b) (1,-2,-3), (4,—4,4), (3,2,-3)

() (1,-2,-3), (5,2,1), (-1,—4,-5)

QI5]: Find the distance from the given point to the given plane.
(a) point (—1,3,2), planex +y +z =7

(b) point (1,—4,3), planex —2y +z =5

QI6](%): A plane IT passes through the points A = (1,1,3), B=(2,0,2) and C = (2,1,0)
in IR3,

(a) Find an equation for the plane IT.

(b) Find the point E in the plane IT such that the line L through D = (6,1,2) and E is
perpendicular to I1.

QI[7](%): Let A = (2,3,4) and let L be the line given by the equations x +y = 1 and
X+2y+z=3.

(a) Write an equation for the plane containing A and perpendicular to L.
(b) Write an equation for the plane containing A and L.

Q[8](*): Consider two planes W;, W;, and a line M defined by:
Wy : 2x+y+z=7, W : —x+3y+3z=06, M

(a) Find a parametric equation of the line of intersection L of W; and Wj.
(b) Find the distance from L to M .

Q[9](#): Consider the plane 4x + 2y — 4z = 3. Find all parallel planes that are distance 2
from the above plane. Your answers should be in the following form: 4x + 2y — 4z = C.

QI10](+): Find the distance from the point (1,2,3) to the plane that passes through the
points (0,1,1), (1,—1,3) and (2,0, —1).

» Stage 3
Q[11]: Find the equation of the sphere which has the two planesx +y+z =3, x+y+z =
9 as tangent planes if the center of the sphere is on the planes 2x —y = 0, 3x —z = 0.

Q[12]: Find the equation of the plane that passes through the point (-2,0,1) and through
the line of intersection of 2x +3y —z =0, x —4y + 2z = —5.

Q[13]: Find the distance from the point p to the planen - x = c.
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VECTORS AND GEOMETRY 1.5 EQUATIONS OF LINES IN 3D

Q[14]: Describe the set of points equidistant from (1,2,3) and (5,2,7).
Q[15]: Describe the set of points equidistant from a and b.

QI[16](+): Consider a point P(5, —10,2) and the triangle with vertices A(0,1,1), B(1,0,1)
and C(1,3,0).

(a) Compute the area of the triangle ABC.
(b) Find the distance from the point P to the plane containing the triangle.
Q[17](x): Consider the sphere given by

(x=1+(y-27°+(z+1)*=2

Suppose that you are at the point (2,2,0) on S, and you plan to follow the shortest path
on S to (2,1, —1). Express your initial direction as a cross product.

1.54 Equations of Lines in 3d

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

Q[1]: Find a vector parametric equation for the line of intersection of the given planes.
(a) x—ZZ:3andy—|—%z =5

(b) 2x —y—2z = -3and 4x -3y — 3z = -5

Q[2]: Determine a vector equation for the line of intersection of the planes

(@ x+y+z=3andx+2y+3z=7

(b) x+y+z=3and2x +2y+2z=7

Q[3]: In each case, determine whether or not the given pair of lines intersect. If not,
determine the distance between the lines. Also find all planes containing the pair of lines.

(@) (x,y,z) =(-3,2,4) +t(—4,2,1) and (x,y,z) = (2,1,2) + £ (1,1,-1)
(b) (x,y,z) =(=3,2,4) +t(-4,2,1) and (x,y,z) = (2,1,-1) + ¢t (1,1,-1)
() (x,y,z) =(-3,2,4) +t(-2,-2,2) and (x,y,z) = (2,1,-1) +t(1,1,-1)
(d) (x,y,z) = (3,2,-2) +t(-2,-2,2) and (x,y,z) = (2,1,-1) + ¢ (1,1,-1)

QI4]: Find the equation of the line through (2, —1,—1) and parallel to each of the two
planes x +y = 0 and x — y + 2z = 0. Express the equations of the line in vector and scalar
parametric forms and in symmetric form.
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VECTORS AND GEOMETRY 1.5 EQUATIONS OF LINES IN 3D

Q[5](#): Let L be the line given by the equations x +y = 1 and x + 2y + z = 3. Write a
vector equation for L.

QI6]: Find the distance from (1,0,1) to the line x +2y +3z =11, x -2y +z = —1.

QI7]: Let L; be the line passing through (1, —2, —5) in the direction of d; = (2,3,2). Let
L, be the line passing through (—3,4, —1) in the direction d; = (5, 2,4).

(a) Find the equation of the plane P that contains L; and is parallel to L,.
(b) Find the distance from L; to P.
QI8]: Calculate the distance between the lines XTJFZ = y_—i = % and % = 2zl

Q[9](+): Let L be a line which is parallel to the plane 2x + v — z = 5 and perpendicular to
thelinex =3 —-t,y=1—-2tand z = 3t.

(a) Find a vector parallel to the line L.

(b) Find parametric equations for the line L if L passes through a point Q(a, b, c) where
a<0,b>0,c>0,and the distances from Q to the xy—plane, the xz—plane and the
yz—plane are 2, 3 and 4 respectively.

Q[10](#): Let L be the line of intersection of the planes x +y +z =6and x —y +2z = 0.
(a) Find the points in which the line L intersects the coordinate planes.

(b) Find parametric equations for the line through the point (10,11, 13) that is
perpendicular to the line L and parallel to the plane y = z.

Q[11](+): The line L has vector parametric equation r(t) = (2 4 3t)i + 4tj — k.
(a) Write the symmetric equations for L.

(b) Let a be the angle between the line L and the plane given by the equation
x—y+2z=0.Find a.

Q[12](*): Find the parametric equation for the line of intersection of the planes

x+y+z=11 and x—y—z=13.

Q[13](+): Let A = (0,2,2), B = (2,2,2), C = (5,2,1).

(a) Find the parametric equations for the line which contains A and is perpendicular to
the triangle ABC.

(b) Find the equation of the set of all points P such that PAis perpendicular to PB. This
set forms a Plane/Line/Sphere/Cone/Paraboloid /Hyperboloid (circle one) in space.

(c) Alight source at the origin shines on the triangle ABC making a shadow on the plane
x + 7y + z = 32. (See the diagram.) Find A.

11



VECTORS AND GEOMETRY 1.6 CURVES AND THEIR TANGENT VECTORS

N
ool

Q[14]: Let P, Q, R and S be the vertices of a tetrahedron. Denote by p, q, r and s the
vectors from the origin to P, Q, R and S respectively. A line is drawn from each vertex to
the centroid of the opposite face, where the centroid of a triangle with vertices a, b and ¢
is 2(a+ b + c). Show that these four lines meet at (p + q + 1 +s).

Q[15](+):
(a) Find a point on the y-axis equidistant from (2,5, -3) and (—3,6,1).

(b) Find the equation of the plane containing the point (1,3,1) and the line
r(t) = ti+tj+ (t+2) k.

1.6 Curves and their Tangent Vectors

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1
Questions 1 through 5 provide practice with curve parametrization. Being comfortable with the algebra and
interpretation of these descriptions are essential ingredients in working effectively with parametrizations.

Q[1]: Consider the following time-parametrized curve:
_ T =2
r(t) = (COS <4 t) , (t—5) )

List the three points (—1/+/2,0), (1,25), and (0,25) in chronological order.

Q[2]: At what points in the xy-plane does the curve (sint, t2) cross itself? What is the
difference in ¢ between the first time the curve crosses through a point, and the last?

QI3]: Find the specified parametrization of the first quadrant part of the circle
242 =al

(@) In terms of the y coordinate.
(b) In terms of the angle between the tangent line and the positive x-axis.

(c) In terms of the arc length from (0, a).

12



VECTORS AND GEOMETRY 1.6 CURVES AND THEIR TANGENT VECTORS

Q[4]:
y

A circle of radius a rolls along the x-axis in the positive direction, starting with its centre
at (a,a). In that position, we mark the topmost point on the circle P. As the circle moves,
P moves with it. Let 0 be the angle the circle has rolled—see the diagram below.

(a) Give the position of the centre of the circle as a function of 6.

—

P

(b) Give the position of P a function of 6.

)

Q[5]: The curve C is defined to be the intersection of the ellipsoid
> 1, 2
x°— -y +3z7 =1
4
and the plane
x+y+z=0.

When y is very close to 0, and z is negative, find an expression giving z in terms of .

Q[6]: A particle traces out a curve in space, so that its position at time ¢ is

r(t) =e'i+ 2+ (t—1)%(t-3)°k

fort > 0.

Let the positive z axis point vertically upwards, as usual. When is the particle moving
upwards, and when is it moving downwards? Is it moving faster at time ¢t = 1 or at time
t =23?

QI7]: Below is the graph of the parametrized function r(¢). Let s(f) be the arclength along
the curve from r(0) to r(t).

13



VECTORS AND GEOMETRY 1.6 CURVES AND THEIR TANGENT VECTORS

Indicate on the graph s(t + h) — s(t) and r(t + h) — r(t). Are the quantities scalars or
vectors?

Q[8]: What is the relationship between velocity and speed in a vector-valued function of
time?

9](#): Let r(t) be a vector valued function. Let v/, ¥’ , and r” denote gf, 97 and 3 5
respectively. Express

jt [(rxr) 1]
interms of r, ¥, ¥’ , and r”. Select the correct answer.
(@ (' x1")-t”

b)) ('xrt")-r+(rxr)-r”
() (rxt)-r”
(d 0

(e) None of the above.

» Stage 2
Q[10](+): Find the speed of a particle with the given position function
r(t) =5V2ti+etj—e ™k

Select the correct answer:

@ [|v(t)] = (e +e)

(b) |v(t)| =+/10+ 5ef +5¢~!
(©) |v(t)] = V10 4 el0f 4 ¢~10¢
@ |v(t) = 5(e + e

@ [v()] =5(c +e)

14



VECTORS AND GEOMETRY 1.6 CURVES AND THEIR TANGENT VECTORS

Q[11]: Find the velocity, speed and acceleration at time ¢ of the particle whose position is
r(t). Describe the path of the particle.

(a) r(t) = acosti+asintj+ctk
(b) r(t) = acostsinti+asin®tj+acostk
Q[12](+):
(a) Let
r(t) = (t2,3,%t3)

Find the unit tangent vector to this parametrized curve at t = 1, pointing in the
direction of increasing t.

(b) Find the arc length of the curve from (a) between the points (0,3,0) and (1,3, —3).
QI13]: Using Lemma 1.6.6 in the CLP-3 text, find the arclength of r(t) = (t, \/g 2,13 ) from
t=0tot=1.

Q[14]: A particle’s position at time ¢ is given by r(t) = (t +sint,cost)!. What is the
magnitude of the acceleration of the particle at time #?

X . 3 . . . . . 13
QI15](): A curve in R” is given by the vector equation r(t) = <2t cost,2tsint, §>
(a) Find the length of the curve betweent = 0 and ¢t = 2.

(b) Find the parametric equations of the tangent line to the curve at t = 7.

Q[16](x): Let r(t) = (3cost,3sint,4t) be the position vector of a particle as a function of
time t > 0.

(a) Find the velocity of the particle as a function of time ¢.
(b) Find the arclength of its path between t = 1 and t = 2.
QI[17](+): Consider the curve

1 1 .
r(t) = 3 cos ti+ 3 sin®tj 4 sin® tk
(a) Compute the arc length of the curve fromt =0tot = 7.
(b) Compute the arc length of the curve fromt = 0to t = 7.
Q[18](x): Letr(t) = (%te’, %tz, %t), t > 0. Compute s(t), the arclength of the curve at time t.

Q[19](+): Find the arc length of the curve r(t) = (", t", t3m/2) for0 <a<t<b and
where m > 0. Express your result in terms of m, a, and b.

Q[20]: If a particle has constant mass m, position r, and is moving with velocity v, then
its angular momentum is L = m(r x v).

For a particle with mass m = 1 and position function r = (sin ¢, cost,t), find “3—]; ‘

1  The particle traces out a cycloid—see Question 4
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VECTORS AND GEOMETRY 1.6 CURVES AND THEIR TANGENT VECTORS

Q[21](*): Consider the space curve I' whose vector equation is
r(t) = tsin(mt) i+ tcos(rmt)j+ Pk  0<t<ow
This curve starts from the origin and eventually reaches the ellipsoid E whose equation is
2x% 4 2% 4 22 = 24.
(a) Determine the coordinates of the point P where I' intersects E.
(b) Find the tangent vector of I at the point P.
(c) Does T intersect E at right angles? Why or why not?

Q[22](x): Suppose a particle in 3-dimensional space travels with position vector r(t),
which satisfies 1”(t) = —r(t). Show that the “energy” |r(t)|> + |r'(t)|? is constant (that
is, independent of ¢).

» Stage 3

Q[23](*): A particle moves along the curve C of intersection of the surfaces z2 = 12y and
18x = yz in the upward direction. When the particle is at (1, 3, 6) its velocity v and
acceleration a are given by

v=6i+12j+12k a=27i+30j+6k

(a) Write a vector parametric equation for C using u = ¢ as a parameter.
(b) Find the length of C from (0,0,0) to (1,3,6).

(c) If u = u(t) is the parameter value for the particle’s position at time f, find % when
the particle is at (1, 3, 6).

(d) Find % when the particle is at (1, 3, 6).

Q[24](+): A particle of mass m = 1 has position ry = % k and velocity v = ”72 1 at time 0.

It moves under a force
F(t) = —3ti+sintj+2e* k.

(a) Determine the position r(t) of the particle depending on t.
(b) At what time after time t = 0 does the particle cross the plane x = 0 for the first time?
(c) What is the velocity of the particle when it crosses the plane x = 0 in part (b)?

Q[25](*): Let C be the curve of intersection of the surfaces y = x?and z = %x3 . A particle
moves along C with constant speed such that % > 0. The particle is at (0,0,0) at time
=0andisat (3,9,18) at time t = 2.

(a) Find the length of the part of C between (0,0,0) and (3,9, 18).
(b) Find the constant speed of the particle.

. . . o 2
(c) Find the velocity of the particle when it is at (1,1, 5).
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VECTORS AND GEOMETRY 1.6 CURVES AND THEIR TANGENT VECTORS

(d) Find the acceleration of the particle when it is at (1,1, %)

Q[26]: A camera mounted to a pole can swivel around in a full circle. It is tracking an
object whose position at time ¢ seconds is x(t) metres east of the pole, and y(t) metres
north of the pole.

In order to always be pointing directly at the object, how fast should the camera be pro-
grammed to rotate at time #? (Give your answer in terms of x(¢) and y(t) and their deriva-
tives, in the units rad /sec.)

Q[27]: A projectile falling under the influence of gravity and slowed by air resistance
proportional to its speed has position satisfying

dr « dr

L = ok —a
ar Yat
where a is a positive constant. If r = ry and % = vq at time ¢ = 0, find r(t). (Hint: Define
u(t) = e*9(t) and substitute 9X(t) = e~*'u(t) into the given differential equation to find
a differential equation for u.)

QI28](x): At time ¢ = 0 a particle has position and velocity vectors r(0) = (—1,0,0) and
v(0) = (0, —1,1). At time ¢, the particle has acceleration vector

a(t) = (cost,sint,0)
(a) Find the position of the particle after t seconds.

(b) Show that the velocity and acceleration of the particle are always perpendicular for
every f.

(c) Find the equation of the tangent line to the particle’s path at t = —7/2.

(d) True or False: None of the lines tangent to the path of the particle pass through
(0,0,0). Justify your answer.

Q[29](#): The position of a particle at time ¢t (measured in seconds s) is given by
r(t) = tcos (E) i+ tsin (E>j+ tk
2 2
(a) Show that the path of the particle lies on the cone z2 = x? + 1.

(b) Find the velocity vector and the speed at time .

(c) Suppose that at time ¢ = 1s the particle flies off the path on a line L in the direction
tangent to the path. Find the equation of the line L.

(d) How long does it take for the particle to hit the plane x = —1 after it started moving
along the straight line L?

Q[30](+):

(a) The curveri(t) = (1+¢,t%,13) and r,(t) = (cost,sint, t) intersect at the point
P(1,0,0). Find the angle of intersection between the curves at the point P.

(b) Find the distance between the line of intersection of the planes x +y —z = 4 and
2x —z =4 and the line r(t) = (t, -1+ 2¢,1 4 3¢).
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VECTORS AND GEOMETRY 1.7 SKETCHING SURFACES IN 3D

1.7a Sketching Surfaces in 3d

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1](x): Match the following equations and expressions with the corresponding pictures.
Cartesian coordinates are (x, v, z), cylindrical coordinates are (7,6, z), and spherical
coordinates are (p, 0, ¢).

18



VECTORS AND GEOMETRY 1.7 SKETCHING SURFACES IN 3D

(@ ¢=m/3 (b) r=2cosb (c) x2+y2=zz—|—1
d) y= x% 4 22 () p=2cosg (f) z= x4+y4—4xy
» Stage 2

QJ2]: Sketch some of the level curves of

(@) f(xy) = x*+2y°

(b) f(x,y) = xy

() f(x,y) =xe¥

QI3](x): Sketch the level curves of f(x,y) = 2y

X2y’

Q[4](+): Draw a “contour map” of f(x,y) = e * 4" | showing all types of level curves
that occur.

Q[5](#): A surface is given implicitly by
24y —224+22=0
(a) Sketch several level curves z =constant.
(b) Draw a rough sketch of the surface.
Q[6](+): Sketch the hyperboloid 72 = 4x% + yz - 1.
Q[7]: Describe the level surfaces of
@) f(x,y,z) = x> +y* + 22
(d) f(x,y,z) =x+2y+3z
(© f(x,y,2) =x*+y?
QI8]: Sketch the graphs of
(@ f(x,y)=sinx 0<x<2m 0<y<l1
) flxy) =22 +y?
© flxy) = [x[+yl
Q[9]: Sketch and describe the following surfaces.
(@) 4x*> +y> =16
(b) x+y+2z=4
©Y%+5=1+%
(d) y? = % + 22
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VECTORS AND GEOMETRY 1.7 SKETCHING SURFACES IN 3D

2

© F+5H+5=1

(f) x*>+y%+ 2%+ 4x — by + 9z — b = 0 where b is a constant.
2 2

®i=%+%

(h) z = x?
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Chapter 2

PARTIAL DERIVATIVES

2.1a Limits

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

Q[1]: Evaluate, if possible,
(@) lim (xy + x?)

(xy)—(2-1)
X
b) i L
(b) (23)=(00) X2+ Y2
xZ

li .
© (29)=00) X2+ Y2

3

X
d) L _r
@ (e3)o(00) X2 + 2

x2y2
li 7
) (x9)(00) X2 + ¥
®  lim (sinx) (e¥ —1)
(xy)—(0,0) xy

QI2](»):

8 8
(a) Find the limit:  lim %.
(xy)—(00) X* + Y
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PARTIAL DERIVATIVES

2.1 LIMITS

5
(b) Prove that the following limit does not exist: ~ lim Ll
(xy)—(00) X° 4y

Q[3](*): Evaluate each of the following limits or show that it does not exist.

3 3

: X’ —y
1 - J
@) (24)=(00) 2 + 12

¥2 _ y4
b) i el
(b) (x3)=(00) 22 +
» Stage 3

QI4](x): Find the limit or show that it does not exist

2 2
lim Y TYyE Az
(xy,2)—(000) X%+ y?+z4

Q[5](+): Evaluate each of the following limits or show that it does not exist.

2x? + x%y — y?x + 2y?

i
@) (x4)=(00) x2 +y?
©) lim Y20y

(xy)—(01) (2 +y> =2y +1)?

Q[6]: Define, for all (x,y) # (0,0), f(x,y) = oy

x4y

(a) Let0 < 6 < 27t. Compute lim f(rcos6,rsin®).

r—0t

(b) Compute lin}) f(x,x?).
c) Does lim X,v) exist?
(©) (x,y>a<o,o>f( Y)

Q[7](+): Compute the following limits or explain why they do not exist.

: xy
1 I
@) (24)o(00) 2 + 12

_ sin(xy)
b) 1 i a2 A
®) (24)=(00) X2+ 12
© lm SV
(xy)—(-11) 14y

d lim X
@ (x,y)—(0,0) v
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PARTIAL DERIVATIVES 2.2 PARTIAL DERIVATIVES

2.2a Partial Derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1](+): Let

) {% if (x,y) # (0,0)
0 if(xy)=(0,0)

Compute, directly from the definitions,
@) Z(0,0)
(b) 5(0,0)

© $f6D)]

0

» Stage 2

Q[2]: Find all first partial derivatives of the following functions and evaluate them at the
given point.

@) f(x,y,z)=x3y*z°>  (0,—1,-1)
(b) w(x,y,z) =In(1+ e¥?) (2,0,-1)

© floy) = = (34)
QI3]: Show that the function z(x,y) = i—tg obeys

A

0z 0z
Jﬁ(x,y) + ya—y(x,y) =0

QI[4](%): A surface z(x,y) is defined by zy — y + x = In(xyz).

(a) Compute g—i, g—; in terms of x, y, z.
(b) Evaluate & and g—; at (x,y,z) = (-1,-2,1/2).

X

QI5](x): Find ¢ and & at (1,1,2,4) if (T, U, V, W) are related by

(TU - V)?>In(W —UV) =1n2
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PARTIAL DERIVATIVES 2.3 HIGHER ORDER DERIVATIVES

Q[6](x): Suppose that u = x2 + yz, x = prcos(0), y = prsin(f) and z = pr. Find & at the
point (po, o, 60) = (2,3, 71/2).

Q[7]: Use the definition of the derivative to evaluate f,(0,0) and f,(0,0) for

x2 72y2

flay) = {Ox_y ifx=y

ifx#y

» Stage 3

QI8]: Let f be any differentiable function of one variable. Define z(x,y) = f(x*>+y?). Is
the equation

0z

Y ox

0z
Xy =3 (ny) =0

necessarily satisfied?

QJ9]: Define the function

(x+2y)? I
% y#0
flay) =3
0 ifx+y=0

7 0x

(a) Evaluate, if possible % (0,0) and g—fyI(O,O).

(b) Is f(x,y) continuous at (0,0)?

2.3 Higher Order Derivatives

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

QI1]: Let all of the third order partial derivatives of the function f(x,y, z) exist and be
continuous. Show that

frz(x,Y,2) = fazy(0,Y,2) = fyxz(%,9,2) = fyex(X,Y,2) = fary(%,y,2) = fayx(2,y, 2)

Q[2]: Find, if possible, a function f(x,y) for which fy(x,y) = ¥ and f,(x,y) = e*.
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PARTIAL DERIVATIVES 2.4 THE CHAIN RULE

» Stage 2

QI[3]: Find the specified partial derivatives.
@) f(x,y) =22y fex(x,9), fryy(X,Y), fyxy(x,Y)

(b) f(x,y) = exyz?fxx(xfy)rfxy(xzy)/fxxy(xry)zfxyy(xry)
_ 3f
(©) fluo,w) = u—+2v+ 3w’ oudvow

Q[4]: Find all second partial derivatives of f(x,y) = 1/x% + 5y2.
QI[5]: Find the specified partial derivatives.

(@) f(x,y,z) = arctan (eV*Y); fryz(x,y,2)
(b) f(x,y,z) = arctan (ev¥) + arctan (e\/ﬁ) + arctan (evV¥%); fyyz(x,y, z)
(©) f(x,y,z) = arctan (eV™¥%); f1:(1,0,0)

QI6](%): Let f(r,0) = r™ cos mf be a function of ¥ and 6, where m is a positive integer.

(u,v,w) *f (3,2,1)

" Oudvow

(a) Find the second order partial derivatives f;, f;o, foo and evaluate their respective
values at (r,0) = (1,0).

(b) Determine the value of the real number A so that f(r, 0) satisfies the differential

equation
A 1
frr + _fr + _2f99 =0
r r
» Stage 3
QI7]: Let & > 0 be a constant. Show that u(x,y,z,t) = e~ (P H2%)/ (4ah) gaticfies the

13/2
heat equation

up = o (Unx + thyy + 1Uzz)
forallt >0

2.4a The Chain Rule

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Write out the chain rule for each of the following functions.
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PARTIAL DERIVATIVES 2.4 THE CHAIN RULE

(a) & for h(x,y) = f(x,u(x,y))
(b) 4 for h(x) = f(x,u(x),v(x))

(© 2 forh(x,y,2) = f(u(x,y,2),0(x,y), w(x))

QI[2](x): Let w = f(x,y,t) with x and y depending on . Suppose that at some point (x, y)
and at some time ¢, the partial derivatives f, f; and f; are equal to 2, —3 and 5 respectively,

while ﬁ—’tf = 1and % = 2. Find and explain the difference between Cé—zf and f;.

Q[3]: Thermodynamics texts use the relationship

(%) (5) (%)=

Explain the meaning of this equation and prove that it is true.

QI4]: What is wrong with the following argument? Suppose that w = f(x,y, z) and
= g(x,y). By the chain rule,

fw _owex  owdy  owe o owiz
ox 0dxox Odyox 0zox Ox 0z 0x

__ OJw oz ow __
Hence 0 = 57 5= and so 5 =0or ax =0.

» Stage 2

QI5]: Use two methods (one using the chain rule) to evaluate and aF = given that the
function w = x? +y? + z2, with x = st, y = scostand z = ssmt

QI6]: Evaluate é‘xa_(':yz f(2x + 3y, xy) in terms of partial derivatives of f.
QI7]: Find all second order derivatives of g(s,t) = f(2s + 3t,3s — 2t).

QI8](x): Assume that f(x,y) satisties Laplaces equation =- f + 2{ = 0. Show that this
is also the case for the composite function g(s,t) = f(s—t,s —|- t). That is, show that

852 + 3 > g = 0. You may assume that f(x,y) is a smooth function so that the Chain Rule
and Clalraut s Theorem on the equality of the mixed partials derivatives apply.

Q[9](%): Let z = f(x,y) where x = 2s + t and y = s — t. Find the values of the constants a,

b and c such that
P P P P o
ox2  Toxoy  oy:  0s2 of2
You may assume thatz = f(x, y) is a smooth function so that the Chain Rule and Clairaut’s
Theorem on the equality of the mixed partial derivatives apply.

Q[10](*): Let F be a function on IR2. Denote points in R? by (1, v) and the corresponding
partial derivatives of F by F,(u,v), Fy(u,v), Fuu(u,v), Fuo(u,v), etc.. Assume those
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PARTIAL DERIVATIVES 2.4 THE CHAIN RULE

derivatives are all continuous. Express

& F(x2 — y2 2xy)
ox dy ’

in terms of partial derivatives of the function F.
QI[11](): u(x,y) is defined as

u(x,y) = e F(xe_yz)
for an arbitrary function F(z).

(a) If F(z) = In(z), find § and g_;

(b) For an arbitrary F(z) show that u(x,y) satisfies

QI[12](): Let f(x) and g(x) be two functions of x satisfying f”(7) = —2 and g"(—4) = —1.

If z 2: hEis,tt) :1 f(2s 4 3t) 4+ g(s — 6t) is a function of s and ¢, find the value of gt§ when
s=2andt=1.

QI[13](*): Suppose that w = f(xz,yz), where f is a differentiable function. Show that

8w ow 6_w
Tox Ty oy “ oz

Q[14](+): Suppose z = f(x,y) has continuous second order partial derivatives, and
x = rcost, y = rsint. Express the following partial derivatives in terms r, t, and partial
derivatives of f.

(a) &
b) 3

QI[15](%): Let z = f(x,y), where f(x,y) has continuous second-order partial derivatives,
and

fx(zrl) =5, fy(Z,l) =-2, fxx(zzl) =2, fxy(zrl) =1, fyy(zrl) =—4
Find dtZZ( x(t),y(t)) when x(t) =22, y(t) = and t = 1.

Q[16](x): Assume that the function F(x,y,z) satisfies the equation (;IZ: = 6x2 + a 5 and

the mixed partial derivatives 2 ax ay and a@an are equal. Let A be some constant and let

G(7,s,t) = F(y+s,7 — s, At). Find the value of A such that 5 = ‘;27(2; + 26

0s?

QI[17](+): Let f(x) be a differentiable function, and suppose it is given that f’(0) = 10. Let
Q(s,t) = f(as — bt), where a and b are constants. Evaluate % at the point (s, t) = (b,a),

. . 0g
that is, find 3 (ba)"
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QI18](x): Let f(u, v) be a differentiable function of two variables, and let z be a
differentiable function of x and y defined implicitly by f(xz,yz) = 0. Show that

Q[19](x): Let w(s, t) = u(2s + 3t,3s — 2t) for some twice differentiable function
u=u(x,vy).
(a) Find wgs in terms of uyy, Uy, , and uy,, (you can assume that uyy, = uyy).

(b) Suppose uyy + 1y, = 0. For what constant A will wss = Awy?

Q[20](#): Suppose that f(x,y) is twice differentiable (with fy, = fyx), and x = r cos 6 and
y = rsin@.

(a) Evaluate fy, f, and f,g in terms of 7, 6 and partial derivatives of f with respect to x
and y.

(b) Let g(x,y) be another function satisfying gx = f; and g, = — fx. Express f, and fj in
terms of r, 0 and g, gp.

QI21](+): Suppose f(x,y) is a differentiable function and we know
V£(3,6) = (7,8)

Suppose also that
Vg(1,2) = (-14),

and

Vh(1,2) = (- 5,10> .
Assuming ¢(1,2) = 3, h(1,2) = 6,and z(s, t) = f(g(s ,)), find

Vz(1,2)

Q[22](+):

(a) Let f be an arbitrary differentiable function defined on the entire real line. Show that
the function w defined on the entire plane as

wx,y) = eV flx—y)
satisfies the partial differential equation:

ow  Jw
ox oy

(b) The equations x = u —3uv?, y = 3u?v — v® and z = u? — v? define z as a function of

x and y. Determine & at the point (1,v) = (2,1) which corresponds to the point
(x,y) = (2,11).

28
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Q[23](*): The equations
x? —ycos(uv) = v

4
x? +y? —sin(uv) = —

define x and y implicitly as functions of u and v (i.e. x = x(u,v), and y = y(u,v)) near
the point (x,y) = (1,1) at which (u,v) = (5,0).
(a) Find

at (u,0) = (%,0).
(b) If z = x* + y*, determine £ at the point (u,v) = (%,0).

QI[24](): Let f(x,y) be a differentiable function, and let u = x + y and v = x — y. Find a
constant, «, such that

(fo)? + (fy)? = a((fu)® + (fo)?)

» Stage 3

Q[25]: The wave equation
Pu 1 Pu
ox2 2o
arises in many models involving wave-like phenomena. Let u(x, t) and v(¢, 1) be related
by the change of variables

=0

(a) Show that 6—2 — lz = 0 if and only if = 0.
y (9(';617

Pu
ot2
(b) Show that &% — g

. ox2
functions F and G

=0 if and only if u(x,t) = F(x —ct) + G(x + ct) for some

(c) Interpret F(x —ct) + G(x + ct) in terms of travelling waves.
[26]' Evaluate

(a) LifeV* —x’zlny =7

(b) SLif Fx,y,22—y?) =

(0) (%)uifxyuvzlandererquv:O
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2.54 Tangent Planes and Normal Lines

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

X2y

At op Find the tangent plane to the surface z = f(x,y) at the

Q[1](+): Let f(x,y) =
point (1,1, 1).
Q[2](#): Find the tangent plane to

27 .
A2+ y2 42243

at the point (2,1,1).

Q[3]: Find the equations of the tangent plane and the normal line to the graph of the
specified function at the specified point.

@ flxy) =x2—y2at (-2,1)
) f(x,y) = ¢ at (2,0)

Q[4](*): Consider the surface z = f(x,y) defined implicitly by the equation xyz? + y?z
3 + x%. Use a 3-dimensional gradient vector to find the equation of the tangent plane to
this surface at the point (—1,1,2). Write your answer in the form z = ax + by + ¢, where
a, b and c are constants.

3:

Q[5](*): A surface is given by
z=x*—2xy +y~

(a) Find the equation of the tangent plane to the surface at x = a, y = 2a.

(b) For what value of 4 is the tangent plane parallel to the plane x —y +z = 1?

QI6](+): Find the tangent plane and normal line to the surface z = f(x,y) = xzzTyyz at
(v y) = (=1,2).

QI[7](+): Find all the points on the surface x> + 9y? + 4z2 = 17 where the tangent plane is
parallel to the plane x — 8z = 0.

QI[8](+): Let S be the surface z = x? + 2y? + 2y — 1. Find all points P(xq, yo,zo) on S with
xg # 0 such that the normal line at P contains the origin (0,0,0).

Q[9](+): Find all points on the hyperboloid z? = 4x? + y?> — 1 where the tangent plane is
parallel to the plane 2x —y +z = 0.

Q[10]: Find a vector of length +/3 which is tangent to the curve of intersection of the
surfaces z? = 4x2 +9y? and 6x +3y +2z =5 at (2,1,-5).
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» Stage 3

Q[11]: Find all horizontal planes that are tangent to the surface with equation

2 2
z = xye” (¥ HY)/2

What are the largest and smallest values of z on this surface?
QI[12](*): Let S be the surface
xy—2x+yz+ x> +yP+28 =7
(a) Find the tangent plane and normal line to the surface S at the point (0,2,1).
(b) The equation defining S implicitly defines z as a function of x and y for (x,y, z) near
(0,2,1). Find expressions for g—fc and g—; Evaluate g—; at (x,y,z) = (0,2,1).
(c) Find an expression for %.

Q[13](+):

(a) Find a vector perpendicular at the point (1,1, 3) to the surface with equation
x* + 2% = 10.

(b) Find a vector tangent at the same point to the curve of intersection of the surface in
part (a) with surface y? + z2 = 10.

(c) Find parametric equations for the line tangent to that curve at that point.
Q[14](+): Let P be the point where the curve
r(t) =Pi+tj+Pk,  (0<t<x)
intersects the surface
22 +xyz—2=0
Find the (acute) angle between the curve and the surface at P.

QI15]: Find the distance from the point (1,1,0) to the circular paraboloid with equation
z=2x2+y%

2.6a Linear Approximations and Error

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

QI1]: Find an approximate value for f(x,y) = sin(7txy +Iny) at (0.01,1.05) without using
a calculator or computer.
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2

QI2](x): Let f(x,y) = #};yz' Find an approximate value for f(—0.9, 1.1) without using

a calculator or computer.

Q[3]: Four positive numbers, each less than 50, are rounded to the first decimal place and
then multiplied together. Estimate the maximum possible error in the computed product.

Q[4](+): One side of a right triangle is measured to be 3 with a maximum possible error of
+0.1, and the other side is measured to be 4 with a maximum possible error of +0.2. Use
the linear approximation to estimate the maximum possible error in calculating the length
of the hypotenuse of the right triangle.

Q[5](*): If two resistors of resistance Ry and R, are wired in parallel, then the resulting
resistance R satisfies the equation % = Ril + Riz Use the linear approximation to estimate

the change in R if R; decreases from 2 to 1.9 ohms and R; increases from 8 to 8.1 ohmes.

Q[6]: The total resistance R of three resistors, R, Ry, R3, connected in parallel is

determined by

1_1,1 1

R R, Ry Rj
If the resistances, measured in Ohms, are R; = 25(), R, = 40Q) and R3 = 500), with a
possible error of 0.5% in each case, estimate the maximum error in the calculated value of

R.

Q[7]: The specific gravity S of an object is givenby S = ﬁ where A is the weight of the
object in air and W is the weight of the object in water. If A =20+.01 and W =12+ .02
find the approximate percentage error in calculating S from the given measurements.

QI[8](*): The pressure in a solid is given by
P(s,r) = sr(4s® — 1> —2)

where s is the specific heat and r is the density. We expect to measure (s, r) to be
approximately (2,2) and would like to have the most accurate value for P. There are two
different ways to measure s and r. Method 1 has an error in s of +0.01 and an error in r of
+0.1, while method 2 has an error of +0.02 for both s and r.

Should we use method 1 or method 2? Explain your reasoning carefully.

Q[9]: A rectangular beam that is supported at its two ends and is subjected to a uniform
load sags by an amount

pt!

wh?

where p = load, ¢ = length, i = height, w = width and C is a constant. Suppose p ~ 100,
¢ ~ 4, w~.1and h ~ 2. Will the sag of the beam be more sensitive to changes in the
height of the beam or to changes in the width of the beam.

S§=C

Q[10](x): Letz = f(x,y) = xzz—fyz Find an approximate value for f(—0.8,2.1).

QI[11](): Suppose that a function z = f(x,y) is implicitly defined by an equation:

xyz+x+y*+22=0
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(a) Find &.

(b) If f(—1,1) <0, find the linear approximation of the function z = f(x,y) at (—1,1).
(c) If f(—1,1) < 0, use the linear approximation in (b) to approximate f(—1.02,0.97).
Q[12](%): Let z = f(x,y) be given implicitly by

e“+yz=x+y.

(a) Find the differential dz.
(b) Use linear approximation at the point (1,0) to approximate f(0.99,0.01).

Q[13](*): Two sides and the enclosed angle of a triangle are measured tobe 3 +.1m, 4+ .Im
and 90 £ 1° respectively. The length of the third side is then computed using the cosine
law C?2 = A2 + B? — 2AB cos . What is the approximate maximum error in the computed
value of C?

Q[14](+): Use differentials to find a reasonable approximation to the value of f(x,y) =
xy+/x% 4+ y% at x = 3.02, y = 3.96. Note that 3.02 ~ 3 and 3.96 ~ 4.

QI15](%): Use differentials to estimate the volume of metal in a closed metal can with
diameter 8cm and height 12cm if the metal is 0.04cm thick.

Q[16](*): Let z be a function of x, y such that
2 —z42xy—y* =0, z(2,4) = 1.

(a) Find the linear approximation to z at the point (2,4).

(b) Use your answer in (a) to estimate the value of z at (2.02,3.96).

» Stage 3

Q[17](*): Consider the surface given by:

2% — xyz® —4x = 0.

(a) Find expressions for g—fc, g—; as functions of x, y, z.

(b) Evaluate %, g—; at (1,1,2).

(c) Measurements are made with errors, so that x = 14+ 0.03 and y = 1 + 0.02. Find the
corresponding maximum error in measuring z.

(d) A particle moves over the surface along the path whose projection in the xy—plane is
given in terms of the angle 6 as

x(0) =1+ cosb, y(0) = sinb

from the point A: x =2, y =0tothepoint B: x =1, y = 1. Find 3—5 at points A and

B.

33



PARTIAL DERIVATIVES 2.6 LINEAR APPROXIMATIONS AND ERROR

Q[18](x): Consider the function f that maps each point (x,y) in R? to ye™~.

(a) Suppose that x = 1 and y = e, but errors of size 0.1 are made in measuring each of x
and y. Estimate the maximum error that this could cause in f(x, y).

(b) The graph of the function f sits in R®, and the point (1, ¢, 1) lies on that graph. Find a
nonzero vector that is perpendicular to that graph at that point.

Q[19](+): A surface is defined implicitly by z* — xy?z? +y = 0.

(a) Compute S—i, g—; in terms of x, y, z.

(b) Evaluate & and g—; at (x,y,z) = (2,-1/2,1).

(c) If x decreases from 2 to 1.94, and y increases from —0.5 to —0.4, find the approximate
change in z from 1.

(d) Find the equation of the tangent plane to the surface at the point (2, -1/2,1).
QI[20](*): A surface z = f(x,y) has derivatives g-ﬁ =3 and g—J; = —2at(x,y,z) =(1,3,1).

(a) If x increases from 1 to 1.2, and y decreases from 3 to 2.6, find the change in z using a
linear approximation.

(b) Find the equation of the tangent plane to the surface at the point (1,3, 1).

Q[21](*): According to van der Waal’s equation, a gas satisfies the equation
(pV?+16)(V —1) = TV?,

where p, V and T denote pressure, volume and temperature respectively. Suppose the
gas is now at pressure 1, volume 2 and temperature 5. Find the approximate change in its
volume if p is increased by 0.2 and T is increased by 0.3.

Q[22](+): Consider the function f(x,y) = e 4",

(a) Find the equation of the tangent plane to the graph z = f(x, y) at the point where
(x,y) = (2,1).

(b) Find the tangent plane approximation to the value of f(1.99,1.01) using the tangent
plane from part (a).

Q[23](x): Let z = f(x,y) = In(4x? + y?).
(a) Use a linear approximation of the function z = f(x,y) at (0, 1) to estimate f(0.1,1.2).

(b) Find a point P(a, b, c) on the graph of z = f(x,y) such that the tangent plane to the
graph of z = f(x,y) at the point P is parallel to the plane 2x + 2y —z = 3.

Q[24](+):

(a) Find the equation of the tangent plane to the surface x2z% + y sin(7rx) = —? at the
point P = (1,1, -1).

et z be defined implicit x“z° +ysin(7tx) = —y~. Find = at the point
(b) Let z be defined implicitly by x%z + y si y2. Find & at the poi
P:(l,l,—l).

34



PARTIAL DERIVATIVES 2.7 DIRECTIONAL DERIVATIVES AND THE GRADIENT

(c) Let z be the same implicit function as in part (ii), defined by the equation
x?z3 + ysin(mrx) = —y%. Let x = 0.97, and y = 1. Find the approximate value of z.

QI25](+): The surface x* + y4 +z4 4+ xyz = 17 passes through (0, 1,2), and near this point
the surface determines x as a function, x = F(y, z), of y and z.

(a) Find Fyand F; at (x,y,z) = (0,1,2).

(b) Use the tangent plane approximation (also known as linear, first order or differential
approximation) to find the approximate value of x (near 0) such that (x,1.01,1.98)
lies on the surface.

2.7a Directional Derivatives and the Gradient

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1
QI[1](+): Find the directional derivative of f(x,y,z) = ¢*¥* in the (0,1,1) direction at the
point (0,1,1).
Q[2](x): Find V (y? + sin(xy)).

» Stage 2
Q[3]: Find the rate of change of the given function at the given point in the given
direction.
(@) f(x,y) = 3x — 4y at the point (0,2) in the direction —2i.
) f(x,y,z) =x 1 +y 1 +z1at(2,-3,4) in the directioni + j + k.

QI4]: In what directions at the point (2,0) does the function f(x,y) = xy have the
specified rates of change?

(@ —1
(b) -2
(c) -3

QI5]: Find V f(a,b) given the directional derivatives

D(i_ﬁ)/ﬁf(a/ b) — 3\/5 D(3i—4f)/5f(a/ b) =3

Q[6](): You are standing at a location where the surface of the earth is smooth. The slope
in the southern direction is 4 and the slope in the south—eastern direction is v/2. Find the
slope in the eastern direction.
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QI[7](+): Assume that the directional derivative of w = f(x,y,z) ata point P is a
maximum in the direction of the vector 27 —j + k, and the value of the directional
derivative in that direction is 31/6.

(a) Find the gradient vector of w = f(x,y,z) at P.
(b) Find the directional derivative of w = f(x,y,z) at P in the direction of the vector i + j
Q[8](*): A hiker is walking on a mountain with height above the z = 0 plane given by

z=f(x,y) =6—xy

The positive x—axis points east and the positive y—axis points north, and the hiker starts
from the point P(2,1,4).

(@) In what direction should the hiker proceed from P to ascend along the steepest path?
What is the slope of the path?

(b) Walking north from P, will the hiker start to ascend or descend? What is the slope?
(c) In what direction should the hiker walk from P to remain at the same height?

Q[9]: Two hikers are climbing a (small) mountain whose height is z = 1000 — 2x2 — 3y2.
They start at (1,1,995) and follow the path of steepest ascent. Their (x,y) coordinates
obey y = ax’ for some constants a, b. Determine a and b.

Q[10](): A mosquito is at the location (3,2,1) in IR?. She knows that the temperature T
near there is given by T = 2x? + y? — 22,

(a) She wishes to stay at the same temperature, but must fly in some initial direction.
Find a direction in which the initial rate of change of the temperature is 0.

(b) If you and another student both get correct answers in part (a), must the directions
you give be the same? Why or why not?

(c) What initial direction or directions would suit the mosquito if she wanted to cool
down as fast as possible?

Q[11](+):

The air temperature T(x, y,z) at a location (x,y, z) is given by:
T(x,y,z) =1+ x*+yz.

(a) A bird passes through (2,1, 3) travelling towards (4, 3,4) with speed 2. At what rate
does the air temperature it experiences change at this instant?

(b) If instead the bird maintains constant altitude (z = 3) as it passes through (2,1, 3)
while also keeping at a fixed air temperature, T = 8, what are its two possible direc-
tions of travel?

Q[12](+): Let f(x,y) = 2x* + 3xy + y* be a function of x and y.

(a) Find the maximum rate of change of f(x,y) at the point P (1, —%) .
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(b) Find the directions in which the directional derivative of f(x,y) at the point
P (1, —%) has the value %
QI13](x): The temperature T(x,y) at a point of the xy—plane is given by

x2

T(x,y) = ye

A bug travels from left to right along the curve y = x? at a speed of 0.01m/sec. The bug
monitors T(x,y) continuously. What is the rate of change of T as the bug passes through
the point (1,1)?

Q[14](x): Suppose the function T = F(x,y,z) = 3 + xy — y*> + z> — x describes the

temperature at a point (x, y, z) in space, with F(3,2,1) = 3.

(a) Find the directional derivative of T at (3,2,1), in the direction of the point (0, 1,2).

(b) At the point (3,2,1), in what direction does the temperature decrease most rapidly?

(c) Moving along the curve given by x = 3¢!, y = 2cost, z = v/1+ ¢, find Ccll—{, the rate of
change of temperature with respect to ¢, at t = 0.

(d) Suppose i + 5f + ak is a vector that is tangent to the temperature level surface
T(x,y,z) =3at (3,2,1). Whatis a?

Q[15](+): Let

flx,y,2) = (2x +y)e”HVH
glx,y,z) =xz+y* +yz+2°
(a) Find the gradients of f and g at (0,1, —1).

(b) Abird at (0,1, —1) flies at speed 6 in the direction in which f(x, y,z) increases most
rapidly. As it passes through (0,1, —1), how quickly does g(x,y, z) appear (to the
bird) to be changing?

(c) Abatat (0,1, —1) flies in the direction in which f(x,y,z) and g(x,y, z) do not change,
but z increases. Find a vector in this direction.

Q[16](+): A bee is flying along the curve of intersection of the surfaces 3z + x? + y? = 2
and z = x? — y? in the direction for which z is increasing. At time t = 2, the bee passes
through the point (1,1,0) at speed 6.

(a) Find the velocity (vector) of the bee at time t = 2.

(b) The temperature T at position (x,y, z) at time t is given by T = xy — 3x + 2yt + z.
Find the rate of change of temperature experienced by the bee at time t = 2.

Q[17](+): The temperature at a point (x,v,z) is given by T(x,y,z) = 5e2* V=3 where
T is measured in centigrade and x, y, z in meters.

(a) Find the rate of change of temperature at the point P(1,2, —1) in the direction toward
the point (1,1,0).

(b) In which direction does the temperature decrease most rapidly?
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(c) Find the maximum rate of decrease at P.

Q[18](x): The directional derivative of a function w = f(x,y, z) ata point P in the direction
of the vector i is 2, in the direction of the vector 7 4 is —+/2, and in the direction of the
vector 1 +j + k is —\%. Find the direction in which the function w = f(x,y,z) has the

maximum rate of change at the point P . What is this maximum rate of change?

Q[19](*): Suppose it is known that the direction of the fastest increase of the function
f(x,y) at the origin is given by the vector (1,2). Find a unit vector u that is tangent to the
level curve of f(x,y) that passes through the origin.

Q[20](*): The shape of a hill is given by z = 1000 — 0.02x? — 0.01y2. Assume that the
x—axis is pointing East, and the y—-axis is pointing North, and all distances are in metres.

(a) What is the direction of the steepest ascent at the point (0,100,900)? (The answer
should be in terms of directions of the compass).

(b) What is the slope of the hill at the point (0,100, 900) in the direction from (a)?

(c) If you ride a bicycle on this hill in the direction of the steepest descent at 5 m/s, what
is the rate of change of your altitude (with respect to time) as you pass through the
point (0, 100, 900)?

QI21](x): Let the pressure P and temperature T at a point (x,y,z) be

x2 + 2y2

W, T(x,y,Z) :5+xy—22

P(x,y,z) =
(a) If the position of an airplane at time ¢ is
(x(t),y(t),z(t)) = (2t,t* —1,cos t)

find & (PT)? at time t = 0 as observed from the airplane.

(b) In which direction should a bird at the point (0, —1,1) fly if it wants to keep both P
and T constant. (Give one possible direction vector. It does not need to be a unit
vector.)

(¢) An ant crawls on the surface 24+ zx + y2 = 2. When the ant is at the point (0, —1,1),
in which direction should it go for maximum increase of the temperature
T = 5+ xy — z%? Your answer should be a vector (a, b, c), not necessarily of unit
length. (Note that the ant cannot crawl in the direction of the gradient because that
leads off the surface. The direction vector (a, b, c) has to be on the tangent plane to
the surface.)

QI[22](x): Suppose that f(x,y,z) is a function of three variables and let u = \/L@ (1,1,2)
andv = L (1,-1,—-1) and w = L (1,1,1). Suppose that at a point (a, b, ¢),

V3 V3
Duf =0
Dyf =0
Dyf =4

Find V£ at (a,b,¢).
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Q[23](+): The elevation of a hill is given by the equation f(x,y) = x*y?e~*Y. An ant sits
at the point (1,1,e72).

(a) Find the unit vector u = (11, uy) that maximizes

o (L) 0) — £(1,1)

t—0 t

(b) Find a vector v = (v1, v, v3) pointing in the direction of the path that the ant could
take in order to stay on the same elevation level e 2.

(c) Find a vector v = (v1, 2, v3) pointing in the direction of the path that the ant should
take in order to maximize its instantaneous rate of level increase.

Q[24](+): Let the temperature in a region of space be given by T(x,y,z) = 3x% + %yz + 272
degrees.

(a) A sparrow is flying along the curve r(s) = (%53, 2s,5%) at a constant speed of 3ms ™.
What is the velocity of the sparrow when s = 1?

(b) At what rate does the sparrow feel the temperature is changing at the point A(3,2,1)
for which s = 1.

(c) At the point A (%, 2, 1) in what direction will the temperature be decreasing at
maximum rate?

(d) An eagle crosses the path of the sparrow at A(3,2,1), is moving at right angles to the
path of the sparrow, and is also moving in a direction in which the temperature
remains constant. In what directions could the eagle be flying as it passes through
the point A?

QI25](x): Assume that the temperature T at a point (¥, y, z) near a flame at the origin is
given by

B 200

14224y 422

where the coordinates are given in meters and the temperature is in degrees Celsius.
Suppose that at some moment in time, a moth is at the point (3,4,0) and is flying at a
constant speed of 1m/s in the direction of maximum increase of temperature.

T(x,y,z)

(a) Find the velocity vector v of the moth at this moment.
(b) What rate of change of temperature does the moth feel at that moment?

Q[26](*): We say that u is inversely proportional to v if there is a constant k so that

u = k/v. Suppose that the temperature T in a metal ball is inversely proportional to the
distance from the centre of the ball, which we take to be the origin. The temperature at
the point (1,2,2) is 120°.

(a) Find the constant of proportionality.
(b) Find the rate of change of T at (1,2,2) in the direction towards the point (2,1,3).

(c) Show that at most points in the ball, the direction of greatest increase is towards the
origin.
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Q[27](+): The depth of a lake in the xy-plane is equal to f(x,y) = 32 — x> — 4x — 4y?
meters.

(a) Sketch the shoreline of the lake in the xy-plane.

Your calculus instructor is in the water at the point (—1,1). Find a unit vector which
indicates in which direction he should swim in order to:

(b) stay at a constant depth?

(c) increase his depth as rapidly as possible (i.e. be most likely to drown)?

» Stage 3

Q[28]: The temperature T(x,y) at points of the xy-plane is given by T(x,y) = x* — 2.

(a) Draw a contour diagram for T showing some isotherms (curves of constant
temperature).

(b) In what direction should an ant at position (2, —1) move if it wishes to cool off as
quickly as possible?

(c) If the ant moves in that direction at speed v at what rate does its temperature
decrease?

(d) What would the rate of decrease of temperature of the ant be if it moved from (2, —1)
at speed v in direction (—1, —2)?

(e) Along what curve through (2, —1) should the ant move to continue experiencing
maximum rate of cooling?

Q[29](x): Consider the function f(x,y,z) = x> + cos(yz).
(a) Give the direction in which f is increasing the fastest at the point (1,0, 77/2).

(b) Give an equation for the plane T tangent to the surface

S = { (x,2) | Flrw,) =1
at the point (1,0, 77/2).
(c) Find the distance between T and the point (0,1,0).
(d) Find the angle between the plane T and the plane

P={(xvyz)|x+z=0}
QI[30](*): A function T(x,y,z) at P = (2,1,1) is known to have T(P) =5, Tx(P) =1,
T,(P) = 2,and T,(P) = 3.

(a) A bee starts flying at P and flies along the unit vector pointing towards the point
Q = (3,2,2). What is the rate of change of T(x, y,z) in this direction?

(b) Use the linear approximation of T at the point P to approximate T(1.9,1,1.2).
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(c) Let S(x,y,z) = x + z. A bee starts flying at P; along which unit vector direction
should the bee fly so that the rate of change of T(x,y, z) and of S(x,y, z) are both zero
in this direction?

Q[31](+): Consider the functions F(x,y,z) = z° + xy*> + xz and G(x,y,z) = 3x — y + 4z.
You are standing at the point P(0, 1, 2).

(@) You jump from P to Q(0.1, 0.9, 1.8). Use the linear approximation to determine
approximately the amount by which F changes.

(b) You jump from P in the direction along which G increases most rapidly. Will F
increase or decrease?

(c) You jump from P in a direction (a, b, c) along which the rates of change of F and G
are both zero. Give an example of such a direction (need not be a unit vector).

Q[32](*): A meteor strikes the ground in the heartland of Canada. Using satellite

photographs, a model
100

2= fY) = e
of the resulting crater is made and a plan is drawn up to convert the site into a tourist

attraction. A car park is to be built at (4,5) and a hiking trail is to be made. The trail is to
start at the car park and take the steepest route to the bottom of the crater.

(a) Sketch a map of the proposed site clearly marking the car park, a few level curves for
the function f and the trail.

(b) In which direction does the trail leave the car park?
Q[33](): You are standing at a lone palm tree in the middle of the Exponential Desert.
The height of the sand dunes around you is given in meters by

h(x,y) = 100e~(+2)
where x represents the number of meters east of the palm tree (west if x is negative) and
y represents the number of meters north of the palm tree (south if y is negative).

(a) Suppose that you walk 3 meters east and 2 meters north. At your new location, (3,2),
in what direction is the sand dune sloping most steeply downward?

(b) If you walk north from the location described in part (a), what is the instantaneous
rate of change of height of the sand dune?

(c) If you are standing at (3,2) in what direction should you walk to ensure that you
remain at the same height?

(d) Find the equation of the curve through (3,2) that you should move along in order
that you are always pointing in a steepest descent direction at each point of this
curve.

Q[34](x): Let f(x,y) be a differentiable function with f(1,2) = 7. Let

u—3i+4A V—Si—4A
—5tTslk —5' 5]
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be unit vectors. Suppose it is known that the directional derivatives Dy f(1,2) and
Dy f(1,2) are equal to 10 and 2 respectively.

(a) Show that the gradient vector V f at (1,2) is 107 + 5j.
(b) Determine the rate of change of f at (1,2) in the direction of the vector i + 2j.

(c) Using the tangent plane approximation, estimate the value of f(1.01,2.05).

2.94 Maximum and Minimum Values

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1](+):

(a) Some level curves of a function f(x,y) are plotted in the xy—plane below.

For each of the four statmements below, circle the letters of all points in the diagram
where the situation applies. For example, if the statement were “These points are on
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the y—axis”, you would circle both P and U, but none of the other letters. You may
assume that a local maximum occurs at point T.

(i) V£ is zero PRSTU
(ii) f has a saddle point PRSTU
(iii) the partial derivative f, is positive PRSTU
(iv) the directional derivative of f in the direction (0, —1) is PRSTU
negative

(b) The diagram below shows three “y traces” of a graph z = F(x, y) plotted on xz-axes.
(Namely the intersections of the surface z = F(x, y) with the three planes (y = 1.9,
y = 2,y = 2.1). For each statement below, circle the correct word.

(i) the first order partial derivative Fy(1,2) is positive /negative/zero (circle one)
(ii) F has a critical point at (2,2) true/false (circle one)
(iii) the second order partial derivative Fy,(1,2)is positive/negative/zero (circle one)

.
N
—
N
1 1/Y 5 1 T
_/

Q[2]: Find the high and low points of the surface z = /x> + y? with (x,y) varying over
the square [x| < 1, [y| < 1. Discuss the values of zy, z, there. Do not evaluate any
derivatives in answering this question.

QI3]: If tg is a local minimum or maximum of the smooth function f(t) of one variable (¢
runs over all real numbers) then f’(#y) = 0. Derive an analogous necessary condition for
Xo to be a local minimum or maximium of the smooth function g(x) restricted to points

on the line x = a+ td . The test should involve the gradient of g(x).

» Stage 2

Q[4](»): Letz = f(x,y) = (y2 - xz)z.
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(a) Make a reasonably accurate sketch of the level curves in the xy—plane of z = f(x,y)
for z = 0, 1 and 16. Be sure to show the units on the coordinate axes.

(b) Verify that (0,0) is a critical point for z = f(x,y), and determine from part (a) or
directly from the formula for f(x,y) whether (0,0) is a local minimum, a local
maximum or a saddle point.

(c) Can you use the Second Derivative Test to determine whether the critical point (0, 0)
is a local minimum, a local maximum or a saddle point? Give reasons for your
answer.

QI5](#): Use the Second Derivative Test to find all values of the constant ¢ for which the
function z = x? + cxy + y? has a saddle point at (0, 0).

Q[é](+):

Find and classify all critical points of the function

flx,y) =x° -y —2xy +6.

QI[7](+): Find all critical points for f(x,y) = x(x* + xy +y> —9). Also find out which of
these points give local maximum values for f(x,y), which give local minimum values,
and which give saddle points.

QI[8](+): Find the largest and smallest values of x?y?z in the part of the plane 2x +y +z = 5
where x > 0,y > 0 and z > 0. Also find all points where those extreme values occur.

Q[9]: Find and classify all the critical points of f(x,y) = x? + y? + x%y + 4.

Q[10](+): Find all saddle points, local minima and local maxima of the function

flx,y) = x° +x* — 2xy + y* — x.

QI[11](): For the surface
z=f(x,y) = x>+ x> — 3x* — 4> + 4
Find and classify [as local maxima, local minima, or saddle points] all critical points of

f(x,y).

Q[12]: Find the maximum and minimum values of f(x,y) = xy — x*y> when (x,y) runs
over thesquare0 < x < 1,0 <y <1

Q[13]: The temperature at all points in the disc x> + y* < 1 is given by T(x,y) = (x +
y)e‘xz_yz. Find the maximum and minimum temperatures at points of the disc.

Q[14](+):

(a) For the function z = f(x,y) = x® + 3xy + 3y? — 6x — 3y — 6. Find and classify as
[local maxima, local minima, or saddle points] all critical points of f(x,y).

(b) The images below depict level sets f(x,y) = c of the functions in the list at heights
c=0,0.1,02,...,1.9,2. Label the pictures with the corresponding function and mark
the critical points in each picture. (Note that in some cases, the critical points might
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not be drawn on the images already. In those cases you should add them to the
picture.)

QI15](*): Let the function
f(x,y) = x° +3xy +3y* — 6x — 3y — 6
Classify as [local maxima, minima or saddle points| all critical points of f(x,y).

Q[16](+): Let h(x,y) = y(4 — x* —y?).

(a) Find and classify the critical points of h(x, y) as local maxima, local minima or saddle
points.

(b) Find the maximum and minimum values of h(x,y) on the disk x* + y? < 1.

QI[17](*): Find the absolute maximum and minimum values of the function
f(x,y) =5+ 2x — x?> — 4y? on the rectangular region

R={(xy)| -1<x<3 -1<y<1}

QI[18](*): Find the minimum of the function h(x, y) = —4x — 2y + 6 on the closed bounded
domain defined by x? + y* < 1.

QI[19](+): Let f(x,y) = xy(x +y —3).
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(a) Find all critical points of f, and classify each one as a local maximum, a local
minimum, or saddle point.

(b) Find the location and value of the absolute maximum and minimum of f on the
triangular regionx > 0,y > 0, x +y < 8.

Q[20](+): Find and classify the critical points of f(x,y) = 3x%y + y> — 3x? — 3y? + 4.
QI21](*): Consider the function

f(x,y) =2x> —6xy +y* + 4y

(a) Find and classify all of the critical points of f(x, ).

(b) Find the maximum and minimum values of f(x,y) in the triangle with vertices (1,0),
(0,1) and (1,1).

Q[22](+): Find all critical points of the function f(x,y) = x* + y* — 4xy + 2, and for each
determine whether it is a local minimum, maximum or saddle point.

Q[23](+): Let
f(x,y) = xy(x +2y —6)

(a) Find every critical point of f(x,y) and classify each one.

(b) Let D be the region in the plane between the hyperbola xy = 4 and the line
x 4+ 2y — 6 = 0. Find the maximum and minimum values of f(x,y) on D.

Q[24](*): Find all the critical points of the function

flx,y) =x*+y* —dxy

defined in the xy-plane. Classify each critical point as a local minimum, maximum or
saddle point.

Q[25](*): A metal plate is in the form of a semi-circular disc bounded by the x-axis and
the upper half of x> + y?> = 4. The temperature at the point (x,y) is given by T(x,y) =
In (1+ x? +y?) — y. Find the coldest point on the plate, explaining your steps carefully.
(Note: In2 ~ 0.693, In5 ~ 1.609)

Q[26](+): Find all the critical points of the function
floy) =2 +xy? —x

defined in the xy-plane. Classify each critical point as a local minimum, maximum or
saddle point. Explain your reasoning.

Q[27](*): Consider the function g(x,y) = x* — 10y — y>.

(a) Find and classify all critical points of g.

(b) Find the absolute extrema of g on the bounded region given by

X2 +4y* <16,y <0
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Q[28](+): Find and classify all critical points of

fx,y) = x° = 3xy? — 3x% — 3y

QI[29](#): Find the maximum value of

f(xy) = xye (VI

on the quarter-circle D = { (x,y) [ ¥* +y* <4, x>0,y >0 }.

Q[30]: Equal angle bends are made at equal distances from the two ends of a 100 metre
long fence, so that the resulting three segment fence can be placed along an existing wall
to make an enclosure of trapezoidal shape. What is the largest possible area for such an
enclosure?

Q[31]: Find the most economical shape of a rectangular box that has a fixed volume V and
that has no top.

» Stage 3

QI[32](x): The temperature T (x,y) at a point of the xy—plane is given by
T(x,y) = 20 — 4x? — 1/
(a) Find the maximum and minimum values of T(x, y) on the disk D defined by
X2 +y* <4

(b) Suppose an ant lives on the disk D. If the ant is initially at point (1,1), in which
direction should it move so as to increase its temperature as quickly as possible?

(c) Suppose that the ant moves at a velocity v = (-2, —1). What is its rate of increase of
temperature as it passes through (1,1)?

(d) Suppose the ant is constrained to stay on the curve y = 2 — x2. Where should the ant
PP y y
go if it wants to be as warm as possible?

QI33](*): Consider the function
f(x,y) = 3kx?y + y® — 3x* — 3y> + 4

where k > 0 is a constant. Find and classify all critical points of f(x,y) as local minima,
local maxima, saddle points or points of indeterminate type. Carefully distinguish the
cases k < %,k: %andk> %

Q[34](+):

(a) Show that the function f(x,y) = 2x + 4y + xl—y has exactly one critical point in the first
quadrant x > 0, ¥ > 0, and find its value at that point.

(b) Use the second derivative test to classify the critical point in part (a).
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(c) Hence explain why the inequality 2x + 4y + xl—y > 6 is valid for all positive real
numbers x and y.

QI[35]: An experiment yields data points (x;,y;), i = 1,2,---,n. We wish to find the
straight line y = mx + b which “best” fits the data. The definition of “best” is “minimizes
the root mean square error”, i.e. minimizes Y., (mx; + b — y;)?. Find m and b.

2.104 Lagrange Multipliers

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1](+):
(a) Does the function f(x,y) = x?> + y? have a maximum or a minimum on the curve

xy = 1?7 Explain.

(b) Find all maxima and minima of f(x,y) on the curve xy = 1.

» Stage 2

QI2]: Find the maximum and minimum values of the function f(x,y,z) = x +y —z on
the sphere x? + % + z? = 1.

Q[3]: Find 4, b and c so that the volume 4%abc of an ellipsoid Z—; + Z—i + i—; = 1 passing
through the point (1,2, 1) is as small as possible.

Q[4](+): Use the Method of Lagrange Multipliers to find the minimum value of z = x? + 2
subject to x?y = 1. At which point or points does the minimum occur?

QI[5](+): Use the Method of Lagrange Multipliers to find the radius of the base and the
height of a right circular cylinder of maximum volume which can be fit inside the unit
sphere x> + y? +z2 = 1.

Q[6](+): Use the method of Lagrange Multipliers to find the maximum and minimum
values of

flx,y) =xy

subject to the constraint
X427 = 1.

Q[7](+): Find the maximum and minimum values of f(x,y) = x? + y? subject to the con-
straint x* 4+ y* = 1.
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QI[8](*): Use Lagrange multipliers to find the points on the sphere z? + x% + y?> — 2y — 10 =
0 closest to and farthest from the point (1, —-2,1).

Q[9](#): Use Lagrange multipliers to find the maximum and minimum values of the func-
tion f(x,y,z) = X2 + y2 - %zz on the curve of intersection of the plane x 4+ 2y +z = 10
and the paraboloid x* +y? —z = 0.

Q[10](): Find the point P = (x,y,z) (with x, y and z > 0) on the surface x*y?z = 6/3 that
is closest to the origin.

Q[11](»): Find the maximum value of f(x,y,z) = xyz on the ellipsoid
g(x,y,2) =2 +xy+y* +322 =9

Specity all points at which this maximum value occurs.

Q[12](+): Find the radius of the largest sphere centred at the origin that can be inscribed
inside (that is, enclosed inside) the ellipsoid

20+ 1>+ > +2(z—1)* =8
Q[13](*): Let C be the intersection of the plane x + y + z = 2 and the sphere
x> 4+y?+2z2=2.
(a) Use Lagrange multipliers to find the maximum value of f(x,y,z) =z on C.
(b) What are the coordinates of the lowest point on C?
Q[14](+):

(a) Use Lagrange multipliers to find the extreme values of
Flayz) = (x= 2P+ (y+22 + (- 47
on the sphere x? + y? + 22 = 6.
(b) Find the point on the sphere x2 + y? + z? = 6 that is farthest from the point (2, -2, 4).
Q[15](x):

(a) Find the minimum of the function
floyz) = (x =2+ (y—1)* + 22

subject to the constraint x + y? + z> = 1, using the method of Lagrange multipliers.
(b) Give a geometric interpretation of this problem.

Q[16](*): Use Lagrange multipliers to find the minimum and maximum values of (x + z)e¥
subject to x2 +y? + z2 = 6.

Q[17](+): Find the points on the ellipse 2x? + 4xy + 5y> = 30 which are closest to and
farthest from the origin.

Q[18]: Find the ends of the major and minor axes of the ellipse 3x? — 2xy + 3y? = 4.
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Q[19](*): A closed rectangular box with a volume of 96 cubic meters is to be constructed
of two materials. The material for the top costs twice as much per square meter as that for
the sides and bottom. Use the method of Lagrange multipliers to find the dimensions of
the least expensive box.

Q[20](*): Consider the unit sphere
S={(xyz2)] Py 2= 1}
in R3. Assume that the temperature at a point (x, Y, z) of S is
T(x,y,z) = 40xy*z
Find the hottest and coldest temperatures on S.

Q[21](*): Find the dimensions of the box of maximum volume which has its faces parallel
to the coordinate planes and which is contained inside the region 0 < z < 48 — 4x% — 3y2.

z

Q[22](*): A rectangular bin is to be made of a wooden base and heavy cardboard with no
top. If wood is three times more expensive than cardboard, find the dimensions of the
cheapest bin which has a volume of 12m?.

Q[23](*): A closed rectangular box having a volume of 4 cubic metres is to be built with
material that costs $8 per square metre for the sides but $12 per square metre for the top
and bottom. Find the least expensive dimensions for the box.

Q[24](*): Suppose that a, b, c are all greater than zero and let D be the pyramid bounded
by the plane ax + by 4 cz = 1 and the 3 coordinate planes. Use the method of Lagrange
multipliers to find the largest possible volume of D if the plane ax + by + cz = 1 is required
to pass through the point (1,2,3). (The volume of a pyramid is equal to one-third of the
area of its base times the height.)

» Stage 3

Q[25](*): Use Lagrange multipliers to find the minimum distance from the origin to all
points on the intersection of the curves

gxyz)=x—z—4=0
and h(x,y,z) =x+y+z—-3=0
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Q[26](*): Find the largest and smallest values of
f(x,y,z) =6x +y* +xz

on the sphere x2 + 12 + z2 = 36. Determine all points at which these values occur.
QI27](+):
The temperature in the plane is given by T(x,y) = eV (x* + y?).

(@) (i) Give the system of equations that must be solved in order to find the warmest
and coolest point on the circle x> + y*> = 100 by the method of Lagrange
multipliers.

(ii) Find the warmest and coolest points on the circle by solving that system.

(b) (i) Give the system of equations that must be solved in order to find the critical
points of T(x, y).

(ii) Find the critical points by solving that system.
(c) Find the coolest point on the solid disc x% +y? < 100.
Q[28](+):

(a) By finding the points of tangency, determine the values of ¢ for whichx +y +z = cis
a tangent plane to the surface 4x? + 4y? + z> = 96.

(b) Use the method of Lagrange Multipliers to determine the absolute maximum and
minimum values of the function f(x,y,z) = x + y + z along the surface
g(x,y,z) = 4x% + 4y? + 2% = 96.

(c) Why do you get the same answers in (a) and (b)?
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3.1 Double Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: For each of the following, evaluate the given double integral without using
iteration. Instead, interpret the integral as, for example, an area or an average value.

(a) §{z dxdy where R is the rectangle -1 <x <3, -4 <y <1

ﬂ
=
N

(b) §,(x+3) dxdy, where D is the half disc 0 < y < V4 —
(c) §§x(x +vy) dxdy where R is the rectangle 0 < x <4, 0 <y <b

» Stage 2
Questions 2 through 7 provide practice with limits of integration for double integrals in Cartesian coordi-
nates.

QI2]: For each of the following, evaluate the given double integral using iteration.
(a) Jj (x* + y?) dx dy where R is the rectangle 0 < x < a, 0 < y < b where a > 0 and
R

> 0.

r

b
(b) J (x —3y) dx dy where T is the triangle with vertices (0,0), (4,0), (0,b).
T
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() J f xy* dx dy where R is the finite region in the first quadrant bounded by the curves

R
y =x%and x = 2.

(d) J f x cosy dx dy where D is the finite region in the first quadrant bounded by the

coordinate axes and the curve y = 1 — x2.

(e) Jf gey dx dy where R is the region0 < x < 1, ¥ <y < x.

(f)ﬂ1

Q[3]: For each of the following integrals (i) sketch the region of integration, (ii) write an
equivalent double integral with the order of integration reversed and (iii) evaluate both
double integrals.

2 e*
(@) J dxj dy
4 2y
o [Ca[
4 2y
3x—|—2
(c) J dxj
244y
](+): Combine the sum of the two interated double integrals

f J f(x,y) dxdy—l—J J f(x,y)dxdy

into a single interated double integral with the order of integration reversed.

1 1
J f e*/V dy dx
0 Jx

(a) Sketch the domain of integration.

il p dx dy where T is the triangle with vertices (0,0), (0,1), (1,1).

5](x): Consider the integral

(b) Evaluate the integral by reversing the order of integration.

Q[6](): The integral I is defined as
V2 T 4 VT
= [[femaa= [ [ feparars [ [ oy dxay
3 1 1/y V2 Jy/2

(a) Sketch the region R.

(b) Re—write the integral I by reversing the order of integration.
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(c) Compute the integral I when f(x,y) = x/y.
Q[7](+): A region E in the xy—plane has the property that for all continuous functions f

Hf(x,y) dA = Lx__i [Jy_2x+3f(x,y)dy] dx
E

y=x
(a) Compute {§. xdA.
(b) Sketch the region E.

(c) Setup {§. xdA as an integral or sum of integrals in the opposite order.

Jf sin(y?) dA
D

where D is the region bounded by x +y = 0,2x —y = 0,and y = 4.
Q[9](*): Consider the integral

Q[8](*): Calculate the integral:

1 1 : 2
IZJJ SN Gy dy
0Jyy X

(a) Sketch the region of integration.
(b) Evaluate L.

Q[10](+): Let I be the double integral of the function f(x,y) = y?sin xy over the triangle
with vertices (0,0), (0,1) and (1,1) in the xy—plane.

(a) Write I as an iterated integral in two different ways.
(b) Evaluate I.
QI11](+): Find the volume (V) of the solid bounded above by the surface

22

z=f(x,y)=e",

below by the plane z = 0 and over the triangle in the xy—plane formed by the lines x =1,
y=0andy = x.

1 r2—y
Q[12](x): Consider the integral I = J f % dx dy.
0 Jy

(a) Sketch the region of integration.

(b) Interchange the order of integration.
(c) Evaluate I.

Q[13](*): For the integral

1 01
I:JJ A/1+y3 dydx
0 ) y-ay
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(a) Sketch the region of integration.
(b) Evaluate I.

Q[14](+):
(a) D is the region bounded by the parabola y?> = x and the line y = x — 2. Sketch D and

evaluate | where
J = Jf 3y dA
D

(b) Sketch the region of integration and then evaluate the integral I :

401
I:J J e/ dydx
0 Jivx

Q[15](*): Consider the iterated integral

0 (2
J f cos(x%) dx dy
-4Jy=y

(a) Draw the region of integration.

(b) Evaluate the integral.
Q[16](x):

(a) Combine the sum of the iterated integrals

T rvy 4 VY
sz J f(xy) dxdy+f f(x,y) dxdy
0J-\y 1 Jy—2

into a single iterated integral with the order of integration reversed.

(b) Evaluate I if f(x,y) = 5.

Q[17](+): Let
4 rr/8—y
I=JJ f(x,y) dxdy
0 Jyy

(a) Sketch the domain of integration.

(b) Reverse the order of integration.

1
(I+y)?

0 r2x
J f e/ dydx
—1J-2
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Q[19](#): Let
2 rx 6 rV6—X
szo L f(x,y) ddeLL f(x,y) dydx

Express I as an integral where we integrate first with respect to x.

Q[20](+): Consider the domain D above the x—axis and below parabolay =1 — x? in the
xy—plane.

(a) Sketch D.
(b) Express

ﬂ f(x,y) dA
D

as an iterated integral corresponding to the order dx dy. Then express this integral as
an iterated integral corresponding to the order dy dx.

(c) Compute the integral in the case f(x,y) = er—=(°/3),
Q[21](x): Let I = Sé S}C2 x> sin(y®) dy dx.

(a) Sketch the region of integration in the xy—plane. Label your sketch sufficiently well
that one could use it to determine the limits of double integration.

(b) Evaluate I.

Q[22](*): Consider the solid under the surface z = 6 — xy, bounded by the five planes
x=0,x=3,y=0,y =3,z = 0. Note that no part of the solid lies below the x—y plane.

(a) Sketch the base of the solid in the xy—plane. Note that it is not a square!
(b) Compute the volume of the solid.
Q[23](*): Evaluate the following integral:

2 4
J f cos (y*/?) dy dx
2 Jx2

Q[24](+): Consider the volume above the xy-plane that is inside the circular cylinder
x? 4+ y? = 2y and underneath the surface z = 8 + 2xy.

(a) Express this volume as a double integral I, stating clearly the domain over which I is
to be taken.

(b) Express in Cartesian coordinates, the double integral I as an iterated intergal in two
different ways, indicating clearly the limits of integration in each case.

(c) How much is this volume?

Q[25](*): Evaluate the following integral:

9 3
f f sin(7rx®) dxdy
0 Jvy
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Q[26](*): The iterated integral

1 VX
I= J {J sin (y° — 3y) dy | dx
0 —/x

is equal to {{ sin (> — 3y) dA for a suitable region R in the xy-plane.
(a) Sketch the region R.

(b) Write the integral I with the orders of integration reversed, and with suitable limits
of integration.

(c) Find I.

QI[27](): Find the double integral of the function f(x,y) = xy over the region bounded
byy =x—1and y?> =2x +6.

QI28](): Find the double integral of the function f(x,y) = xy over the region bounded
by y = x—1and y? = 2x + 6.

» Stage 3

Q[29]: Find the volume of the solid inside the cylinder x> + 2y> = 8, above the plane
z = y — 4 and below the plane z = 8 — x.

3.24 Double Integrals in Polar Coordinates

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Consider the points
(x1,y1) = (3,0) (x2,y2) = (L,1) (x3,y3) = (0,1)
(x4/ y4) = (_1/ 1) (x5/y5) = <_2/O)
Also define, for each angle 6, the vectors
&(0) =cosfi+sinfj  &y(0) = —sinfi+cosfj
(a) Find, for each 1 < i < 6, the polar coordinates r; and 6;, with 0 < 6; < 27, for the
point (x;,y;).

(b) Determine, for each angle 0, the lengths of the vectors &,(6) and é,(6) and the angle
between the vectors &,(0) and &,(0). Compute &,(6) x &(6) (viewing &,(0) and &y(0)
as vectors in three dimensions with zero k components).
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(c) Foreach 1 < i < 6, sketch, in the xy-plane, the point (x;, y;) and the vectors &,(6;) and
€9(0;). In your sketch of the vectors, place the tails of the vectors &,(6;) and &;(6;) at

(xi,yi)-

QI2]: Let (a, b) be a vector. Let r be the length of (a,b) and 0 be the angle between (a, b)
and the x-axis.

(a) Express a and b in terms of r and 0.

(b) Let (A, B) be the vector gotten by rotating (a, b) by an angle ¢ about its tail. Express
A and B in terms of a, b and ¢.

QI3]: For each of the regions R sketched below, express {{, f(x,y) dx dy as an iterated
integral in polar coordinates in two different ways.

@ vy s vy (b) x2+y2:4—y—
- R
. ~
L x2+?};2=1 =
(© Y d) v y=2
Yy =2
(@—1)2442=1 R
R
x T

Q[4]: Sketch the domain of integration in the xy-plane for each of the following polar
coordinate integrals.

2 /4
(a) J drf df r f(rcos6,rsin@)
1 —7t/4
/4 Snfreosd
(b) J df)f drr f(rcos6,rsin@)
0 0

27T S E—
(c) J dGJ Veos2 09570 ;. . f(rcosb,rsinb)
0 0

» Stage 2
Q[5]: Use polar coordinates to evaluate each of the following integrals.

(a) Jf (x + y)dx dy where S is the region in the first quadrant lying inside the disc
S

x? + y* < a? and under the line y = /3x.
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(b) Jf x dx dy, where S is the disc segment x> + % <2, x > 1.
S
(0) Jf(xz + y?)dx dy where T is the triangle with vertices (0,0), (1,0) and (1,1).

T
(d) H In(x? 4+ y?) dx dy
x24y2<1
Q[6]: Find the volume lying inside the sphere x> + y? + z2 = 2 and above the paraboloid
z=x>+y>%

Q[7]: Find the volume lying inside the cylinder x* + (y — a)?> = a? and between the upper
and lower halves of the cone z% = x? + y2.

Q[8]: Find the volume common to the cylinders x2 4 y2 < 2ax and z% < 2ax.

Q[9](+): Consider the region E in 3-dimensions specified by the inequalities x> + > < 2y
and 0 < z < /x2 + 12

(a) Draw a reasonably accurate picture of E in 3—-dimensions. Be sure to show the units
on the coordinate axes.

(b) Use polar coordinates to find the volume of E. Note that you will be “using polar
coordinates” if you solve this problem by means of cylindrical coordinates.

1

Hint: SSlnn u dl/l = _% sinn_ u cosu + Tl;l Ssinn—z u dy

Q[10](+): Evaluate the iterated double integral
x=2 ry=4/4—x2 3
f J (x* +v?)? dy dx
x=0 Jy=0

Q[11]():
(a) Sketch the region £ (in the first quadrant of the xy—plane) with boundary curves
Pty =2,+y=4y=xy=0.

The mass of a thin lamina with a density function p(x,y) over the region L is given
by
M = ffp(x,y) dA
L

(b) Find an expression for M as an integral in polar coordinates.

(¢) Find M when
2xy

p(x,y) = m
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1
Q[12](*): Evaluate > dA.
24 .2
ﬂ (14 x2+y?)

Q[13](*): Evaluate the double integral
ny«/xz +y2dA
D

over theregion D = { (x,y) [ x>+ <2, 0<y<x }.

Q[14](+): This question is about the integral
1 pa/4—y?
J J In (1+x* +y*) dxdy
0 JV3y

(a) Sketch the domain of integration.
(b) Evaluate the integral by transforming to polar coordinates.

Q[15](#): Let D be the region in the xy—plane bounded on the left by the line x = 2 and on
the right by the circle x> + y*> = 16. Evaluate

|[ 62422 s

Q[16](*): In the xy—plane, the disk x? + y? < 2x is cut into 2 pieces by the line y = x. Let
D be the larger piece.

(a) Sketch D including an accurate description of the center and radius of the given disk.
Then describe D in polar coordinates (7, 6).

(b) Find the volume of the solid below z = 1/x? + y? and above D.

Q[17](*): Let D be the shaded region in the diagram. Find the average distance of points

in D from the origin. You may use that { cos" (x) dx = w + =1 fcos"2(x) dx

for all natural numbers n > 2.

Y

o ﬁl%—cos(@)
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» Stage 3

Q[18](*): Let G be the region in R? given by
P <
0<x<2
y < 2x
(a) Sketch the region G.
(b) Express the integral {§- f(x,y) dA a sum of iterated integrals {{ f(x, y) dxdy.

(c) Express the integral {§- f(x,y) dA as an iterated integral in polar coordinates (r, 6)
where x = rcos(0) and y = rsin(0).

QI19](*): Consider
V2 ra/4—y?
] = f J T Yt gy dy
0 y X

(a) Sketch the region of integration.

(b) Reverse the order of integration.

(c) Evaluate ] by using polar coordinates.

Q[20]: Find the volume of the region in the first octant below the paraboloid

2 2
z=1—x—2—y—
a2 b?

Q[21]: A symmetrical coffee percolator holds 24 cups when full. The interior has a
circular cross-section which tapers from a radius of 3” at the centre to 2” at the base and
top, which are 12” apart. The bounding surface is parabolic. Where should the mark
indicating the 6 cup level be placed?

—>27 |

Q[22](+): Consider the surface S given by z = et
(a) Compute the volume under S and above the disk x? + y? < 9 in the xy-plane.

(b) The volume under S and above a certain region R in the xy-plane is

1 Yy 2 2—y
f ( J Y dx) dy + f ( J XY dx) dy
0 0 1

0
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Sketch R and express the volume as a single iterated integral with the order of
integration reversed. Do not compute either integral in part (b).

3.34 Applications of Double Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

QI[1](*): Find the centre of mass of the region D in the xy—plane defined by the inequalities

x? < y < 1, assuming that the mass density function is given by p(x,y) = v.

Q[2](+): Let R be the region bounded on the left by x = 1 and on the right by x? + 1> = 4.

The density in R is
1

p(x,y) = \/Tiyz
(a) Sketch the region R.
(b) Find the mass of R.
(c) Find the centre-of-mass of R.
Note: You may use the result {sec(f) d6 = In|sec + tan 6| + C.

Q[3](x): A thin plate of uniform density 1 is bounded by the positive x and y axes and
the cardioid /x> +y?> = r = 1+ sin6, which is given in polar coordinates. Find the
x—coordinate of its centre of mass.

Q[4](+): A thin plate of uniform density k is bounded by the positive x and y axes and the
circle x? + y?> = 1. Find its centre of mass.

QI[5](%): Let R be the triangle with vertices (0,2), (1,0), and (2,0). Let R have density
o(x,y) = y2. Find ¥, the y—coordinate of the center of mass of R. You do not need to find

X.

Q[6](*): The average distance of a point in a plane region D to a point (4, b) is defined by

a5y || Ve -2 axay
D

where A (D) is the area of the plane region D. Let D be the unit disk 1 > x? + y2. Find the
average distance of a point in D to the center of D.

Q[7](*): A metal crescent is obtained by removing the interior of the circle defined by the
equation x> + y? = x from the metal plate of constant density 1 occupying the unit disc
x>+ y? < 1.
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(a) Find the total mass of the crescent.

(b) Find the x-coordinate of its center of mass.
You may use the fact that Sff/z cos*(9) do = 3Z.

QI[8](+): Let D be the region in the xy—plane which is inside the circle x> + (y — 1)? = 1
but outside the circle x*> + y? = 2. Determine the mass of this region if the density is
given by

2

p(x,y) = \/ﬁ

» Stage 3

Q[9](#): let a, b and ¢ be positive numbers, and let T be the triangle whose vertices are
(—a,0), (b,0) and (0, ¢).

(a) Assuming that the density is constant on T, find the center of mass of T.

(b) The medians of T are the line segments which join a vertex of T to the midpoint of
the opposite side. It is a well known fact that the three medians of any triangle meet
at a point, which is known as the centroid of T. Show that the centroid of T is its
centre of mass.

3.4a Surface Area

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 2

Q[1](+): Find the area of the part of the surface z = y3/2 that lies above 0 < x,y < 1.

Q[2](+): Find the surface area of the part of the paraboloid z = a? — x?

above the xy—plane.

— y? which lies

QI[3](+): Find the area of the portion of the cone z> = x? + y? lying between the planes
z=2andz = 3.

Q[4](): Determine the surface area of the surface given by z = %(x3/ 2 4 y3/ 2), over the
square0 <x <1,0<y<1.

Q[5](+):

(a) To find the surface area of the surface z = f(x,y) above the region D, we integrate
{55 F(x,y) dA. What s F(x,y)?
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(b) Consider a “Death Star”, a ball of radius 2 centred at the origin with another ball of

radius 2 centred at (0,0,2+/3) cut out of it. The diagram below shows the slice where
y=0.

-------

(i) The Rebels want to paint part of the surface of Death Star hot pink; specifically,
the concave part (indicated with a thick line in the diagram). To help them

determine how much paint is needed, carefully fill in the missing parts of this
integral:

surface area = f o J drdo

(ii)) What is the total surface area of the Death Star?
Q[6](+): Find the area of the cone z?> = x? + y? between z = 1 and z = 16.

Q[7](+): Find the surface area of that part of the hemisphere z = 4/a% — x2 — y? which lies

within the cylinder (x — %)2 +y? = (%)2

3.54 Triple Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

Q[1]: Evaluate the integral
ff«/bz —y?>dxdy where R is the rectangle 0 < x <a, 0 <y <b
R

without using iteration. Instead, interpret the integral geometrically.
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QI2](%): Find the total mass of the rectangular box [0,1] x [0,2] x [0, 3] (that is, the box
defined by the inequalities 0 < x < 1,0 < y < 2, 0 < z < 3), with density function
h(x,y,z) = x.

» Stage 2

QI3]: Evaluate ij x dV where R is the tetrahedron bounded by the coordinate planes
R

and the plane £ + ¢ + 2 = 1.

Q[4]: Evaluate Jf y dV where R is the portion of the cube 0 < x,y,z < 1 lying above the

R
plane y + z = 1 and below the plane x +y +z = 2.

QI[5]: For each of the following, express the given iterated integral as an iterated integral
in which the integrations are performed in the order: first z, then y, then x.

(a) Jol dz fol_z dy Ll_z dx f(x,y,z)

(b) Jol dz f; dy Ly dx f(x,y,z)

Q[6](+): A triple integral qf f dV is given in iterated form by
JE

ry=1 z:l—y2

2—y—z
f f(x,y,z)dxdzdy
Jy=-1Jz=0 x=0

(a) Draw a reasonably accurate picture of E in 3—dimensions. Be sure to show the units
on the coordinate axes.

(b) Rewrite the triple integral {{{. f dV as one or more iterated triple integrals in the
order
Y= X—= Z=
f J J f(x,y,z) dzdxdy
= = Jz=

QI[7](+): A triple integral {{{. f(x,y,z) dV is given in the iterated form

1 pl-5 r4—2x—4z
]:f f J f(x,y,z) dydzdx
0 JO 0

(a) Sketch the domain E in 3—dimensions. Be sure to show the units.

(b) Rewrite the integral as one or more iterated integrals in the form

] = Jy_: fx_: Lz_zf(x,y,z) dzdxdy
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Q[8](+): Write the integral given below 5 other ways, each with a different order of
integration.
11 (l-y
I:f f J f(x,y,z)dzdy dx
0 JyxJo

Q[9](»): Let I = Jff f(x,y,z) dV where E is the tetrahedron with vertices (—1,0,0),
E

(0,0,0), (0,0,3) and (0, —2,0).

(a) Rewrite the integral I in the form

I= fx_ fy__ Lz:f(x,y,z) dzdydx

X=

(b) Rewrite the integral I in the form

z= rx= Y=
I:J J f(x,y,z) dydxdz
= Jy=

Q[10](+): Let T denote the tetrahedron bounded by the coordinate planes x = 0,y = 0,
z = 0 and the plane x +y + z = 1. Compute

K:JJf(l—kxjy—kz)‘* dv

Q[11](*): Let E be the portion of the first octant which is above the plane z = x 4 y and
below the plane z = 2. The density in E is p(x, y,z) = z. Find the mass of E.

Q[12](+): Evaluate the triple integral {{{. x dV, where E is the region in the first octant
bounded by the parabolic cylinder y = x? and the planesy +z =1, x = 0,and z = 0.

Q[13](#): Let E be the region in the first octant bounded by the coordinate planes, the plane
x +y = 1 and the surface z = y* . Evaluate {{{,zdV .

QI14](+): Evaluate {{{, yz%e~*¥* dV over the rectangular box

R={(xy2)|0<x<1,0<y<20<z<3}

Q[15](x):
(a) Sketch the surface given by the equation z = 1 — x2.
(b) Let E be the solid bounded by the plane y = 0, the cylinder z = 1 — x2, and the plane

y = z. Set up the integral
ffff(x, y,z)dV
E

as an iterated integral.
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J = Jol Lx Lyf(x,y,z) dzdydx

Express | as an integral where the integrations are to be performed in the order x first,
then y, then z.

QI[16](#): Let

Q[17](+): Let E be the region bounded by z = 2x, z = y?, and x = 3. The triple integral
§§§ f(x,y,z) AV can be expressed as an iterated integral in the following three orders of
integration. Fill in the limits of integration in each case. No explanation required.

ry= rX= z=
[ f(x,y,z) dzdx dy

Jy= Jx= Jz=

(y= rz= =
f(x,y,z) dxdzdy

Jy: Jz= Jx=

(%= [X= ry=
f(x,y,z) dydxdz

Jz= Jx= Jy:

Q[18](+): Let E be the region inside the cylinder x? + y? = 1, below the plane z = y and
above the plane z = —1. Express the integral

ijf(x, y,z)dV
E

as three different iterated integrals corresponding to the orders of integration: (a) dz dx dy,

(b) dx dy dz, and (c) dy dz dx.

Q[19](+): Let E be the region bounded by the planesy = 0,y = 2, y +z = 3 and the
surface z = x2. Consider the intergal

I = fEfff(x,y,z) dv

Fill in the blanks below. In each part below, you may need only one integral to express
your answer. In that case, leave the other blank.

(@ I= PJ r7}‘(9c,y,z) dzdxdy—kj rJf(x,y,z) dzdxdy

J

(b) I = PJ r‘7]”(x,y,z) dxdydz-i—f r‘Jf(x,y,z) dxdydz

J

() I= PJ Pif(x,y,z) dydxdz—kj Pff(x,y,z) dydxdz

J

Q[20](): Evaluate {{{.zdV, where E is the region bounded by the planes y = 0,z = 0
x +y = 2 and the cylinder y* + z2 = 1 in the first octant.
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Q[21](*): Find Jff xdV where D is the tetrahedron bounded by the planes x =1,y =1,
D

z=1l,andx+y+z=2

Q[22](+): The solid region T is bounded by the planes x =0,y = 0,z = 0, and
x +y + z = 2 and the surface x> +z = 1.

(a) Draw the region indicating coordinates of all corners.

(b) Calculate {{{, xdV.

3.64 Triple Integrals in Cylindrical Coordinates

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

QI1]: Use (7,6, z) to denote cylindrical coordinates.

(@) Draw r = 0.
(b) Draw r = 1.
(c) Draw 6 = 0.

(d) Draw 0 = 7/4.

QI[2]: Sketch the points with the specified cylindrical coordinates.
(@ r=1,0=0,z=0

b)yr=1,0=7%2z=0

(©r=10=7%,z=0

dr=060=mz=1

er=10=%2z=1

Q[3]: Convert from cylindrical to Cartesian coordinates.
@ r=10=0,z=0

b)r=1,0=%,2z=0

(©r=10=7%,z=0

d)r=060=mz=1

er=10=7%2z=1

Q[4]: Convert from Cartesian to cylindrical coordinates.
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@ (1,1,2)

(b) (-1,-1,2)

(0 (-1,v3,0)

(d) (0,0,1)

Q[5]: Rewrite the following equations in cylindrical coordinates.
(@) z=2xy

(b) ¥ +y?>+2z2=1

(© (x=1)2+y* =1

» Stage 2

Q[6]: Use cylindrical coordinates to evaluate the volumes of each of the following
regions.

(a) Above the xy—plane, inside the cone z = 2a — 1/x? 4 y? and inside the cylinder
x? + yz = 2ay.

(b) Above the xy—plane, under the paraboloid z = 1 — x?> — y? and in the wedge
—x <y <+/3x.

(c) Above the paraboloid z = x> + y* and below the plane z = 2y.

Q[7](+): Let E be the region bounded between the parabolic surfaces z = x? + y? and
z = 2 — x?> — y? and within the cylinder x> + y? < 1. Calculate the integral of f(x,y,z) =
QI[8](+): Let E be the region bounded above by the sphere x? + y? + z2 = 2 and below by
the paraboloid z = x? + y2. Find the centroid of E.

over the region E.

Q[9](»): Let E be the smaller of the two solid regions bounded by the surfaces z = x* + y?
and x? + y* + z2 = 6. Evaluate {{{. (x> + y?) dV .

Q[10](*): Let a > 0 be a fixed positive real number. Consider the solid inside both the
cylinder x2 + y? = ax and the sphere x> + y? + z> = 4. Compute its volume.

You may use that {sin®(0) = £, cos(36) — 3 cos() + C

Q[11](*): Let E be the solid lying above the surface z = y* and below the surface

z = 4 — x2. Evaluate
Jf yz dv
E

1—cos(20)
2

You may use the half angle formulas:

1+ cos(20)

)
0 =
Ssin 2

, cos?f =
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MULTIPLE INTEGRALS 3.6 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

QI12]: The centre of mass (%, 7,Z) of a body B having density p(x,y, z) (units of mass per
unit volume) at (x,y, z) is defined to be

X = % Jff xo(x,y,z)dV §= % Jf yo(x,y,z)dV z = % ijzp(x,y,z) dv
B B B

where
M= ijp(x, y,z)dV
B

is the mass of the body. So, for example, ¥ is the weighted average of x over the body.
Find the centre of mass of the part of the solid ball x? + y? + z < a> with x > 0,y > 0 and
z > 0, assuming that the density p is constant.

Q[13](*): A sphere of radius 2m centred on the origin has variable density
—=(z° + m-. ole of diameter 1m 1s drillea through the sphere along the z—axis.
\%2 1)kg/m3. A hole of di 1m is drilled through the sph long th i

(a) Setup a triple integral in cylindrical coordinates giving the mass of the sphere after
the hole has been drilled.

(b) Evaluate this integral.

Q[14](+): Consider the finite solid bounded by the three surfaces: z = e‘xz_?/z, z =0and
x? + y2 = 4.

(a) Setup (but do not evaluate) a triple integral in rectangular coordinates that describes
the volume of the solid.

(b) Calculate the volume of the solid using any method.

Q[15](x): Find the volume of the solid which is inside x> + y?> = 4, above z = 0 and below
2z =y.

» Stage 3

Q[16](+): The density of hydrogen gas in a region of space is given by the formula

Z + 2x2

Pors) = ey

(a) At (1,0,—1), in which direction is the density of hydrogen increasing most rapidly?

(b) You are in a spacecraft at the origin. Suppose the spacecraft flies in the direction of
(0,0,1). It has a disc of radius 1, centred on the spacecraft and deployed
perpendicular to the direction of travel, to catch hydrogen. How much hydrogen has
been collected by the time that the spacecraft has traveled a distance 2?

You may use the fact that Sén cos? 6 df = .
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MULTIPLE INTEGRALS 3.7 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

Q[17]: A torus of mass M is generated by rotating a circle of radius 2 about an axis in
its plane at distance b from the centre (b > a). The torus has constant density. Find
the moment of inertia about the axis of rotation. By definition the moment of intertia is
{§§ 72dm where dm is the mass of an infinitesmal piece of the solid and 7 is its distance
from the axis.

3.7 Triple Integrals in Spherical Coordinates

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

» Stage 1

QI1]: Use (p, 8, ¢) to denote spherical coordinates.

(a) Draw ¢ = 0.

(b) Draw ¢ = 7/4.

(c) Draw ¢ = 7/2.

(d) Draw ¢ = 37/4.

(e) Draw ¢ = 7.

Q[2]: Sketch the point with the specified spherical coordinates.
(@ p=0,0=01m, ¢ =071

(b) p=1,0=03m,¢=0

©p=10=0¢9=73

dp=10=39¢9=73
@p=1L0=7%9=3%

(hp=1,0=%¢=1
Q[3]: Convert from Cartesian to spherical coordinates.
@ (-2,0,0)

(b) (0,3,0)

(©) (0,0,—4)

@ (g 32 V3)

Q[4]: Convert from spherical to Cartesian coordinates.
(@ p=10=73
(b) p=2,0=73,
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MULTIPLE INTEGRALS 3.7 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

Q[5]: Rewrite the following equations in spherical coordinates.
(a) z2 = 3x? + 3y?

b) > +y*+(z—1)2=1

(© x*+y* =4

Q[6](+): Using spherical coordinates and integration, show that the volume of the sphere
of radius 1 centred at the origin is 47/3.

» Stage 2

Q[7](+): Consider the region E in 3—dimensions specified by the spherical inequalities
1<p<1+cosg

(a) Draw a reasonably accurate picture of E in 3-dimensions. Be sure to show the units
on the coordinates axes.

(b) Find the volume of E.

QI[8](*): Use spherical coordinates to evaluate the integral

zzjﬂzdv

where D is the solid enclosed by the cone z = 4/x2 + 12 and the sphere x? + y? + z% = 4.
Q[9]: Use spherical coordinates to find
(a) The volume inside the cone z = 4/x2 + 12 and inside the sphere x? + y2 + z2 = a2.

(b) (§§z xdV and ({, zdV over the part of the sphere of radius a that lies in the first
octant.

(c) The mass of a spherical planet of radius 4 whose density at distance p from the center
isé = A/(B+p?).

(d) The volume enclosed by p = a(1 — cos ¢). Here p and ¢ refer to the usual spherical
coordinates.

Q[10](*): Consider the hemispherical shell bounded by the spherical surfaces
Py 2 =9 and Py =4

and above the plane z = 0. Let the shell have constant density D.
(a) Find the mass of the shell.

(b) Find the location of the center of mass of the shell.
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MULTIPLE INTEGRALS 3.7 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

IZJﬂxzdv

where T is the eighth of the sphere x* + y* + z2 < 1 with x,y,z > 0

Q[11](+): Let

(a) Sketch the volume T.

(b) Express I as a triple integral in spherical coordinates.

(c) Evaluate I by any method.

Q[12](+): Evaluate W = SSSQ xz dV, where Q is an eighth of the sphere x? + y? + z2 < 9
with x,y,z > 0.

Q13](+): Evaluate {{§gs [1+ (x2 + 12 +22)°] av.

Q[14](*): Evaluate

x2\/T
[

by changing to spherical coordinates.

(x* +y? +2%)>/2 dzdy dx

Q[15]: Evaluate the volume of a circular cylinder of radius 4 and height 1 by means of an
integral in spherical coordinates.

Q[16](*): Let B denote the region inside the sphere x% + yz + 22 = 4 and above the cone
x? 4+ y? = z%. Compute the moment of inertia

[[fav

Q[17](+):

(a) Evaluate JJJ zdV where () is the three dimensional region in the first octant x > 0,

Q
y =0,z = 0, occupying the inside of the sphere x> + y? + z2 = 1.

(b) Use the result in part (a) to qulckly determine the centroid of a hemispherical ball
givenbyz >0, x* + 2 + 22 < 1.

Q[18](*): Consider the top half of a ball of radius 2 centred at the origin. Suppose that the
ball has variable density equal to 9z units of mass per unit volume.

(a) Setup a triple integral giving the mass of this half-ball.

(b) Find out what fraction of that mass lies inside the cone

oy
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MULTIPLE INTEGRALS 3.7 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

» Stage 3
Q[19](*): A certain solid V is a right—circular cylinder. Its base is the disk of radius 2
centred at the origin in the xy—plane. It has height 2 and density 1/x? + y2.

A smaller solid U is obtained by removing the inverted cone, whose base is the top
surface of V and whose vertex is the point (0,0,0).

(a) Use cylindrical coordinates to set up an integral giving the mass of U.
(b) Use spherical coordinates to set up an integral giving the mass of U.
(c) Find that mass.

Q[20](): A solid is bounded below by the cone z=4/x?+y? and above by the sphere
x? 4+ y? + z? = 2. It has density 6(x,y,z) = x> + y>.

(a) Express the mass M of the solid as a triple integral, with limits, in cylindrical
coordinates.

(b) Same as (a) but in spherical coordinates.

(c) Evaluate M.
QJ21](#): Let

IzLﬂxzdv

where E is the eighth of the sphere x? + y? + z2 < 1 with x,y,z > 0.
(a) Express I as a triple integral in spherical coordinates.

(b) Express I as a triple integral in cylindrical coordinates.

(c) Evaluate I by any method.

Q[22](+): Let

I= Jﬂ(xz +y?) dv

where T is the solid region bounded below by the cone z = 4/3x? + 3y? and above by the
sphere x> 4+ y* +z2 = 9.

(a) Express I as a triple integral in spherical coordinates.
(b) Express I as a triple integral in cylindrical coordinates.
(c) Evaluate I by any method.

QI23](*): Let E be the “ice cream cone” x* + y2 +22<1, 22+ y2 < 72,z > 0. Consider
] = Jff«/xQ-i—yz-l—zz dv
E
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MULTIPLE INTEGRALS 3.7 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

(a) Write | as an iterated integral, with limits, in cylindrical coordinates.
(b) Write | as an iterated integral, with limits, in spherical coordinates.
(c) Evaluate J.

Q[24](#): The body of a snowman is formed by the snowballs x? + y2 + 22 = 12 (this is its
body) and x? + y? + (z — 4)? = 4 (this is its head).

(a) Find the volume of the snowman by subtracting the intersection of the two snow
balls from the sum of the volumes of the snow balls. [Recall that the volume of a
sphere of radius r is 4?”1'3.]

(b) We can also calculate the volume of the snowman as a sum of the following triple

integrals:
1.
Zoom 2
J J J o?sing dpdfde
o Jo Jo
2. v
21 /3 pd—-L
J J J V3 rdzdrdof
0 0 37
3.

T2 (243
J J J p?sin(¢p) dpodfde
= Jo Jo

Circle the right answer from the underlined choices and fill in the blanks in the
following descriptions of the region of integration for each integral. [Note: We have
translated the axes in order to write down some of the integrals above. The equations
you specify should be those before the translation is performed.]

i. The region of integration in (1) is a part of the snowman’s
body/head/body and head.
It is the solid enclosed by the

sphere/cone defined by the equation
and the

sphere/cone defined by the equation

ii. The region of integration in (2) is a part of the snowman’s
body/head/body and head.
It is the solid enclosed by the

sphere/cone defined by the equation
and the

sphere/cone defined by the equation
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iii. The region of integration in (3) is a part of the snowman’s

body/head/body and head.

It is the solid enclosed by the

sphere/cone defined by the equation

and the

sphere/cone defined by the equation

Q[25](+):

(a) Find the volume of the solid inside the surface defined by the equation p = 8sin(¢)
in spherical coordinates.

You may use that
1
fsin‘*(cp) =3 (12¢ — 8sin(2¢) + sin(4¢)) + C

(b) Sketch this solid or describe what it looks like.
QI26](*): Let E be the solid

0<z<y/x2+1y2,  x¥*+y*<1,
I= Jffzwx2+y2+zz dv.
E

(a) Write the integral I in cylindrical coordinates.

and consider the integral

(b) Write the integral I in spherical coordinates.
(c) Evaluate the integral I using either form.

Q[27](*): Consider the iterated integral

0 0 A/ 02 —x2—12
I= J f f (% + 2 + 22 dzdy dx
—a J—/a2—x2 J0

where 4 is a positive constant.
(a) Write I as an iterated integral in cylindrical coordinates.
(b) Write I as an iterated integral in spherical coordinates.

(c) Evaluate I using whatever method you prefer.
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Q[28](+): The solid E is bounded below by the paraboloid z = x> + y? and above by the

cone z = 4/x% + y2. Let
[= Jffz(xz +y*+2%) dV
E

(a) Write I in terms of cylindrical coordinates. Do not evaluate.
(b) Write I in terms of spherical coordinates. Do not evaluate.
(c) Calculate I.

Q[29](*): Let S be the region on the first octant (so that x,y,z > 0) which lies above the
cone z = 4/x2 + y2 and below the sphere (z —1)2 + x> + y?> = 1. Let V be its volume.

(a) Express V as a triple integral in cylindrical coordinates.
(b) Express V as an triple integral in spherical coordinates.
(c) Calculate V using either of the integrals above.

Q[30](*): A solid is bounded below by the cone z = 4/3x2 4 3y? and above by the sphere
x% 4+ y? +z? = 9. It has density 6(x,y,z) = x> + y>.

(a) Express the mass m of the solid as a triple integral in cylindrical coordinates.
(b) Express the mass m of the solid as a triple integral in spherical coordinates.

(c) Evaluate m.
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&> <&

Hints for Exercises 1.1. — Jump to TABLE OF CONTENTS.

H-2: In part (d), complete a square.

&> <&

Hints for Exercises 1.2. — Jump to TABLE OF CONTENTS.

H-2: If three points are collinear, then the vector from the first point to the second point,
and the vector from the first point to the third point must both be parallel to the line, and
hence must be parallel to each other (i.e. must be multiples of each other).

Y

H-3: Review Theorem 1.2.9 in the CLP-3 text.

H-13: (a) The three line segments from C to O, from C to A and from C to B all have
exactly the same length, namely the radius of the circumscribing circle.

(b) Let (%, i) be the coordinates of C. Write down the equations that say that (%, ) is
equidistant from the three vertices O, A and B.

H-14: The centre of the sphere is the midpoint of the diameter.

H-16: Draw a sketch. Call the vertices of the triangle A, B and C with C being the vertex
that joins the two sides. Let a be the vector from C to A and b be the vector from C to B.
Determine, in terms of a and b,

e the vector from A to B,
e the two vectors from C to the two midpoints and finally
e the vector joining the two midpoints.

H-17: Review §1.2.4 in the CLP-3 text.

H-18: Determine the four corners of the parallelogram.

H-19: Review §1.2.4 in the CLP-3 text.
H-29: Evaluate % by differentiating r(t) x r'(t).

H-39: Choose coordinate axes so that the vertex opposite the face of area D is at the
origin. Denote by a, b and c the vertices opposite the sides of area A, B and C

79



respectively. Express A, B, C and D, which are areas of triangles, as one half times cross
products of vectors built from a, b and c.

H-40: Do problem @ first.

L o &

Hints for Exercises 1.3. — Jump to TABLE OF CONTENTS.

&> <&

Hints for Exercises 1.4. — Jump to TABLE OF CONTENTS.

H-1: Guess.
H-2: Guess.

L g a

Hints for Exercises 1.5. — Jump to TABLE OF CONTENTS.

&> <&

Hints for Exercises 1.6. — Jump to TABLE OF CONTENTS.

H-1: Find the value of ¢ at which the three points occur on the curve.

H-2: The curve “crosses itself” when (sin t, t?) gives the same coordinate for different
values of t. When these crossings occur will depend on which crossing you're referring
to, so your answers should all depend on ¢.

H-3: Draw sketches. Don’t forget the range that the parameter runs over.

H-4: For part (b), find the position of P relative to the centre of the circle. Then combine
your answer with part (a).

H-5: We aren’t concerned with x, so we can eliminate it by solving one equation for x as a
function of y and z and plugging the result into the other equation.

H-6: To determine whether the particle is rising or falling, we only need to consider its
z-coordinate.

H-7: This is the setup from Lemma 1.6.6 in the CLP-3 text. The two quantities you're
labelling are related, but different.

H-8: See the note just before Example 1.6.8 in the CLP-3 text.

H-9: To simplify your answer, remember: the cross product of a and b is a vector
orthogonal to both a and b; the cross product of a vector with itself is zero; and two
orthogonal vectors have dot product 0.

H-10: Just compute |v(t)|. Note that (e? + e_”t)2 = 20 42 g2,

H-11: To figure out what the curves look like, first detemine what curve (x(t), y(t))
traces out. For part (b) this will be easier if trig identities are first used to express x(t) and
y(t) in terms of sin(2t) and cos(2t).
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H-12: Review Lemma 1.6.6 in the CLP-3 text. The arc length should be positive.
H-13: From Lemma 1.6.6 in the CLP-3 text, we know the arclength fromt =0tot =1
dr

will be .
L a(t)' dt

The notation looks a little confusing at first, but we can break it down piece by piece:

% (t) is a vector, whose components are functions of ¢. If we take its magnitude, we'll get
one big function of t. That function is what we integrate. Before integrating it, however,
we should simplify as much as possible.

H-14: r(t) is the position of the particle, so its acceleration is 7 (t).

H-15: Review §1.5 and Lemma 1.6.6 in the CLP-3 text.

H-16: Review Lemma 1.6.6 in the CLP-3 text.

H-17: If you got the answer 0 in part (b), you dropped some absolute value signs.

H-19: The integral you get can be evaluated with a simple substitution. You may want to
factor the integrand first.

H-20: Given the position of a particle, you can find its velocity.

H-23: If r(u) is the parametrization of C by u, then the position of the particle at time ¢ is
R(t) = r(u(t)).

H-24: By Newton’s law, F = ma.

H-25: Denote by r(x) the parametrization of C by x. If the x—coordinate of the particle at
time £ is x(t), then the position of the particle at time ¢ is R(t) = r(x(t)). Also, though the
particle is moving at a constant speed, it doesn’t necessarily have a constant value of %.

H-26: The question is already set up as an xy—plane, with the camera at the origin, so the
vector in the direction the camera is pointing is (x(¢),y()). Let 6 be the angle the camera
makes with the positive x-axis (due east). The tangent function gives a clean-looking
relation between 6(t), x(t), and y(t).

&> <&

Hints for Exercises 1.7. — Jump to TABLE OF CONTENTS.

&> <&

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

H-1: For parts (b), (c), (d), (e), switch to polar coordinates. For part (f),
i Yy i Yy _
(sinx) (e¥ —1) _ {lim smx} {lim e 1]
(x,y)—(0,0) Xy =0 X y=0 Y

H-2: Switch to polar coordinates.

H-3: (a) Switch to polar coordinates.

(b) What are the limits when (i) x = 0 and y — 0 and when (ii) y = 0 and x — 0?

81



H-4: Switch to spherical coordinates.

H-5: For part (a) switch to polar coordinates. For part (b), switch to polar coordinates
centred on (0, 1). That is, make the change of variables x = rcos6, y = 1+ rsin6.

H-6: For part (c), does there exist a single number, L, with the property that f(x,y) is
really close to L for all (x,y) that are really close to (0,0)?

H-7: For part (b), consider the ratio of = 2 + Y, (from part (b)) and 2 + 5 (from part (a)), and

recall that hrr(} Sl?t =1.

For part (d) consider the limits along the positive x- and y-axes.

L o &

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

H-3: Just evaluate x3(x,y) + yay(x ).

H-8: Just evaluate y & (x,y) and x & (x ).

&> <&

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.

H-1: Repeatedly use (Clairaut’s) Theorem 2.3.4 in the CLP-3 text.

H-2: If f(x, y) obeying the specified conditions exists, then it is necessary that
fry(2,y) = fyx(x,y).

H-5: (a) This higher order partial derivative can be evaluated extremely efficiently by
carefully choosing the order of evaluation of the derivatives.

(b) This higher order partial derivative can be evaluated extremely efficiently by carefully
choosing a different order of evaluation of the derivatives for each of the three terms.

(c) Set g(x) = f(x,0,0). Then f1x(1,0,0) = g"(1).

L o &

Hints for Exercises 2.4. — Jump to TABLE OF CONTENTS.
H-1: Review §2.4.1 in the CLP-3 text.

H-3: The basic assumption is that the three quantites x, y and z are not independent.
Given any two of them, the third is uniquely determined. They are assumed to satisfy a
relationship F(x,y,z) = 0, which determines x as a function of y and z (say x = f(y, z))
and determines y as a function of x and z (say y = g(x, z)) and determines z as a function
of x and y (say z = h(x,y)). For example, saying that F(x,y,z) = 0 determines

= f(y,z) means that

F(f(y,2),y,2) =0
for all y and z.

H-4: Is the aw on the left hand side really the same as the - on the right hand side?
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H-10: Let u = x> —y? ,and v = 2xy.
H-24: This question uses bad (but standard) notation, in that the one symbol f is used for

two different functions, namely f(u,v) and f(x,y) = f(u,v)| __ S A better

statement is
Let f(x,y) and F(u,v) be differentiable functions such that
f(x,y) = F(x+y,x —y). Find a constant, «, such that
fy)® + fy(x,y)* = e Fu(x +y,2 —y)* + Bo(x +y, 2 - y)*}

H-25: Use the chain rule to show that 227”2‘(3(, t) — Clz‘g%(x, t) = 45;5’17 (E(x, 1), 1(x,1)).

H-26: For each part, first determine which variables y is a function of.

L o &

Hints for Exercises 2.5. — Jump to TABLE OF CONTENTS.

H-7: Let (x,y,z) be a desired point. Then

e (x,y,z) must be on the surface and
e the normal vector to the surface at (x, y, z) must be parallel to the plane’s normal
vector.

H-8: First find a parametric equation for the normal line to S at (xo, yo, z0). Then the
@irement that (0,0,0) lies on that normal line gives three equations in the four
unknowns x, yo, zo and t. The requirement that (xo, yo, zo) lies on S gives a fourth
equation. Solve this system of four equations.

H-9: Two (nonzero) vectors v and w are parallel if and only if there is a ¢ such that
v = t w. Don’t forget that the point has to be on the hyperboloid.

H-10: The curve lies in the surface z> = 4x? + 9y?. So the tangent vector to the curve is
perpendicular to the normal vector to z? = 4x? + 9y? at (2,1, —5).

The curve also lies in the surface 6x + 3y + 2z = 5. So the tangent vector to the curve is
also perpendicular to the normal vector to 6x + 3y +2z = 5at (2,1, -5).

H-11: At the highest and lowest points of the surface, the tangent plane is horizontal.

H-13: (b) If v is tangent, at a point P, to the curve of intersection of the surfaces S; and S,,
then v

e has to be tangent to S; at P, and so must be perpendicular to the normal vector to
Sqat P and

e has to be tangent to S, at P, and so must be perpendicular to the normal vector to
S, at P.

H-14: The angle between the curve and the surface at P is 90° minus the angle between
the curve and the normal vector to the surface at P.

H-15: Let D(x, y) be the distance (or the square of the distance) from (1,1,0) to the point
(x,, x> +y?) on the paraboloid. We wish to minimize D(x,y). That is, to find the lowest
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point on the graph z = D(x, y). At this lowest point, the tangent plane to z = D(x, y) is
horizontal.

&> <&

Hints for Exercises 2.6. — Jump to TABLE OF CONTENTS.

H-3: Let the four numbers be x1, x5, x3 and x4. Let the four rounded numbers be x; + €1,
Xy + €2, X3 + €3 and x4 + 4. If P(x1, X2, X3, X4) = x1X2X3x4, then the error in the product
introduced by rounding is |P(x1 + €1, xp + €2, X3 + €3, X4 + €4) — P(x1, X2, X3, X4 .

H-4: Use Pythagorous to express the length of the hypotenuse in terms of the lengths of
the other two sides.

H-6: Review the relationship between absolute error and percentage error given in
Definition 2.6.6 in the CLP-3 text.

H-7: Be very careful about signs. There is a trap hidden in this question. As an example
of the trap, suppose you know that |e1| < 0.2 and |ep| < 0.1. It does not follow from this
that ‘81 — &3] <0.2—-0.1 =0.1. The reason is that it is possible to have ¢y = 0.2 and

gy = —0.1 and then &; — e, = 0.3. The correct way to bound |81 — &yl is
le1 — e2| < |e1] +[e2] <02+ 0.1 <03

H-9: Determine, approximately, the change in sag when the height changes by a small
amount ¢ and also when the width changes by a small amount . Which is bigger?

H-13: 1° = % radians

&> <&

Hints for Exercises 2.7. — Jump to TABLE OF CONTENTS.

H-4: The rate of change in the direction that makes angle 8 with respect to the x-axis, that
is, in the direction (cos 6, sin6) is (cos 8, sin6) - V£(2,0).

H-5: Denote V£ (a,b) = (a, B).

H-6: Use a coordinate system with the positive y—axis pointing north, with the positive
x—axis pointing east and with our current location being x = y = 0. Denote by z(x, y) the
elevation of the earth’s surface at (x,y). Express the various slopes in terms of Vz(0,0).

H-9: In order for y = ax” to give the (x,y) coordinates of the path of steepest ascent, the
tangent vector to y = ax? must be parallel to the height gradient V(x, y) at all points on
y = ax?. Also, don’t forget that (1,1) must be on y = ax’.

H-28: Review §2.7 in the CLP-3 text.

(e) Suppose that the ant moves along the curve y = y(x). For the ant to always experience
maximum rate of cooling (or maximum rate of heating), the tangent to this curve must be
parallel to VT (x, y) at every point of the curve. This gives a separable differential
equation for the function y(x). Also, don’t forget that (2, —1) must be on the curve.

L o &
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Hints for Exercises 2.9. — Jump to TABLE OF CONTENTS.

H-2: Interpret the height 1/x? + y? geometrically.
H-3: Define f(t) = g(a+ td).

H-4: Write down the equations of specified level curves.

H-13: One way to deal with the boundary x? + y? = 1 is to parametrize it by x = cos 6,
y=sinf, 0 <6 <27

H-30: Suppose that the bends are made a distance x from the ends of the fence and that
the bends are through an angle 0. Draw a sketch of the enclosure and figure out its area,
as a function of x and 6.

H-31: Suppose that the box has side lengths x, y and z.

&> <&

Hints for Exercises 2.10. — Jump to TABLE OF CONTENTS.

H-3: The ellipsoid ;‘—i + Z—i + i—i = 1 passes through the point (1,2,1) if and only if
14,1 _q

a2 = p2 2 )

H-18: The ends of the major axes are the points on the ellipse which are farthest from the

origin. The ends of the minor axes are the points on the ellipse which are closest to the
origin.

&> <&

Hints for Exercises 3.1. — Jump to TABLE OF CONTENTS.

H-8: The antiderivative of the function sin(y?) cannot be expressed in terms of familiar
functions. So we do not want the inside integral to be over y.

sin(7rx?)
- X
exchanging the order of integration.

H-9: The inside integral, Si/? dx, in the given form of I looks really nasty. So try

H-13: The inside integral, Si/i v/1+ 3 dy, of the given integral looks pretty nasty. Try
reversing the order of integration.

H-14: (b) The inside integral, ﬁ N eV’ dy, looks pretty nasty because ¢/’ does not have an
_ 2
obvious antiderivative. Try reversing the order of integration.

H-15: (b) The inside integral, Sf/_—y cos(x3) dx looks nasty. Try reversing the order of
mtegration.

o1 1 1 1
HAZ oo = 4 (- s)-

H-18: The antiderivative of the function e™¥* cannot be expressed in terms of elementary

functions. So the inside integral Sz_xz eV’ dy cannot be evaluated using standard calculus 2
techniques. Try reversing the order of integration.
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H-21: The inside integral, over y, looks pretty nasty because sin(y>) does not have an
obvious antiderivative. So try reversing the order of integration.

H-23: The inside integral, Siz cos (y3/ 2) dy, in the given integral looks really nasty. So try
exchanging the order of integration.

3
H-25: The inside integral, f sin (7Tx3) dx, in the given integral looks really nasty. So try
VY

exchanging the order of integration.

L g a

Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-1: Compute, for each angle 0, the dot product &,(0) - &,(6).
H-2: Sketch (a,b) and (A, B). The trigonometric addition formulas

sin(6 + @) = sin 6 cos ¢ + cos 0 sin ¢
cos(f + ¢) = cosf cos ¢ — sinf sin ¢

will help.

L o &

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-8: Try using polar coordinates.

&> <&

Hints for Exercises 3.4. — Jump to TABLE OF CONTENTS.

H-5: The total surface area of (b) (ii) can be determined without evaluating any integrals.

L o &

Hints for Exercises 3.5. — Jump to TABLE OF CONTENTS.

H-20: Sketch E. You can picture E by thinking of the region bounded by the planes x = 0,
y=0,z=0and x + y = 2 as a large wedge of cheese and thinking of the cylinder
y? + z2 = 1 as a drill hole in the wedge. Then to set up the limits of integration, first

sketch a top view of E.

L o &

Hints for Exercises 3.6. — Jump to TABLE OF CONTENTS.

H-12: Use cylindrical coordinates.

L g a

Hints for Exercises 3.7. — Jump to TABLE OF CONTENTS.

H-25: (b) it is a solid of revolution.
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Answers to Exercises 1.1 — Jump to TABLE OF CONTENTS

A-1: (a) The sphere of radius 3 centered on (1, —2,0).
(b) The interior of the sphere of radius 3 centered on (1, —2,0).

A-2: (a) x = y is the straight line through the origin that makes an angle 45° with the x—
and y—axes. It is sketched in the figure on the left below.

Y

y==x r+y=1

T (170) g

(b) x + y = 1 is the straight line through the points (1,0) and (0, 1). It is sketched in the
tigure on the right above.

(c) x> + y* = 4 is the circle with centre (0,0) and radius 2. It is sketched in the figure on
the left below.

v, y
/m\HJ =4 2 +y? =2y
K <2’ O) . “(07 1)

T

(d) x* + y? = 2y is the circle with centre (0,1) and radius 1. It is sketched in the figure on
the right above.

(e) x2 + y? < 2y is the set of points that are strictly inside the circle with centre (0,1) and
radius 1. It is the shaded region (not including the dashed circle) in the sketch below.

A-3: (a) The set z = x is the plane which contains the y—axis and which makes an angle
45° with the xy—plane. Here is a sketch of the part of the plane that is in the first octant.
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(b) x + y + z = 1is the plane through the points (1,0,0), (0,1,0) and (0,0,1). Here is a
sketch of the part of the plane that is in the first octant.

(c) x2 + y? + z? = 4 is the sphere with centre (0,0,0) and radius 2. Here is a sketch of the
part of the sphere that is in the first octant.

(d) x?> + y? + z2 = 4,z = 1 is the circle in the plane z = 1 that has centre (0,0,1) and
radius 1/3. The part of the circle in the first octant is the heavy quarter circle in the sketch

I

(e) x* + y? = 4 is the cylinder of radius 2 centered on the z—axis. Here is a sketch of the
part of the cylinder that is in the first octant.
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(f) z = x? + y? is a paraboloid consisting of a vertical stack of horizontal circles. The
intersection of the surface with the yz—plane is the parabola z = y?. Here is a sketch of
the part of the paraboloid that is in the first octant.

I\

. S o . 1o N
A-5: The c1rcumscr1b1ng circle has centre (¥,7) and radius r with ¥ = 5, 7 = brte—ab

. \/ b2+c2—ub) .

A-6: x? + y? = 4z The surface is a paraboloid consisting of a stack of horizontal circles,
starting with a point at the origin and with radius increasing vertically. The circle in the
plane z = zg has radius 2,/z.

&> <&

Answers to Exercises 1.2 — Jump to TABLE OF CONTENTS

A-l:a+b=(31),a+2b=(42),2a—b=(3,—1)
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Y
Y a+2b
a+b 2b
b
I a T a > T
?{ 2a -
2a—b —b
A-2: (a) not collinear (b) collinear

A-3: (a) perpendicular (b) perpendicular (c) not perpendicular
ﬁ proj,a = ai proj;a = asj.

A-5: Yes.

A-6: See the solution.

A-7: See the solution

A-8: See the solution.

A-9: This statement is false. One counterexample is a = (1,0,0),

b=(0,1,0), c=(0,0,1). Thena-b = a-c =0, but b # c. There are many other
counterexamples.

A-10: True.

A-11: None. The given equation is nonsense.

A-12: If b and c are parallel, then a- (b x ¢) = 0 for all a. If b and ¢ are not parallel, then a
must be of the form ab + Bc with a and  real numbers.

A-13: (a), (c)

projo—>AO_C) = OP, = (a/2,0) proj(ﬁgaf = 0P, = (b/2,¢/2)

(b) The centre of the circumscribing circle is (¥, 7) with ¥ = § and § = =5
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A-14: (x—3)2+ (y -2+ (z—-7)? =11
A-15: The sphere has radius 3 and is centered on (1,2, —1).

A-16: See the solution.

A-17: (a) 13 (b) 20

A-18: 24/19

A-19: (a) 126 (b) 55

A-20:

(@ a-b=4 6 = 60.25°

(b) a-b=0 0 = 90°

(c) a-b=4 6 =0°

(d a-b=2 0 = 61.87°

() a-b=0 6 = 90°

A-21: (a) 10.3° (b) 61.6° (c) 82.6°
A-22: (a) —1 (b) 0,4 (c) —2,-3
A-23: (a) =5 (b) 0.8 (c) none
A2 @) 2 0)(3,69) (©(14-3)

A-25: 31 + 6j — 3k

A-26: (a) (—27,-9,-9) (b) (—31,—-34,8) (c) (—4,5,—4)
A-27: (a) See the solution.
b)pxq=-qxp=(-65-13)

(¢)p x (3r) =3(p xr) = (6,9,—15)
dpx(q+r)=pxq+pxr=(-48-18)
(e)px(qxr)=(-46,-19,15), (p x q) x r = (—44,-32,8)
A-28:21/6

A-29: See the solution.

A-30: See the solution.

A-31: (a) All 6 edges have length V/2s. (b) 109.5°

A-32: 35.26° or 90° or 144.74°

A-33: /141 (x0)\/—g /1" (x0)

A-34: The marble rolls in the directionn(ac, be, —a% — b2>. If c = 0, the plane is vertical. In
this case, the marble doesn’t roll — it falls straight down. If 4 = b = 0, the plane is
horizontal. In this case, the marble doesn’t roll — it remains stationary.
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A-35: See the solution.
A-36: See the solution.
A-37: (axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c)

A-38: (a) AA’B'B is a parallelogram, but not a rectangle.
AA'C'C is a rectangle.
BB'C'C is a parallelogram, but not a rectangle.

®V17 @ @3
A-39: See the solution.
A-40: See the solution.

A 4

Answers to Exercises 1.3 — Jump to TABLE OF CONTENTS

Al @) (xy) = (1L,2)+t(3,2), x=1+3t y=2+2t. SL="172
) (x,y) = (5,4) +1(2,~1), x=5+2t, y=4—1t, 5 =112

(© (x,y) =(-1,3)+t(-1,2), x=—-1—t, y=3+2t x_—Jrll:y%:%
A2 (@) (x,y) = (1,2) +£(-2,3), x=1-2t, y=2+3t, 1 y2
) (x,y) = (5,4) +1(1,2), x =5+t y=4+2t, x—5="1"

© (xy)=(-1,3)+t(2,1), x=-1+2t, y=3+¢t S =y-3
A-3:14/5

A-4: (a)

x(t) =a+t(ib+ic—a)
x(s) =b+s(ta+ic—b)
x(u) =c+u(3a+ib—c)

(b) f(a+b+c)

<

Answers to Exercises 1.4 — Jump to TABLE OF CONTENTS

A-l:x+y+z=1
A-2:x+y+z=2

A-3: All three points (1,2,3), (2,3,4) and (3,4, 5) are on the line
x(t) = (1,2,3) + £(1,1,1). There are many planes through that line.

A-4:(@)9x -y —z=38 (b) 14x — 7y — 8z = 52
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(c) For any real numbers 4 and b, the plane ax + by — (a + b)z = 4a + b contains the three
given points.

A5 @3 (b)7/V6

A-6:(a)3x+2y+z=8 (b) (3, -1,1)

A7 (@x—y+z=23 (b)5x+y—4z= -3

A-8: (a) (v,y,z) = (=3,1,0) +t(0,-1,1)  (b) V17
A-9:4x +2y—4z=15and 4x +2y — 4z = -9
A-10: 2

AL (x =1+ (y—2)° + (z-3)* =3

A-12:3x —y+z= -5

A-13:c—n-pl/|n]

A-14: It is the plane x + z = 8, which is the plane through (3,2,5) = %(1, 2,3)+ %(5, 2,7)
with normal (1,0,1) = 1((5,2,7) - (1,2,3) ).

A-15: It is the plane 2(b — a) - x = |b|? — |a|?, which is the plane through 1a + 1b with
normal vector b — a.

A-16: (a) 3V11 ~ 1.658 (b)%1

A-17: Any positive constant times (1,1, —1) x (1,0,1) = (1,-2, -1)

~ 0.9045

L o &

Answers to Exercises 1.5 — Jump to TABLE OF CONTENTS
A-1: a) (x,1,2) = (3,5,0) + <2,—%,1>t

() (x,y,2) = (-2,-1,0) + (3,1, 1) ¢
A2 (a) (xv,y,2) = (=1,4,0) +£(1,-2,1)

(b) The two planes are parallel and do not intersect.

A-3: (a) (1,0,3) lies on both lines. x + y + 2z = 7 is the only plane containing both lines.
(b) The two lines do not intersect. No plane contains the two lines.

(c) The two lines do not intersect. x + z = 1 is the only plane containing both lines.

(d) The two lines are identical. For arbitrary a and b (not both zero) the plane
ax + by + (a + b)z = a contains both lines.

A-4: vector parametric equation: (x —2,y+1,z+1) =t(1,-1,-1)
scalar parametric equation: x =2+t y=-1—-tz=—-1-t
symmetric equation: x -2=-y—-1=-z-1

A5 (x,y,2) = (1,0,2) + £ (—1,1,-1)
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-6: /5

-7: (a) 8x +2y — 11z = 59 ~ 4.655

5

64
(b) 7As
A-8:3

A-9: (a) Any nonzero constant times (1, -5, —3). b)x=—-4+4+t,y=3-5t,
z=2-3t

A-10: (a) (3,3,0), (12,0,—6), (0,4,2)  (b)x=10+t,y =11+t z=13+"*
A-ll: (@) 52 =%  z=-1

(b) a = 7 — arccos ﬁé ~ 0.08 radians

A-12: (x,y,z) = (12, =1 —t, t)
A-13: (@) x=0,y=2+tz=2  (b) Thesphere (x —1)2+ (y—2)>+(z—2)>2 =1
(c) (0,4,4)

A-14: See the solution.

A-15: (a) (0,4,0) b)2x —y—z=-2

L g a

Answers to Exercises 1.6 — Jump to TABLE OF CONTENTS

A-1: (1,25), (-1/+/2,0), (0,25).

A-2: The curve crosses itself at all points (0, (7711)?) where 7 is an integer. It passes such a
point twice, 27tn time units apart.

A-3: (@) r(y) =+a>—y?i+yj,0<y<a
() (x(¢),y(¢)) = (asing,—acos¢), 5 <p <7
(©) (x(s),y(s)) = (acos(F —2),asin(F —2)),0< s < Za

A-4: (a) (a+ab,a) (b)(a+ab +asinb,a + acos0)

N

1-§

>

o
N

N|—

zZ=—

A-6: The particle is moving upwards from t = 1 to ¢t = 2, and from ¢ = 3 onwards. The
particle is moving downwards fromt = 0tot =1, and fromt = 2to t = 3.

The particle is moving faster when t = 1 than when t = 3.

A-7:
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The red vector is r(¢ + 1) — r(t). The arclength of the segment indicated by the blue line
is the (scalar) s(t + h) — s(t).

Remark: as h approaches 0, the curve (if it’s differentiable at t) starts to resemble a
straight line, with the length of the vector r(¢ + 1) — r(t) approaching the scalar
s(t + h) —s(t). This step is crucial to understanding Lemma 1.6.6 in the CLP-3 text.

A-8: Velocity is a vector-valued quantity, so it has both a magnitude and a direction.
Speed is a scalar-the magnitude of the velocity. It does not include a direction.

A9 ()
A-10: (d)
A-1L: (a)

v(t) = —asinti+acostj+ck
St = a2

a(t) = —acosti—asintj
The path is a helix with radius 2 and with each turn having height 27c.
(b)

v(t) = acos2ti+asin2tj—asintk
%(t) a1 +sin? t

a(t) = —2asin2ti+2acos2tj —acostk

The (x,y) coordinates go around a circle of radius § and centre (0, §) counterclockwise.
At the same time the z coordinate oscillates over the interval between 1 and —1 half as
fast.

A-12: (@) T(1) = (2;%1) (b) %[53/2 _ 8]
A-13:2
A-14: 1
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A-15: () 20/3  (b) x(t) = —27t — 2, y(t) = —27t, z(t) = /3 + m°t
A-16: (a) ¥'(t) = (—3sint,3cost, 4) (b) 5
A-17: (a) 5 (10V/10—1)  (b) £&(10v/10—1)

A-18:s(t) = £+ 4

a10: 5 [(2+3m) " = (24 3am)"]

A-20: t|

A-21: (a)r(2) =2j +4k  (b) any nonzero multiple of ¥'(2) = 2mwi+j+4k

(c) I and E do not intersect at right angles.
A-22: L[[e(H)P+ Y (H}] =0

A-23: (@) r(u) =uPi+3u?j+6uk  (b)7 (©2 (d)1
24

A-24: (@) r(t) = (5 - %) i+ (t—sint)j+ (%eZt - t) k byt=mn

(€ -1 +2j+ (T —1) k
A-25:(a)21  (b)6  ()2d+4j+4k  (d)-5(20+j-2k)

Ag: X0 &3;?,“”‘“”

A-27:r(t) =g —

A-28: (a) r(t) = <—cos t,—sint, t) (b)v(t)-a(t) =0
(¢)r(u) =(0,1,-%) +u(-1,0,1) (d) True

—ut p
V0+gl —at— e k

A-29: (a) x(t)* + y(t)* = z(t)* for all t

(b) velocity = [cos () — & sin ()]i+ [sin (%) + 5 cos (3)]j + k
speed = \/2—1—7”%

© (x,y,2) = (0,L1) + (t-1)(-3,1L1)

(d) seconds

A-30: (2)90°  (b)2V/3

<

Answers to Exercises 1.7 — Jump to TABLE OF CONTENTS

AL@<© G<® ©@-D A<B) (©o@®)
A2: (3)

(f) < (E)
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Y
f=—1 f=1
f=0
f 2\ / f=2
\ /x




(b)
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A-7: (@) Ifc > 0, f(x,y,z) = cis the sphere of radius +/c centered at the origin. If c = 0,
f(x,y,z) = cisjust the origin. If ¢ < 0, no (x,y, z) satisfies f(x,y,z) = c.

(b) f(x,y,z) = cis the plane normal to (1,2, 3) passing through (c,0,0).

() Ifc >0, f(x,y,z) = cis the cylinder parallel to the z-axis whose cross-section is a
circle of radius +/c that is parallel to the xy-plane and is centered on the z-axis. If ¢ = 0,
f(x,y,z) = cis the z-axis. If ¢ < 0, no (x,y, z) satisfies f(x,y,z) = c.

A8: (a)

z

(b)
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(©)

T

A-9: (a) This is an elliptic cylinder parallel to the z-axis. Here is a sketch of the part of the
surface above the xy—plane.

________
______

(2,0,0)/167 (0,4,0)

(b) This is a plane through (4,0,0), (0,4,0) and (0,0, 2). Here is a sketch of the part of the
plane in the first octant.

(4,0,0)

T

(c) This is a hyperboloid of one sheet with axis the x-axis.
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Y

(d) This is a circular cone centred on the y-axis.

(e) This is an ellipsoid centered on the origin with semiaxes 3, v/12 = 21/3 and 3 along the
x, y and z-axes, respectively.

(0,0,3)

(0,4/12,0)

(f) This is a sphere of radius r, = %\/ b2 + 4b + 97 centered on %(—4, b, —9).
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(—4, b, -9 + 2Tb)
(—4,b,-9)

N[

%(—4, b+ 27‘[;, —9)

%(—4 + 2’/’1,, b, —9)

(g) This is an elliptic paraboloid with axis the x-axis.

z

-
Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS

A-1: (a) 2 (b) undefined (c) undefined (d)o (e)0 (H1
A-2:(a)0 (b) See the solution.

A3: (a) 0

(b) The limit does not exist since the limits (i) x =0,y — 0O and (ii) y = 0, x — 0 are
different.

A-4: Tt does not exist.
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A-5: (a) 2

z 6: ()0 (b) % (c) No.
A-7

: (a), (b), (d) Do not exist. See the solutions.

¢

(b) The limit does not exist. See the solution.

()0

Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

Al (@0 ()0 (03
A-2: (a)
fx(x,y,2) = 3x2y425 fx(0,-1,-1) =0
fy(xy,2) = 4%’z £,(0,-1,-1) =0
f2(x,y,2) = 5x°y*z* f2(0,-1,-1)=0
(b)
yzexyz
wy(x,y,z) = T wy(2,0,-1) =0
xze*Y*
wy(x,y,2) = T+ o wy(2,0,-1) = -1
xyexyz
wy(x,y,z) = T o w,(2,0,—1) =0
(©)
X 3
fx(xly)__m fx(_3/4)_ﬁ
_ A
o) =~ +y2)3/2 (=34 = 755
A-3: See the solution.
4. 0z _ z(1—-x) oz _ z(l+y—yz)
A4 @F =y &= )
b) E(-1,-2)=3 S(-1,-2)=0.
2In(2
A-5: 8(1,2,4) = _1+21£1()2) 27(1,2,4) =In2— 1
A-6: 24
A7 £(0,00=1,  £,(0,0)=2
A-8: Yes.
() of —
A-9: (a) 7(0,0) =1, ay(O 0)=4 (b) Nope.

L 4

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS
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A-1: See the solution.
A-2: No such f(x,y) exists.

A-3: (a) fux(x,y) = 2 Soey(X,y) = fryy(x,y) = 12xy

b) frr(x,y) = y*e  foy(x,y) = 2y +2x9°)eV  fry(x,y) = (4° + 2xy°) e
fryy (2, y) = (24 10xy? 4 4x?y*) eV
»Af 36 »Af 9

© m(“’ ow) = (u+ 20+ 3w)* du v 6@0(3'2'1) —0.0036 = 2500
Aifxx:(ﬂjsw fxy—fyx: %}/y)m fyy = W;)m

A'55 (a) fxyZ(x/y/Z) =0 fxyZ(x/yrZ) =0 (c) fxx(1,0,0) =0

A6: () fr(1,0) = m(m ),MOON—Oﬁdlm ) A=1

A-7: See the solution.

- -

Answers to Exercises 2.4 — Jump to TABLE OF CONTENTS

Al @) Z(x,y) = L(xulxy) + & (xulxy) L(xy)

() $1(x) = & (x,u(x), 0(x)) + & (x,u(x), 0(x)) £(x) + & (x,u(x), 0(x)) £ (x)

© S(x,y,2) = & (u(x,,2), 0(x,y), 0(x) & (x,y,2) + 2 (u(x,,2), 0(x,y), 0(x) E(x,)
+2L (u(x,y,2),0(x,y), w(x)) 2 (x)

A-2: dw = 1. f; gives the rate of change of f(x,y, ) as t varies while x and y are held
fixed. dw v gives the rate of change of f(x(t),y(t),t). For the latter all of x = x(t), y = y(¢)
and t are changing at once.

A-3: See the solution.

A-4: The problem is that 5 6“’ is used to represent two completely different functions in the
same equation. See the solutlon for more details.

A-5: ws(s, t) = 2s(t2 4 1) wy (s, t) = s%(2t)

AL
%f(Zx +3y,xy) = 6 fia +2x foo +18 fin1 + (9y +12x) fr1z + (6xy +2x%) fiz + *%Y foro.

All functions on the right hand side have arguments (2x 4 3y, xy). The notation f;1, for
example, means first differentiate with respect to the second argument and then
differentiate with respect to the first argument.

AZ:

Qss(s, ) = 4f11(2s + 3t,3s — 2t) + 12f15(2s + 3t,35 — 2t) + 9f22(25 + 3t,3s — 2t)
gst(s, 1) = 6f11(2s + 3t,3s — 2t) + 5f12(2s + 3t,3s — 2t) — 6 f2(2s + 3t,3s — 2t)
Qu(s,t) = 9f11(2s 4 3t,3s — 2t) — 12f15(25s + 3t,3s — 2t) + 4 f22(2s + 3t,3s — 2t)
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Here f; denotes the partial derivative of f with respect to its first argument, fi, is the
result of first taking one partial derivative of f with respect to its first argument and then
taking a partial derivative with respect to its second argument, and so on.

A-8: See the solutions.
A9:a=5andb=c=2.
A-10:

2

2 2 _ 2 2 B 2 2
0xayF(x y ’ny) 2FU(X Y ,ny) 4xyFuu(x Yy ,2xy)

+4(x* —y) o(x* =y, 2xy)
+ 4xy Fpo (22 — 2, 2xy)
A-11: (a) & (x,y) = &, g;(x y) = e¥ In(x) — y? eV — 2ye¥

(b) See the solution.

A-12: 54
A-13: See the solution.
A-14: (a)
0z ., Of . of .
7 —(r,t) = —rsint a(i’cost, rsint) 4+ rcost a—(rcost, rsint)
(b)
2z of of
t — AN
T —(r,t) = —rcost p rsint = 2y
2 2 2
+r¥sin’t Z j: 2r?sint cos t E 81; + 1% cos? t Zy];

with all of the partial derivatives of f evaluated at (rcost, rsint).
A-15: 28

A-16: A =2.

A-17: 10a

A-18: See the solution.

A-19: (a)
Wss(s,t) = 4 1uyy(25 + 3,35 — 2t) + 12 1y, (25 + 3t,3s — 2t) + 9 uyy (25 + 3t, 35 — 2t)

(b) A=
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A-20: (a)
%[f(rcos@, rsinf)] = —rsinf f, 4+ rcosf f,
< rcosf, rsinf)| = cosf fy + sin6
or Y
2

%&G[f(rcosf), rsinf)] = —sin6 fx + cos 0 fy

— 18I0 cos O fyx + r[cos? O —sin 0] fr, + rsin 6 cos fyy

with the arguments of fy, fy, fix, fxy and fy, all being (rcos @, rsin6).
(b)

1
[f(rcosf, rsinf)] = __g_
K

p [g(rcos, rsinf)]
A
é’

KRR
>

[f(rcosf, rsinf)] = (rcosf, rsind)]

06
A-21: Vz(1,2) = (—47,108)
A-22: (a) See the solution. (b) %

A2 @ 5(50) =& @50 =% ©F

7T’ ou 7T
A-24: 0 =2
A-25: See the solutions.

Iny(x,z) —y(x,z)eV(¥2)2

zey(x,2)z _ x%z
y(x.z)

Fi (%, y(x), 6 —y(x)?) 4+ 2x F3(x, y(x), x* — y(x)?)
By (x,y(x), x2 —y(x)?) = 2y(x) F3(x, y(x), x> — y(x)?)
dy ~ y(xu)o(x,u) —xy(x, u)
(c) <a>u(xr”) =

xy(x,u) —xv(x,u)

A-26: (a) aZ(x z) =

&) L) =-

<

Answers to Exercises 2.5 — Jump to TABLE OF CONTENTS

A-1:2x+y+9z=2
A-2:2x+y+z=06

A-3: (a) The tangent plane is 4x + 2y + z = —3 and the normal line is
(x,y,z) = (=2,1,3) +t(4,2,1).

(b) The tangent plane is 2y — z = —1 and the normal line is
(x,y,z) = (2,0,1) + (0,2, -1).
A-4:z = ix—zz+ u

A-5: (a) 2ax — 2ay + z = —a? (b)a=1.
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>

-6: The tangent plane is %x - %y —z= —%.

The normal line is (x,y,z) = <—1,2,%> +t(&, -%&,-1).

AT: £(1,0,-2)
AB (L, -1, B and (%, -1, )
A9: £(3,-1,-1)

>
S

. (3,14,-30)

L V339 a0 = 4/ 1ios (314, -30)

A-11: The horizontal tangent planes are z = 0,z = ¢! and z = —¢~!. The largest and
smallest values of z are e~ and —e 1, respectively.

A-12: (@)y+z=3  r(t) =(0,2,1)+1(0,5,5)
) zx(x,y) = =2 zy(x,y) = _ X+ 2ytz(xy) 2,(0,2) = —1

y+3z(x,y)?2 y+3z(x,y)
1 2—-2x—y o x+2y+z(xy)
(C) ny(x y) y+32(x y) [y+3Z(X,y)2}2 (1 6Z(xl y) y+3z(x,y)2 )

A-13: (a) <1I O/ 3> (b) <3/ 3/ _1> (C) I'(t) = <1/ 1/ 3> +1 <3/ 3/ _1>
A-14: 49.11° (to two decimal places)
A-15: 2

<>
Answers to Exercises 2.6 — Jump to TABLE OF CONTENTS
A-1: 0.01 r 4 0.05 ~ 0.0814

A-6: 5 ~ 0.059
A-7: 2% = 0.325%

;|

Method 1 is better.
A-9: The sag will be more sensitive to changes in height.
A-10: 0.84
y)+1
AL @) filxy) = 324850 ) flxy) ~ -1-3(y-1) () ~0.955

A-12: (a) The differential at x = a,y = bis ef(%w + {,Saf; dy

() £(0.99, 0.01) ~ 0
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A-13: 7= +0.14 ~ 0.182

A-14: 59.560

A-15: 71 x 128 x 0.04 = 5.1271 ~ 16.1cc
A-16: (a) z(x,y) ~1—-4x+2y  (b)0.84

() 02 _AtyR oz 2 2 _ 10 _
(d)AtA, £ =32 AtB £ =-1
A-18: (a) 1+1€o_ (b) any nonzero constant times (-1, e~!, —1)

. 0z __ y222 0z __ 2xy2271
A-19: (a) (7_JZC T 473 -2xy?z’ é T 473 -2xy%z

(b) E(2,-1/2) = 45, &(2,-1/2) = -1
(c) f(1.94,-04) — 1 ~ —0.105
@%-y—z=-1

A-20: (a) 1.4 (b)3x -2y —z=—4
A-21: 0.1

A-22: (a)z=1—4x+8y (b) 1.12

A-23: (a) f(0.1,1.2) ~ 04 (b) (}),‘é,ln )

A-24: (@) (24 m)x +2y + 3z =~ -3

b) £(1,1) = =2

(c)2(0.97,1) ~ — 102

A-25: (a) Fy(1,2) = =2, F.(1,2) = -16  (b) 0.3

A 4

N[—

(c) £0.04

Answers to Exercises 2.7 — Jump to TABLE OF CONTENTS
A-1: 0

A-2: ycos(xy) i+ [2y + xcos(xy)]j

A-3: (a) -3 (b) — ~ —0.2446

144{
Ad: (a)< vg,_g () (0,-1)  (c) No direction works!
A-5: Vf(a,b) = (7,-1)

A-6: 2

A-7:(a)6i—3j+3k  (b) %
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A-8: (a) The path of steepest ascent is in the direction —\/Lﬁ (1, 4), which is a little west of
south. The slope is [V £(2,1)] = | (-1, —4) | = V17.

(b) So the hiker descends with slope 4.

(0) £ (4,-1)

A9:a=1b= %

A-10: (a) Any nonzero (a, b, c) that obeys 12a + 4b — 2c = 0 is an allowed direction.

(0,1,2) (1,-3,0)
7 and + T

(b) No they need not be the same. Four different explicit directions were given in part (a).

6,2,-1)
© ="V

A-11: (@) 10 (b) +£(3,-4,0)
A2 @1 O) (£, )

. 0.04e
A-13: 5

A—14:(a)\/l6 (b)%<—1,1,—2> 4 (da=2

Four allowed unit vectors are +

A-15: (@) V£(0,1,-1) = e72(2,-1,2),Vg(0,1,-1) = (-1,1,-1)  (b) 10
(c) Any vector which is a (strictly) positive constant times (—1, 0, 1) is fine.
A-16: (@) v = (-2, -4, 4) (b) —10

A-17: @) 25v2¢™°  (b) <2,2ﬁ3> (c) —104/17¢7°

A-18: The unit vector in the direction of maximum rate of change is %. The

maximum rate of change is v/29.

A-19: £ (2,-1)

A-20: (a)South  (b)2  (c) —2V5

A-21: (a) —16 (b) C (4, 1, —2) for any nonzero constant C

(c) Any positive non zero multiple of — (1, 2, 1) will do.

A-22: Vf(a,b,c) =~/3(2,6,—4)

A-23: (a) \% (1,1) (b) v =c(1,—1,0) for any nonzero constant c

(o)v= % (1,1,2¢72). Any positive multiple of this vector is also a correct answer.

A-24: (a) (1,2,2) (b) 14°/s (c) any positive constant times — (2,2, 4)
(d) any positive constant times + (2,0, —1)

A-25: (a) v = — <g §,0> (b) 39 ~ 2.96°/s
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A2 @30 ()5~ 770 (©VT(xy,) = 360 Sk,

A-27: (a)
Y

[ag

0) + (4,-1) (- (14)

A-28: (a) Here is a sketch which show the isotherms T =0, 1, —1 as well as the branch of
the T = 2 isotherm that contains the ant’s location (2, —1).

(b) <_1/ _1> /\/2 (C) 4\/§TJ (d) \1/—23 o) (e) y — _%

A29: (@1 ()x=1 (@1 (D7

A-30: (@)2v3  (b)55 (o) i%

A-31: (a) 2.1 (b) F increases. (c) Any nonzero constant times (4, 8, —1).

A-32: (a)

o)

)

(b) —(1,4)
A-33: (a) any positive multiple of (3,4) (b) —800e—17 (c) £ (%, —%) (d)y

II
@II\J

A-34: (a) See the solution. (b) 4v/5 ~ 8.944 (c)7.35

1

—_

1



&> <&

Answers to Exercises 2.9 — Jump to TABLE OF CONTENTS

A-l: (@@ T, U

(@) i) U

(a) (iii) S

(@) @iv) S

(b) (i) Fx(1,2) > 0

(b) (ii) F does not have a critical point at (2,2).
(b) (iii) Fxy(1,2) <0

A-2: The minimum height is zero at (0,0,0). The derivatives z, and Zy do not exist there.

The maximum height is V2 at (£1, £1, ﬁ) There z, and z, exist but are not zero —
those points would not be the highest points if it were not for the restriction |x|, [y| < 1.

A-3: Vg(xp)-d =0,ie Vg(xo) L d, and xg = a + tod for some ty. The second condition
is to ensure that xg lies on the line.

A4 (a)

(b) (0,0) is a local (and also absolute) minimum.
(c) No. See the solutions.

A-5: |c| > 2

critical

point type
A-6: | (0,0) | saddle point

(—%, %) local max
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critical

point type
(0,3) | saddle point
A-7: | (0,—3) | saddle point

(=2,1) | local max

(2,-1) | local min

A-8: The minimum value is 0 on

{(x,y,2)|x=>0,y=>0,2=>0, 2x+y+2z =5, atleast one of x,y,z zero }

The maximum value is 4 at (1,2,1).

point type
AD: (0,0) local min
(\@, —1) | saddle point
(—\@, —1) | saddle point
ritical
“point type
A-10: (\/Lg, \%) local min
- (\%, \%) saddle point
T
T e
A-11: | (0,0) | local max
(2,0) | saddle point

. . _ 2
A-12: min =0 max = 35~ 0.385

A-13: min = —\/lg max = \/%

S | type
A-14: @) | (3,-1) | local min
(—=1,1) | saddle point

(b)




=

(iii)

A-15:
itical
boint type
(3,—-1) | local min
(—1,1) | saddle point
A-16: (a)

critical

point type
0, %) local max

<O, — %) local min
(2,0)
(—2,0) | saddle point

saddle point

(b) The maximum and minimum values of /(x,y) in x> + y?> < 1 are 3 (at (0,1)) and —3
(at (0,—1)), respectively.

A-17: The minimum is —2 and the maximum is 6.
A-18: 6 —2+/5
A-19: (a) (0,0) and (3,0) and (0,3) are saddle points

(1,1) is a local min

(b) The minimum is —1 at (1, 1) and the maximum is 80 at (4, 4).
A-20: (0,0) is a local max

(0,2) is a local min

(1,1) and (-1,1) are saddle points

A-21: (a) (1,1) is a saddle point and (2, 4) is a local min

(b) The min and max are 22 and 5, respectively.

A-22: (0,0) is a saddle point and +(1,1) are local mins

A-23: (a) (0,0), (6,0), (0,3) are saddle points and (2,1) is a local min

(b) The maximum value is 0 and the minimum value is 4(4v2 — 6) ~ —1.37.
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A-24: (0,0) is a saddle point and +(1,1) are local mins
A-25: The coldest temperture is —0.391 and the coldest point is (0, 2).
A-26: (0, £1) are saddle points, (\%,0) is a local min and ( — \%,0) is a local max

A-27: (a) (0, —5) is a saddle point

(b) The smallest value of g is 0 at (0,0) and the largest value is 21 at (+2+/3, —1).
A-28: (-1, ++/3) and (2,0) are saddle points and (0,0) is a local max.

A-29: ¢7! ~ 0.368

. 2500
A-30: Vel

A-31: The box has dimensions (2V)/3 x (2V)1/3 x 272/3y1/3,

A-32: (a) The maximum and minimum values of T(x,y) in x2 + y? < 4 are 20 (at (0,0))
and 4 (at (0, £2)), respectively.

b) L (-4,-1)  ©18 (d)(02)
A-33: Case k < %:

critical

point type
(0,0) | local max
(0,2) | saddle point

_ 1.
Case k = 5:
Toimt | type
(0,0) | local max
(0,2) | unknown
1.
Case k > 5.
i type
(0,0) local max
(0,2) local min

<\/ k1_3 (2k—1), saddle point

<_\/k1_3 (2k—1), %) saddle point

A-34:(a)x =1,y = %, f(l, %) =6 (b) local minimum

=
N

(c) As x or y tends to infinity (with the other at least zero), 2x + 4y tends to +c0. As (x, y)
tends to any point on the first quadrant part of the x- and y-axes, xl—y tends to +o0. Hence

as x or y tends to the boundary of the first quadrant (counting infinity as part of the
boundary), f(x,y) tends to +o0. As a result (1, %) is a global (and not just local)

minimum for f in the first quadrant. Hence f(x,y) > f(1,1) = 6 for all x,yy > 0.
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1nSxy—SxSy
nS »—S%

SyS 2—SxSxy I I

n
A-35:m = e whereS, = '21 Vi, Sp2 = '21 x? and Sy = '21 XiYi.
P x 1= 1= 1=

- -

and b =

Answers to Exercises 2.10 — Jump to TABLE OF CONTENTS

A-1: (a) f does not have a maximum. It does have a minimum.
(b) The minima are at +(1,1), where f takes the value 2.

A-2: The max is f= v/3 and the min is f = —+/3.
A-3:a=c=+/3,b=2V3.

. . N - 1 _1
A-4: The minimum value is 23 +273 = % at (23, £27s).
. R : _ 2
A-5: radius = \/; and height = Nt
A-6: The maximum and minimum values of f are 2\1_f2 and —#, respectively.

A-7: min= 1, max= V2.

A-8: (1,-2,1) is the closest point. (—1,4, —1) is the farthest point.

A-9: The maximum is 5 and the minimum is 0.

A (V3, V2, 1)

A-11: The maximum is 6 and is achieved at (v6, —v/6, —1) and ( — /6, /6, —1).

A-12: /6 — 42 ~ 0.59

A-13: () 2(1++6) ~ 138 (b) 5 (4+6,4+6,2-2V6)
A-14: (a) The min is 6 and the max is 54. (b) (-1,1,-2)
A15: (@) (V5-1)" =625

(b) The minimum of f subject to the constraint x> + y? + z> = 1 is the square of the
distance from (2,1, 0) to the point on the sphere X2+ y2 + z2 = 1 that is nearest (2,1,0).

A-16: The maximum value is 2¢? and the minimum value is —2¢.
A-17: The farthest points are ++/6(—2,1). The nearest points are +(1,2).

A-18: The ends of the minor axes are + (%fz’ _\/LZ) The ends of the major axes are +(1,1).

A-19: x =y =4, z = 6 meters
A-20: The hottest temperature is -5 and the coldest temperature is —5.

A-21:24/3 x 4 x 24
A-22: 2m x 2m x 3m

3. 2 2 2/3
A-23: %mx %mx3 m

A-24: q = %, b= %, ¢ = 5, max volume= 27

\O|—
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A-25: /11
A-26: The min is —12+/3 at (—3+/3,0,3) and the max is 48 at (4, +4,2).
A-27: (a) (i)

2xe¥ = A(2x)
eV (x* +y* +2y) = A(2y)
x? 4+ y* = 100

(a) (ii) The warmest point is (0, 10) and the coolest point is (0, —10).
(b) (i)
2xe =0

e/ (X +y*+2y) =0
(b) (i) (0,0) and (0, —2)
(©) (0,0)
A-28: (a) c = 12 (b) £12
(c) The level surfaces of x + y + z are planes with equation of the form x +y +z = c. To
find the largest (smallest) value of x + 1 + z on 4x? + 4y? + z2 = 96 we keep increasing
(decreasing) c until we get to the largest (smallest) value of ¢ for which the plane

x + y + z = c intersects 4x% + 4y + z2 = 96. For this value of ¢, x + y + z = c is tangent to
4x?% + 4y? + 2% = 96.

L o &

Answers to Exercises 3.1 — Jump to TABLE OF CONTENTS
A-l: (@)20 ()6 (c) sab(a+D)

A2 @i(@b+a’) 0L -F  ©F Di1-cosl)  @ke-2)
()% (%-4mn2)

A-3: (a)e* -3 (b) 8 © 3

ﬁ ng:(l) Sg:i_xf(x,y) dy dx

A5 (a)
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(b) (e —1)
A-6: (a) The region R is the shaded region in the figure

y
r=1/y @4
r=y/2
T =y
CR)) st A— y=v2
1,1)
X

0) I = (1,251, fxy)dydx+ 5 §3 f(x,y) dydx (9}
A7: (a) 2
(b)

(—171)5

©1=Sdy () drx+ (Jdy§y)s dvx

A-8: 3[1—cos(16)]
A-9: (a)

(b) &
A-10: (@) I = Sé dx S}C dy y?sinxy = S(l) dy §g dx y?sin xy
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(b) 1—52in 1

(1,1)

(b) 1= fydxfydy §+fidxfy "dy

(c)2In2—1

A-13: (a)
Yy
xr
2(24/2-1
SR
Ald: (@) =%
Yy
(4,2)
T =1y
D y=x—2
xr
(1771)

(b) [ =3[e—1]
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Yy =
(4,1)
y=3vT
X
A-15: (a)
Y (2,0)
X
(27_4)
z=+/—y

(b) sin;S)

A-16: (@) T = §7, 1577 f(x,y) dydx (b)—<262+%>

A-17: (a)

(v8,0)
A

() 2§ f(x,y)dydx + 535 f(x,y)dydx  (c) VB —arctan2 — L In 28 1n5]

A-18: 1[et —1]
A19: T = 0§57V F(x,y) drdy

A-20: (a)

(_170)
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0 Y fxy dxdy, §'y §57 f(xy) dydx

(C) 62/3 _ 6_2/3

A-21: (a)
Y
wg
y = a?
x
(b) 1— COS
A-22: (a)
Y x=3

(b) 27 +181In3 ~ 34.30
A-23: 3sin8 ~ 1.319

A-24: (a) [ = JJ(S +2xy) dxdy where D = { (x,y) | x>+ (y—1)> <1}
2 2y—1y? 1- x2

b I:fd x (8 4 2xy) f dxf v (8+42x

®) 0 ! —v2y—y v) —\/1- x2 y)

(c) 87

A-25: 3% ~ 0.212

(b)J {f sin (y° — 3y) dx} dy (c) 0

A-27: 36
A-28: 36
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A-29: 48/2 7T

<

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

Ali(@r=30=0 rn=v20=2 r1r=10=% rn=+v20=3F

=2

,05 =71

(b) Both &,(6) and &;(6) have length 1. The angle between them is 7. The cross product is
é.(0) x &(0) = k.

(c) Here is a sketch of (x;,y;), &-(6;), €9(0;) fori = 1,3,5 (the points on the axes)

eq()

and here is a sketch (to a different scale) of (x;,y;), &-(6;), €(6;) for i = 2,4 (the points off
the axes).

er(°F) Y| ea(F) e (%)
(—1,1)) +(1,1)
eo(%) e

A-2: (a)a=rcosf,b=rsinf

(b) A=acose —bsing, B="bcos¢p+asing

A-3:
(a) J:P

R

r

(b) ]

R

/4 2 r2 /4
f(x,y)dxdyzj d@f drr f(rcos6,rsinf) = drf dor f(rcos@,rsinb)
0 0 0 0

J

/2 2 r2 /2
f(x,y)dxdy:f dQJ d”f(TCOSG,rsinQ):J er dé r f(rcos6,rsinb)
0 1 1 0
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/2 2 cos
(C)fff(X,y)dxdy:f dGJ drr f(rcosf,rsinf) =
3 0 0
2 arccos %
f drj dfr f(rcos6,rsin@)
0 0
(d)
/2 2/sin 6
ij(x,y)dxdy:f def drr f(rcos@,rsin@)
/4 0
R

2 n/2 24/2 arcsin%
:f drf dGrf(rcosG,rsinG)—kJ drf df r f(rcos@,rsinf)
0 /4 2 /4

A-4:
(a) y y=r b) ¥
2y =14 22 +yt =4 y==x y=2-—x
i
X
y=-x
(c)
Y
\_/x

A5 @2[V3+1] ®2 @1 (@-n

A6 [3v2- 7] ~ 226
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(0,2,2)

(b) %
. 16
A-10: 167
A-11: (a)
Y y==
2 +y2=4
L
xr
172+y2=2

(b)M:Sg”d@g%ﬁdrrp(rcos@,rsin()) OF;

A-12: 7T
. 1
A-13:1— 7
A-14: (a)
Yy
132 + y2 =4 T = \/gy
(V3,1)
/6
xXr

(b) 75 [5In(5) — 4]

. V3
A5

A-16: (@) D = { (rcos@, rsinf) | —7/2<60 <7/4,0<r<2cosb }
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_ 40 16
(b) Volume = Y3 + 3

. 44/9
A-17: 27HA0 ~ 1,442
A-18: (a)

8

(b)
Lff(x,}/) dA = LJ; dy Zyz dx f(x,y) + Jf dyL\//Z@dx f(x,v)

y/

(©)
Jff(X,y) dA = Jarctanz do Ll drr f(rcos,rsinf)
C

1
arctan 2

A-19: (a)
Y (VE2)

)] = 557§y b dyde 4 5§y L dy
(©) 1 [e*—1]In2

A-20: Zab

A-21: About 3.5” above the bottom

A-22: (a) 7r(e? — 1) ~ 25,453

(b) fodx f; " dy e
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A 4

Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

A-l: x =0and 7 = ;
A-2: (a)

(b) mass = % — 2In (2 4+ v/3)

2V3-In(24v3) 138 7= .

(C) X = %”—21n(2—|—\/§)

cp— 10
A3 %= 5100~ 057

>
o
=l
Il
<

_ 4
Y

A-7: (a) ?ﬂTN (b) —%
A-8: 42 — 2T ~ 1.214
A-9: (a) %(b —a,c) (b) See the solution.

Answers to Exercises 3.4 — Jump to TABLE OF CONTENTS
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_1]

A4 £[9V3 - 8v2+1]

A5: (@) F(x,y) = 1+ Flop?+ fy(xy)? (b)) 57 oy dr 2

A-6: 255+/271 ~ 1132.9
A-7: a*[rr — 2]

A 4

Answers to Exercises 3.5 — Jump to TABLE OF CONTENTS

A-1: %nazb
A-2:3

. a2
A3 Che

A-4:

A-5: (a)f dxf dyf f(x,y,z) +Ll dx Ll dy Ll_gz f(x,y,2)

o
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(b)

2

y=1 rx=1+y*—y rz=l-y
f f f f(x,y,z)dzdxdy

y=—1Jx=0
x=2—y z=2—x—Y
J J f f(x,y,z) dzdxdy
=—1 Jx=1+y2—y Jz=0
A-7: (a)
z
2r+y+4z=4
(1,0,1/2)
100 L
T z=1 (1,2,0)
(b)
x_i Z:4724xfy
J J flx,y,z dzdxdy—{—J J f f(x,y,z) dzdxdy
z=0
A-8:
fl ol pl-y rl pl=vx pl—z
I = J f(x,y,z)dzdydx = ( J f(x,y,z) dydzdx
Jo Jy/x Jo JO JO NG
Fl oyt ply il opl-y oy’
= J f(x,y,z)dzdxdy = f f(x,y,z)dxdzdy
Jo Jo Jo JoJo Jo
rl r(1-2)% pl—z rl pl—z py?
= J f(x,y,z) dydxdz = J f(x,y,z) dxdydz
Jo Jo NE JoJo Jo

A9 @)1= gx__lg (14 SZfS(HHy/Z) f(x,y,z) dzdy dx

Z—=

b)I=F_ g ¥=0 C(12/3) S:_z e 2/3)f(x,y,z) dydxdz
A
A-11:2
A-12:
A-13: 4
AR
A-15: (a)
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x
(b) §*, dx §3 7 dy §, 7 dz f(x,y,2)

A-16:] = §3 5L 1 f(x,y,2) drdydz

ﬂgy S 2/252 ;ffxy, z) dzdxdy
S}Zi@és st s 2 f(x,,z) dxdzdy

g Sy__ _f(x,y,z) dydxdz

A8 @ L VP fGyz) dzdxdy () L

Vi
(c) Sl_ S@ Smf(x,y,z) dydzdx

A-19: (a) S()S S Y f(x,y,z) dzdx dy

(b)SoSoS fx]/, )dxdydz+§1 S fx]/,

(©) 53572 50 £, ,2) dydrdz+ §5 V2§07 F(x,y,2
A-20: 33 ~ 05417
A-21: § =0.125

A-22: (a) Here is a 3d sketch of the region. The coordinates of the labelled corners are

=(0,0,1) b=(0,0,0) c¢=(1,0,00 d=(0,1,1) f=(0,2,0) g=(1,1,0)

S Sﬂ f(x,y,z) dxdydz

) dxdydz

) dydxdz
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<&
Answers to Exercises 3.6 — Jump to TABLE OF CONTENTS

A-1: (a), (b)

z
z
r=20
x
(0), (d)
z
=
x
A-2:

r=1, 6=0, z=0

A3:() (1,0,0)  (b) (v% %,0) (©)(0,1,0)  (d)(0,0,1)  (e) (%g "L 1)
A4 (a)r = V2,z =2,0 = Z (plus possibly any integer multiple of 277)

(b) r = v/2,z = 2,60 = T (plus possibly any integer multiple of 277)
(r=2,z=0,0= 27” (plus possibly any integer multiple of 271)

(d)r =0,z =1, 0 = arbitrary

A-5:(@)z =r?sin(20)  (b)r*+z2=1  (c)r =2cosf

A-6: (a) a®(27 — %) b) zm (0%
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7 N~
e ~ 0811)

z £v6- | ~ 1657

\Aa—r2
A-13: (a) mass = f drf dz d9 i(Z2 +1)r
1/2 Va2 Jo V3

(b) 32+/57 ~ 153.7kg

4— x2 e XY
A-14: (a J dxf dz (b) [1—e™] ~ 3.084

\4— x2
. 8
A-15: 3
6: (a) The unit vector in the direction of maximum rate of increse is \/» (3,0,1).
(b) 27t

A-17: M (34> + b?)

<

Answers to Exercises 3.7 — Jump to TABLE OF CONTENTS

z
=73
-------- y
T’
zZ
]
i
Q0=7T

131



p=1, 6=0.37, =0

p=0, 0=0.17, p=0.71

p=1, =0, LP:g

A3:(@p=20=m¢=7

(c)p =4, 0 = arbitrary, p = 7
d)p=20=33¢=12

At@ (32 %) 020

(B WS

A-5: (a)q):%or%’r (b) p =2cos ¢ (c)psing =2
A-6: See the solution.

A-7: (a)
(0,0,1)
(1,0,0)
(b) L
A-8: 271
A-9: (a) 2% (1 — L) o m () 4mA(a—/Btan™!

%) @5
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T

) I =§7"?de 7/ d6 §} dp p*sin? ¢ cos ¢ cos 6
© 15

. 81
A-12: 8

. 2m?
A-13: %

. 64
A-14: ¢41
A-15: 7ta?h

A-16: 7(1— 575) ~ 8.665

A-17: (a) 1¢ (b) The centroid is (%, 7, Z) with ¥

=fy=0and z =

ol

/2 27T
A-18: (a) f dpf dp | dop’sing cos¢p  (b) 1
- 0

A-19: (a) Mass = So dz 3” do Sf dr r?

b) M :7'(/2d 27Td92/singod 3 .2

(b) Mass = {7, dg §;~ do §j pp°sin” ¢

(c) 87

A-20: (a) [y dr 27 dO Y2 dz 3

(b) Y% dp (P d0 [T/ dg psin® @

() 7t [M _ é} ~ 0.5503

A-21: (a) {72 d §7/* d6 §) dp p* sin® g cos ¢ cos
(0) 1
A-22: (a) 2 dp {776 §7/° dg p*sin® ¢

Gl

(b) §5/% dr {57 6§V, "dz
() 817 [4 _ M} ~ 5.24

A-23: (a) Sl/\fdr 2"dGS”1 ? Az /12 f 22

(b) 3 dz{7/2de Y dr 12z cosd
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(b) S dp (57 0 57 dg p?sin ¢

©3F [1- 4]

A24: @) F |(12)*7

+ 54}

(b) i. The top part is the part of the snowman’s head that is inside the sphere

x%> +y?+ (z — 4)? = 4 and above the cone z — 4 = — xz;yz-

ii. The middle part is the part of the snowman’s head and body that is bounded on the

top by the cone z —4 = —4/ ngy > and is bounded on the bottom by the cone
z =4/3(x2 +y?).

iii. The bottom part is the part of the snowman’s body that is inside the sphere
x? + y? 4+ z% = 12 and is below the cone z = 1/3(x2 + 2).

A-25: (a) 287 121 — 128772

(b) The surface is a torus (a donut) but with the hole in the centre shrunk to a point. The
tigure below is a sketch of the part of the surface in the first octant.

z

T

A-26: () [ = gg dr 7 defidzrz Vi +22  (b)
I= S;ﬁ dgoS de SO/sm(P dp p*sin ¢ cos ¢

2(2v/2-1
(©) %

A27: @ §ydz 720§y drr(P 22" () 772 de (77 6§y dp p*sin g

114031 T
(©) Soa2

A28 @ (dr PRz ) () (/g T A0 T dp psin g osg
© %

A-29: (a) V = {3 dr §7/*de S:_m dzr () V ={""*de*d6e 3¢ dp p?sin ¢
(©)
A-30: (a) (" do 83/2 drr SW dz r?

(b) 55" de S”/ ®dg {5 dp (p*sin @) (p?sin? ¢)

W
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SOLUTIONS TO PROBLEMS
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&> <&

Solutions to Exercises 1.1 — Jump to TABLE OF CONTENTS

S-1: (a) The point (x,y, z) satisfies x2 + y? + z2 = 2x — 4y + 4 if and only if it satisfies

x%2 = 2x + > + 4y + 2> = 4, or equivalently (x — 1)2 + (y +2)2 + z> = 9. Since

v/ (x —1)2 + (y +2)2 + 22 is the distance from (1,-2,0) to (x,y, z), our point satisfies the
given equation if and only if its distance from (1, —2,0) is three. So the set is the sphere of
radius 3 centered on (1,-2,0).

(b) As in part (a), x> + y? + 2% < 2x — 4y + 4 if and only if (x — 1) + (y +2)> + 22 < 9.
Hence our point satifies the given inequality if and only if its distance from (1, —2,0) is
strictly smaller than three. The set is the interior of the sphere of radius 3 centered on
(1,-2,0).

S-2: (a) x = y is a straight line and passes through the points (0,0) and (1, 1). So it is the

straight line through the origin that makes an angle 45° with the x— and y-axes. It is
sketched in the figure on the left below.

Y

y=x r+y=1

T (170) &

(b) x + y = 1 s the straight line through the points (1,0) and (0, 1). It is sketched in the
figure on the right above.

(c) x? + y? is the square of the distance from (0,0) to (x,y). So x> + y* = 4 is the circle
with centre (0,0) and radius 2. It is sketched in the figure on the left below.

v y
/x\HJ =4 2 +y’ =2y
K ey f0.1)

T

(d) The equation x? + y? = 2y is equivalent to x> + (y — 1)?> = 1. As x*> + (y — 1)? is the
square of the distance from (0,1) to (x,y), x> + (y — 1) = 1 is the circle with centre (0,1)
and radius 1. It is sketched in the figure on the right above.

(e) As in part (d),

4P <2y — P+ -2y<0 — 24+ -2y+1<1 — 24+ (@y-12%<1
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As x% + (y — 1)? is the square of the distance from (0,1) to (x,y), x> + (y — 1)? < 11is the
set of points whose distance from (0, 1) is strictly less than 1. That is, it is the set of points
strictly inside the circle with centre (0,1) and radius 1. That set is the shaded region (not
including the dashed circle) in the sketch below.

S-3: (a) For each fixed yg, z = x, y = yo is a straight line that lies in the plane, y = yo
(which is parallel to the plane containing the x and z axes and is a distance y from it).
This line passes through x = z = 0 and makes an angle 45° with the xy—plane. Such a
line (with yg = 0) is sketched in the figure below. The set z = x is the union of all the
lines z = x, y = yo with all values of yy. As yg varies z = x, y = yg sweeps out the plane
which contains the y—axis and which makes an angle 45° with the xy—plane. Here is a
sketch of the part of the plane that is in the first octant.

(b) x + y + z = 1is the plane through the points (1,0,0), (0,1,0) and (0,0,1). Here is a
sketch of the part of the plane that is in the first octant.

(c) x> + y* + 22 is the square of the distance from (0,0,0) to (x,y,z). So x> + y* + 22 = 4is
the set of points whose distance from (0,0, 0) is 2. It is the sphere with centre (0,0,0) and
radius 2. Here is a sketch of the part of the sphere that is in the first octant.
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(d) x? + y?> + z2 = 4,z = 1 or equivalently x> + y?> = 3, z = 1, is the intersection of the
plane z = 1 with the sphere of centre (0,0,0) and radius 2. It is a circle in the plane z = 1
that has centre (0,0, 1) and radius /3. The part of the circle in the first octant is the heavy
quarter circle in the sketch

I

(e) For each fixed zg, x*> + y?> = 4, z = zj is a circle in the plane z = zg with centre (0,0, z9)
and radius 2. So x? + y? = 4 is the union of x> + y?> = 4, z = z, for all possible values of
zo. It is a vertical stack of horizontal circles. It is the cylinder of radius 2 centered on the
z—axis. Here is a sketch of the part of the cylinder that is in the first octant.

(f) For each fixed zy > 0, the curve z = x? + ]/2, z = zg is the circle in the plane z = z
with centre (0,0, z9) and radius /zg. As z = x? + 2 is the union of z = x> + 2, z = z
for all possible values of zy > 0, it is a vertical stack of horizontal circles. The intersection
of the surface with the yz—plane is the parabola z = y?. Here is a sketch of the part of the
paraboloid that is in the first octant.

139



S-4: For each fixed c, the isobar p(x,y) = c is the curve x?> — 2cx + y? = 1, or equivalently,

(x —¢)? +y? = 1+ ¢2. This is a circle with centre (c,0) and radius v/1 + ¢2, which for
large c is just a bit bigger than c.

Y

S-5: Call the centre of the circumscribing circle (%, 7). This centre must be equidistant
from the three vertices. So

Py =(x-a) +7 =(x-b)>+ ({7 —c)
or, subtracting %> + 7> from the three equal expressions,
0 = a® — 2a% = b* — 2b% + > — 2cy

which implies
a _b2+cz—2bf_b2+c2—ab

*=3 y= 2¢ 2c

The radius is the distance from the vertex (0,0) to the centre (&, i), which is

V(87 + (Brgay’,

S-6: The distance from P to the point (0,0, 1) is y/x2 + y2 + (z — 1)2. The distance from P
to the specified plane is |z 4+ 1|. Hence the equation of the surface is

PP+ (z-1)2=(z+1)orx* +y* =4z

All points on this surface have z > 0. The set of points on the surface that have any fixed
value, zyp > 0, of z consists of a circle that is centred on the z—axis, is parallel to the
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xy-plane and has radius 2,/zg. The surface consists of a stack of these circles, starting
with a point at the origin and with radius increasing vertically. The surface is a
paraboloid and is sketched below.

<

Solutions to Exercises 1.2 — Jump to TABLE OF CONTENTS

S-l:a+b=(31),a+2b=(42),2a—b = (3,—1)

Yy
Y a+2b
2b
a+b
b

I a > 3 a > T

Yy

| 2a -

2a—b —b

S-2: If three points are collinear, then the vector from the first point to the second point,
and the vector from the first point to the third point must both be parallel to the line, and
hence must be parallel to each other (i.e. must be multiples of each other).

Y

T

(a) The vectors (0,3,7) — (1,2,3) = (—1,1,4) and (3,5,11) — (1,2,3) = (2,3,8) are not
parallel (i.e. are not multiples of each other), so the three points are not on the same line.

141



(b) The vectors (1,2, -2) — (0,3, -5) = (1,—1,3) and (3,0,4) — (0,3, —-5) = (3,—-3,9) are
parallel (i.e. are multiples of each other), so the three points are on the same line.

S-3: By property 7 of Theorem 1.2.9 in the CLP-3 text,

(a) (1,3,2) - (2,-2,2) =1x2-3x2+42x2=0 — perpendicular
b) (-3,1,7)-(2,-1,1) = -3x2—-1x147x1=0 — perpendicular
(c) (2,1,1) - (-1,4,2) = 2x1+1x44+1x2=4+#0 = not perpendicular

S-4: proj;a = (a-1)i = a1 and proj;a = (a-])j = aj.

S-5: The vector from (1,2,3) to (4,0,5) is (3, —2,2). The vector from (1,2,3) to (3,6,4) is

(2,4,1). The dot product between these two vectors is (3, -2,2) - (2,4,1) = 0, so the
vectors are perpendicular and the triangle does contain a right angle.

S-6: The area of a parallelogram is the length of its base time its height. We can choose

the base to be a. Then, if 0 is the angle between its sides a and b, its height is |b| sin 6. So

area = |a||b|sin® = |a x b|

S-7: The volume of a parallelopiped is the area of its base time its height. We can choose
the base to be the parallelogram determined by the vectors b and c. It has area |b x c|.
The vector b x c is perpendicular to the base. Denote by 0 the angle between a and the

e

perpendicular b x c. The height of the parallelopiped is |al|| cos 6]. So

b xc

volume = |a||cosf||b x c| = |a- (b x ¢
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k
0| =8(0x0—-0x1)—j(1x0-0x0)+k(1x1-0x0)
0

~>
X
~»
I
Q.
[¢"]
-
O = =
—_ O -

I
=

=1(1x1-0x0)—j(0x1-0x0)+k(0x0—1x0)

~>

X

=

I

Q.

0]

-
S O ™
o R~
=

I
-~>

=1(0x0—-1x0)—j(0x0—-1x1)+k(0x0-0x1)

=

X

~>

I

Q.

0]

-
— O =
o O -
S = R’

I
-

(b)

a- (a X b) =m (Ll2b3 — a3b2) —ap (a1b3 — a3b1) +as (a1b2 — azbl) =0
b- (a X b) =bh (azbg — a3b2) — by (Ellbg, — a3b1) + b3 (ﬂlbz — azbl) =0

S-9: This statement is false. The two numbers a - b, a - ¢ are equal if and only if
a- (b —c) = 0. This in turn is the case if and only if a is perpendicular to b — ¢ (under the
convention that 0 is perpendicular to all vectors). For example, if a = (1,0,0),
b=(0,1,0), c=(0,0,1), thenb —c = (0,1, —1) is perpendicular to aso thata-b = a - c.

S-10: This statement is true. In the event that b and ¢ are parallel, b x ¢ = 0 so that
ax (b x ¢) =0 = 0b + Oc, so we may assume that b and c are not parallel. Then as a and
B run over R, the vector ab + Bc runs over the plane that contains the origin and the
vectors b and c. Call this plane P. Because d = b x c is nonzero and perpendicular to
both b and ¢, P is the plane that contains the origin and is perpendicular to d. As

a x (b x ¢) = a x d is always perpendicular to d, it lies in P.

S-11: None. The given equation is nonsense. The left hand side is a number while the
right hand side is a vector.

S-12: If b and c are parallel, then b x ¢ = 0and a- (b x ¢) = 0 for all a. If b and c are not
parallel, a- (b x ¢) = 0 if and only if a is perpendicular to d = b x c¢. As we saw in
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question 10, the set of all vectors perpendicular to d is the plane consisting of all vectors
of the form ab + Bc with « and B real numbers. So a must be of this form.

S-13: (a) The sketch for part (a) is on the left below. To sketch the projections, we dropped
perpendiculars

e from C to the line from O to A, and
e from C to the line from O to B.
By definition,

® proj5; OC is the vector OP4 from O to the point P4, where the perpendicular from
C to the line from O to A hits the line, and

® projs; OC is the vector OPg from O to the point Pg, where the perpendicular from
C to the line from O to B hits the line.

B B

PB PB
0 A A 0 A A

To evaluate the projections we observe that the three lines from C to O, from C to A and
from C to B all have exactly the same length (namely the radius of the circumscribing
circle). Consequently (see the figure on the right above),

e the triangle OCA is an isoceles triangle, so that P4 is exactly the midpoint of the
line segement from O to A. That s, P4 is (a/2,0) and

Proj5; OC = OP4 = (a/2,0)

e Similarly, the triangle OCB is an isoceles triangle, so that P is exactly the midpoint
of the line segement from O to B. Thatis P, is (b/2,¢/2) and

proj@g(yf — OPg = (b/2,c/2)

(b) Call the centre of the circumscribing circle (%, 7). This centre must be equidistant from
the three vertices. So

P4y =(x-a) +7 =(x-b)>+{F—c)
or, subtracting x> + 7 from all three expression,

0 =a® —2a% = b* — 2bx + ¢* — 2cf
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which implies
JE_a __b2+cz—2bf_b2+c2—ab
2 y= 2c Y

(c) From part (b), we have

s a b>+c?—ab 21—,
N a b +c2—ab ab b*+c2—ab P+ 1,
OB.0C = (b,¢) <2, = > T - OB

So, by Equation (1.2.12) in the CLP-3 text,

_—», OA-OC— 1
oC 5

pro]mOC:W AZEOA:<a/2'O>
. —» OB-OC—s 1—5
projg; OC = o8P OB—ZOB—(b/2,C/2>

S-14: The center of the sphere is 3{(2,1,4) + (4,3,10)} = (3,2,7). The diameter (i.e.
twice the radius) is |(2,1,4) — (4,3,10)| = |(—2, -2, —6)| = 2|(1,1,3)| = 2+/11. The
equation of the sphere is

(x=3)2+ (-2 + (z-72 =11

S-15: Let (x,y, z) be a point in P. The distances from (x,y, z) to (3,—2,3) and to (3/2,1,0)
are

VJE-32 4+ (1 +22+ (232 and 4/(x—3/22+ (y—1)2 +22
respectively. To be in P, (x,y,z) must obey

V=324 (1 +2)2+ (232 =2/(x ~3/2)2 4 (y - 1)2 + 22
(x =32+ (y+2)*+ (z—3) =4(x —3/2)* +4(y — 1)* + 42
X2 —6x+9+yP Ay + 4422 —624+9=4x" —12x + 9+ 4y — 8y + 4+ 42°
3x% —6x +3y* — 12y + 32>+ 62 -9 =0
X —2x41y*—4y+22+22-3=0
(x=12+ -2+ (z+1)*=9

This is a sphere of radius 3 centered on (1,2, —1).
S-16: Call the vertices of the triangle A, B and C with C being the vertex that joins the two

sides. We can always choose our coordinate system so that C is at the origin. Let a be the
vector from C to A and b be the vector from C to B.
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P
B
e Then the vector from C to the midpoint of the side from C to A is %a and
e the vector from C to the midpoint of the side from C to B is %b so that
o the vector joining the two midpoints is 1b — Za.
As the vector from AtoBisb —a =2 [%b - %a] , the line joining the midpoints is indeed

parallel to the third side and half its length.

S-17: (a) By (1.2.14) in the CLP-3 text, the area is

-3
det

1
3”:\—3><3—1><4\:y—13\:13

(b) By (1.2.14) in the CLP-3 text, the area is

4 2
det[ ”:|4><8—2><6\:20
6 8

S-18: Note that
e the point on W with x =0, y = 0 obeys —0+ 3(0) + 3z = 6 and so has z = 2

)

e the pointon W with x =0,y = 2 obeys —0+ 3(2) +3z = 6 and so hasz = 0

e the point on W with x = 3, y = 0 obeys —3 + 3(0) + 3z = 6 and so has z = 3
)

e the pointon W with x =3,y = 2 obeys -3+ 3(2) +3z =6andsohasz =1

So the four corners of the parallelogram are (0,0,2), (0,2,0), (3,0,3) and (3,2,1). The
vectors

d;=(0-0,2-0,0-2)=(0,2,-2)
d,=(3-0,0-0,3-2)=(3,0,1)

form two sides of the paralleogram. So the area of the parallelogram is

A

k

A

1
|d1 X d2| = |det |0
3

~ [2i— 6~ 6k| = V76 =2v19

S N =
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S-19:

(a) By (1.2.15) in the CLP-3 text, the volume is

5 2 -1 2 -1 5
4 det —1det + (—1) det
1 6 1 6 1 1

=1430-2)—1(-6-2) —1(-1-5)| =4 x28+8+6
=126

4 1 -1
det|—-1 5 2 =
1 1 6

(b) By (1.2.15) in the CLP-3 text, the volume is

S-21:

(a)
(b)
()

-2 1 2
1 2 3 2 31
det| 3 1 2||=|-2det —1det + 2 det
2 5 05 0 2
0 25
=|-2(5-4)-1(15-0) +2(6 - 0)| = | -2—-154+12| = | - 5|
=5
a-b=(1,2)-(-2,3) =4 cosB—L—él%l 0 = 60.25°
Y o BRC o
a-b=(-1,1)-(1,1) =0 C039:%ﬁ:0 6 = 90°
4
a-b=(1,1)-(2,2) =4 cosf = —=1 0 =0°
(L1)-(2,2) NN
2
a-b=1(1,2,1)-(-1,1,1) =2 cosf) = —— = 4714 0 = 61.87°
1,21)-(-1,1,) —
0
a-b=(-1,2,3)-(3,0,1) =0 cosf = =0 0 =90°
( ) ) TV,

By property 6 of Theorem 1.2.9 in the CLP-3 text,

a-b 1x3+2x4 11

cosf = = = = .9839 — #=103°
la|[b| V1+4y9+16 545

cosg— b _ 2xd4-dx244xl 10 _ .0 s 0=616°
la||b|  VA+1+16V16+4+1 21

cosg— 2D _1x3=2x141x0_ 1 _ g 0 =826°

a[[b] ~ VI+4+1,OA+1 60
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(a) (2,4) - (2,y) =2x2+4xy=4+4+4y=0 = y=-1
(b) (4,—1)-<y,y2>:4xy—1xy2:4y—y2:0 — y=0,4
() (3,1,1>~<2,5y,y2>=6—|—5y—|—y2:0 — y=-2,-3

S-23: (a) Wewant0 =u-v=—-2a — 10 or o« = —5.

(b) We want —2/a =5/(-2) ora = 0.8.

(c) Wewantu-v = —2& —10 = |u| |v| cos60° = /29 /a2 + 4 % Squaring both sides gives

29
4% 4 400 + 100 = Z(oc2 +4)

—  13a% —160a — 284 =0

160 + V1602 + 4 x 13 x 284
“= 26

~ 13.88 or —1.574

Both of these a’s give u - v < 0 so no &« works.

S-24: (a) The component of b in the direction a is

b A _1x442x1043x6 _ 42

| VI+4+9 V14

(b) The projection of b on a is a vector of length 42/+/14 in direction a/|a|, namely
22 (1,2,3) = (3,6,9)
14 < 7~ 7 Yy .

(c) The projection of b perpendicular to a is b minus its projection on a, namely
(4,10,6) — (3,6,9) = (1,4, -3).

S-25:
ij k
(1,2,3) x (4,5,6) =det [1 2 3| =1(2x6—-3x5)—j(1x6—-3x4)+k(1x5-2x4)
4 5 6
=-31+6j-3k

148



i ] k
(a) det|1 -5 2
-2 1 5
i j k
(b) det |2 -3 -5
4 -2 7
i j k
() det -1 0 1
0 4 5
5_27
K
(@ pxp=det|-1
-1
= (0,0,0)
K
(b) pxq=det|-1
3
K
gqxp=det| 3
-1
K
() px(3r) =det | -1
6

-~

3(p xr) =3det | -1
2

2 A~ 1 -

+ k det >
5 -2 1
=1(—25-2) —j(5+4) + k(1 -10) = (-27,-9,-9)

-3 -5 2 5| < 2 -3
= idet —jdet + kdet
-2 7 4 7 4 -2

=1(—21-10) —j(14 +20) + k(—4 + 12) = (-31,-34,8)

11 N -1
+ kdet 0
5 0 4

=1(0-4) —j(-5-0)+ k(-4 -0) = (—4,5,—4)

01
= 1det —jdet
4 5

— (4 x2-2x4)—j(2—(-2)) + k(—4— (—4))

= s~
N N RS

=i(-4-2)-j(1-6)+k(-1-12) = (-6,5,—13)

p— =

=i(2+4+4)—j(6-1) +k(124+1) = (6,-5,13)

=~ —_
|
—_

—12+18) —j(3 — 12) + k(9 — 24) = (6,9, —15)
-9 -3

4 2 :3((4+6)—j(1—4)+f<(3—8)):<6,9,—15>
3 1
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(d)Asq+r=(5-2,-2)

i j k
px(q+r)=det|-1 4 2
5 -2 2

—1(—8+4)—j(2-10) + k(2 —20) = (—4,8,-18)

Using the values of p x q and 3(p x r) computed in parts (b) and (c)

1
pxq+pxr=(-6,5-13)+ = (6,9, —15) = (—4,8,—18)

3
ik
€ qxr=det|3 1 —1|=3(-1-3)—j(-3+2)+k(-9-2)=(-4,1,-11)
2 -3 -1
(i j k
px(qxr)=det|-1 4 2 | =7(-44-2)—j(11+8) + k(-1 +16) = (—46,-19,15)
41 -11
ik
(pxq)xr=det|—-6 5 —13| =i(-5-139)—j(6+26) + k(18 —10) = (—44,-32,8)
2 -3 -1

S-28: Denote by 6 the angle between the two vectors a = (1,2,3) and b = (3,2,1). The
area of the triangle is one half times the length, |a|, of its base times its height
h = |b|sin 6. Thus the area of the triangle is %\a| |b| sin 6. By property 2 of the cross
b
b ’
A
product in Theorem 1.2.17 of the CLP-3 text, |a x b| = |a| |b| sin 6. So

area = ila x b| = 1[(1,2,3) x (3,2,1) |
=3i(2-6)-j(1-9)+k(2-6)
=1/16+64+16
=26

S-29: The derivative of L is

= (a0 < F(0) = £(0) x £(0) x(0) % £1(6) = ¥ (1) ¥ (1) + £(0) x (p(1)x(1))
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Both terms vanish because the cross product of any two parallel vectors is zero. So
dl = 0 and L(t) is independent of .

S-30: The parallelogram determined by the vectors a and b has vertices 0, a, band a + b.
As t varies from 0 to 1, t(a + b) traverses the diagonal from 0 to a + b. As s varies from 0
to 1, a+ s(b — a) traverses the diagonal from a to b. These two straight lines meet when s
and f are such that

t(a+b)=a+s(b—a)

. (t+s—1)a=(s—t)b

Assuming that a and b are not parallel (i.e. the parallelogram has not degenerated to a
line segment), this is the case only whent +s—-1=0and s —t = 0. Thatis,s =t = % So
the two lines meet at their midpoints.

S-31: We may choose our coordinate axes so that A = (0,0 ) B = (s,0,0),C = (s,5,0),
(

D =(0,5,0)and A’ = (0,0,s), B’ = (5,0,5),C" = (s,s,5), D' = (0,s,5).

(a) Then
|A'C'| = | (s,s,5) — (0,0,8) | =](s,5,0)] =+2s
|A’B| = | (5,0,0) — (0,0,s) | = | (5,0, —s) | =25
|A'D| = [(0,5,0) — (0,0,s) | = [ (0,5, —s) | = V25
IC'B| = [ (5,0,0) — (s,s,5) | = (0, —s,—s) |= V25
IC'D| = |(0,5,0) — (s,s,5) | =]|(—s,0,—s)|= V2s
BDI = (0,5,0) — (5,0,0)| = | (=5,5,0)| = v2s

(b) E = 1(s,s, s) so that EA = (0,0,0) — 1 (s,s,5) = —3 (s,5,5) and
EC = (5,5,0) — 1 (s,5,5) = 3 (5,5, —s).
(s,s,8) - (s,5,—s)  —s° 1

9: _ f— = —— 9:109.50
€08 | (s,s,8) || (s,s,—s)|  3s? 3 —

S-32: Suppose that the cube has height, length and width s. We may choose our
coordinate axes so that the vertices of the cube are at (0,0,0), (s,0,0), (0,s,0), (0,0,s),
(s,s,0),(0,s,s), (s,0,s) and (s,s,s).

We'll start with a couple of examples. The diagonal from (0,0,0) to (s,s,s) is (s,s,s). One
face of the cube has vertices (0,0,0), (s,0,0), (0,s,0) and (s,s,0). One diagonal of this
face runs from (0,0,0) to (s,s,0) and hence is (s, s,0). The angle between (s, s,s) and
(s,s,0) is

cos™ (\ <<:,I,:,,:>>’.<<ss,/s;,%>> |) = cos™ (ﬁzzﬂ) = cos™ (%) 326
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A second diagonal for the face with vertices (0,0,0), (s,0,0), (0,s,0) and (s,s,0) is that
running from (s,0,0) to (0,s,0). This diagonal is (—s, s,0). The angle between (s, s, s) and
(—s,s,0) is

_ (s,s,8) - (=s,5,0) \  _ 0 - .
cos! <| (s,s,5)]] (-s,s,0) |> = cos™ (m) = cos 1(0) =90

Now we’ll consider the general case. Note that every component of every vertex of the
cube is either 0 or s. In general, two vertices of the cube are at opposite ends of a diagonal
of the cube if all three components of the two vertices are different. For example, if one
end of the diagonal is (s, 0, s), the other end is (0, s,0). The diagonals of the cube are all of
the form (s, +s, +s). All of these diagonals are of length v/3s. Two vertices are on the
same face of the cube if one of their components agree. They are on opposite ends of a
diagonal for the face if their other two components differ. For example (0, s, s) and
(s,0,s) are both on the face with z = s. Because the x components 0, s are different and
the y components s, 0 are different, (0,s,s) and (s,0,s) are the ends of a diagonal of the
face with z = s. The diagonals of the faces with z = 0 or z = s are (+s, £s,0). The
diagonals of the faces with y = 0 or y = s are (+s,0, +s). The diagonals of the faces with
x = 0 or x = s are (0, £s, +s). All of these diagonals have length /2s. The dot product of
one the cube diagonals (+s, +s, +5) with one of the face diagonals (+s, +s,0), (+s,0, £s),
(0, +s, £s) is of the form +s? + s? + 0 and hence must be either 2s? or 0 or —2s2. In
general, the angle between a cube diagonal and a face diagonal is

2 2 -2 2 2 -2
cos™! < ’ f%oi)/ri ° ) — cos™! (%) ~ 35.26° or 90° or 144.74°.
S S

S-33: Denote by (x(t),y(t)) the position of the skier at time ¢. As long as the skier
remains on the surface of the hill

y(t) = h(x(t))
= y'(t) =K' (x(t)) ¥'(t)
= y"(t) = " (x(t)) X (£)? + W (x(t)) x"(t)

So the velocity and acceleration vectors of the skier are

v(t) = (1,1 (x(t))) x'(t)
a(t) = (LI (x(t)))x"(t) + (0,1 (x(t)) ) x' ()

The skier is subject to two forces. One is gravity. The other acts perpendicularly to the
hill and has a magnitude such that the skier remains on the surface of the hill. From the
velocity vector of the skier (which remain tangential to the hill as long as the skier
remains of the surface of the hill),we see that one vector normal to the hill at (x(t),y(t)) is

() = (- (x(1)),1)

This vector is not a unit vector, but that’s ok. By Newton’s law of motion

ma = —mgj+ p(t)n(t)
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for some function p(t). Dot both sides of this equation with n(f).
ma(t) - n(t) = —mgj-n(t) + p(t)n(t)
Substituting in
mh” (x(£)) x' ()2 = —mg + p(t) [1 + h’(x(t))ﬂ
— p(0) [L+1 (x(1)*] = m(g+1 (x(1) ' (1)?)
Aslong as p(t) = 0, the hill is pushing up in order to keep the skier on the surface. When

p(t) becomes negative, the hill has to pull on the skier in order to keep her on the surface.
But the hill can’t pull, so the skier becomes airborne instead. This happens when

g+H (x(t)x'(H)*=0

That is when x/(t) = 4/—g/h"(x(t)). At this time x(t) = xo, y(t) = yo and the speed of

the skier is
\/x’(t)2 Y/ (1)2 = A1+ 1 (x0)*y/—g/h" (x0)

S-34: The marble is subject to two forces. The first, gravity, is —mg k with m being the
mass of the marble. The second is the normal force imposed by the plane. This forces acts
in a direction perpendicular to the plane. One vector normal to the plane is a1 + bj + ck.
So the force due to the plane is T (a, b, c¢) with T determined by the property that the net
force perpendicular to the plane must be exactly zero, so that the marble remains on the
plane, neither digging into nor flying off of it. The projection of the gravitational force
onto the normal vector (a,b, c) is

-mg(0,0,1) - (a,b,c) _ —mgc
abap b= arpra b
The condition that determines T is thus
—mgc B B mgc
Tabo+ g awba=0—=T= "m0

The total force on the marble is then (ignoring friction — which will have no effect on the
direction of motion)
T{a,b,c) —mg(0,0,1) = % (a,b,c) —mg(0,0,1)
c{a,b,c) —{(0,0,a% + b + c?)
a2 + b2 + c2
{ac,bc, —a* — b*)
a2 + b2 + c2

:mg
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The direction of motion (ac, bc, —a? — b?). If you want to turn this into a unit vector, just

divide by 4/ (a2 + b2) (a2 + b2 + c2). Note that the direction vector in perpendicular

(a,b,c) and hence is parallel to the plane. If ¢ = 0, the plane is vertical. In this case, the
marble doesn’t roll — it falls straight down. If 2 = b = 0, the plane is horizontal. In this

case, the marble doesn’t roll — it remains stationary.

5-35: By definition, the left and right hand sides are

a- (b xc)=(ay,a,a3) - (bacz — bzcp, byc1 — bycs, bica — bycy)
= a1byc3 — abacy + asbsey — axbics + azbicy — azbacy

(a xb)-c = (agbs —asby, azby — a1bz, a1by — axby) - (c1,¢2,c3)
= abscq — asbycq + azbicy — a1bscy + ay1bacs — arbycs

(Ihs) and (rhs) are the same.

S-36: By definition,

bxc = (szg — b3C2)i — (b1C3 — b361)j + (b1C2 — bzcl)f(

so that the left and right hand sides are

i j k
x (b x¢) = det 1 ap as
bycs — bsca  —bics + bscy bico — bocy
=1[ap(bycy — bocy) — as(—bics + bseq)]
—j [a1(b1c2 — bac1) — as(bacs — bscy)]
4k [a1(=bicz + bzcy) — ax(bacs — bacy)]

(lhs)

(rhs)

(Ihs)

(a . C)b — (a . b)C = (a101 + arco + a3C3)(b1i + sz + b31A() — (a1b1 + arby + El3b3) (Cli + Czj + C31A()

=1 [a1b1c1 + asbicy + azbycz — a1bycy — asbycy — (Z3b3C1]

+j [a1bacq + axbacy + asbacs — a1bicy — axbycy — asbscs]

+k [a1b3c1 + azbscy + azbses — arbics — abocs — azbscs)
=1 [apbicy + azbycs — axbycy — asbscq]

+j [a1bacy + asbacs — arbica — azbacy)

4Kk [a1b3cq + asbscy — aybics — apbycs]

(Ihs) and (rhs) are the same.

S-37: By properties 9 and 10 of Theorem 1.2.17 in the CLP-3 text,

(axb)-(cxd)=a-[bx(cxd)

(rhs)

(by property 9 with ¢ — (¢ x d))

]
=a-[(b-d)c—(b-c)d] (by property 10)
(

=( c)(b-d) —(a-d)(b-c)
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So
(axb) - (cxd)=(a-c)(b-d)—(a-d)(b-c)

S-38: (a) AA’ = (4,0,1) and BB’ = (4,0, 1) are opposite sides of the quadrilateral AA’B’B.
They have the same length and direction. The same is true for AB = (—1,3,0) and

A'B' = (—1,3,0). So AA’B'B is a parallelogram. Because,

AA"-AB = (4,0,1)-(-1,3,0) = —4 # 0, the neighbouring edges of AA’'B’B are not
perpendicular and so AA’B’B is not a rectangle.

Similarly, the quadilateral ACC’ A’ has opposing sides AA’ = (4,0,1) = CC’' = (4,0,1)
and AC = (—1,0,4) = A'C' = (-1,0,4) and so is a parallelogram. Because

AA"-AC = (4,0,1) - (—1,0,4) = 0, the neighbouring edges of ACC’' A’ are perpendicular,
so ACC'A’ is a rectangle.

Finally, the quadilateral BCC'B’ has opposing sides BB’ = (4,0,1) = CC' = (4,0,1) and
BC = (0,-3,4) = B'C’ = (0, —-3,4) and so is a parallelogram. Because

BB'-BC = (4,0,1) - (0, —3,4) = 4 # 0, the neighbouring edges of BCC'B’ are not
perpendicular, so BCC'B’ is not a rectangle.

(b) The length of AA"is | (4,0,1) | = v/16 + 1 = \/17.

(c) The area of a triangle is one half its base times its height. That is, one half times |AB|
times |AC|sin 6, where 6 is the angle between AB and AC. This is precisely
HAB x AC| = 11(-1,3,0) x (-1,0,4) | = 3] (12,4,3) | = L.

(d) The volume of the prism is the area of its base ABC, times its height, which is the
length of AA’ times the cosine of the angle between AA’ and the normal to ABC. This
coincides with 1 (12,4,3) - (4,0,1) = 1(48 4 3) = 3}, which is one half times the length of
(12,4,3) (the area of ABC) times the length of (4,0,1) (the length of AA’) times the cosine
of the angle between (12,4, 3) and (4,0, 1) (the angle between the normal to ABC and
AA").

S-39: Choose our coordinate axes so that the vertex opposite the face of area D is at the
origin. Denote by a, b and ¢ the vertices opposite the sides of area A, B and C
respectively. Then the face of area A has edges b and ¢ so that A = %|b x ¢|. Similarly
B = }|c x a] and C = 3|a x b|. The face of area D is the triangle spanned by b — a and
¢ — a so that

D = J|(b—a) x (c—a)
:%|bxc—axc—b><a|
=lbxc+tcxat+axb]
By hypothesis, the vectors a, b and ¢ are all perpendicular to each other. Consequently

the vectors b x ¢ (which is a scalar times a), ¢ x a (which is a scalar times b) and a x b
(which is a scalar times c) are also mutually perpendicular. So, when we multiply out

Dzzi[bxc—i—cxa—i—axb]-[bxc+cxa+a><b]
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all the cross terms vanish, leaving

D2 = [(bxc)(bxc)+(exa) (exa)+(axb) (axb)] = A2+ B +C

5-40: As in problem 39,

Dzzi[bxc—i—cxa—kaxb}-[bxc+cxa+a><b]

But now (b x c) - (a x c), instead of vanishing, is |b x ¢| = 2A times |a x ¢| = 2B times
the cosine of the angle between b x ¢ (which is perpendicular to the face of area A) and
a x ¢ (which is perpendicular to the face of area B). That is

(bxc)-(axc)=4ABcosvy
(axb)-(cxb)=4ACcosp
(bxa)-(cxa)=4BCcosua

(If you're worried about the signs, that is, if you are worried about why

(b x ¢)-(axc)=4ABcosy rather than (b x c¢) - (¢ x a) = 4AB cos 7, note that when
a~b,(bxc) (axc)=~|bxc|?ispositiveand (b x c) - (c x a) ~ —|b x c|? is negative.)
Now, expanding out

1

D? = [bxc+cxat+axb|-[bxc+cxa+axb)]

| =

4[(b><c)-(b><c)—|—(c><a)-(c:><a)—i—(axb)-(axb)
+2(bxc)-(ecxa)+2(bxc)-(axb)+2(cxa) (axb)]
= A% + B>+ C?> - 2ABcosy — 2ACcos 8 — 2BC cos a

L g a

Solutions to Exercises 1.3 — Jump to TABLE OF CONTENTS

S-1: (a) The vector parametric equation is (x,y) = (1,2) +t (3,2). The scalar parametric

equations are x = 1 + 3t, y = 2 + 2t. The symmetric equation is XT_l = yz;z

(b) The vector parametric equation is (x,y) = (5,4) + t (2, —1). The scalar parametric

equations are x = 5 + 2t, y = 4 — t. The symmetric equation is ’%5 = %1.
(c) The vector parametric equation is (x,y) = (—1,3) +t (—1,2). The scalar parametric

equations are x = —1 —t, y = 3 + 2t. The symmetric equation is x__+11 = %

S5-2: (a) The vector (—2,3) is perpendicular to (3,2) (you can verify this by taking the dot
product of the two vectors) and hence is a direction vector for the line. The vector
parametric equation is (x,y) = (1,2) +t (—2,3). The scalar parametric equations are

x =1—2t, y = 2+ 3t. The symmetric equation is %4 — 2

2 3
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(b) The vector (1,2) is perpendicular to (2, —1) and hence is a direction vector for the
line. The vector parametric equation for the line is (x,y) = (5,4) + ¢ (1,2). The scalar

parametric equations are x = 5+ t, y = 4 + 2t. The symmetric equationis x —5 = y2;4.

(c) The vector (2,1) is perpendicular to (—1,2) and hence is a direction vector for the line.
The vector parametric equation is (x,y) = (—1,3) +t(2,1). The scalar parametric

equations are the two component equations x = —1 + 2¢, y = 3 + t. The symmetric
equation is *! =y - 3.

S-3: (0,1) is one point on the line 3x — 4y = —4. So (-2 —-0,3 — 1) = (—2,2) is a vector
whose tail is on the line and whose head is at (—2,3). (3, —4) is a vector perpendicular to
the line, so & (3, —4) is a unit vector perpendicular to the line. The distance from (—2,3)

to the line is the length of the projection of (—2,2) on £ (3, —4), which is the magnitude of
% (3,—4) - (—2,2). So the distance is 14/5.

S-4: (a) The midpoint of the side opposite a is %(b + c). The vector joining a to that
midpoint is 1b + 3¢ — a. The vector parametric equation of the line through a and
I(b+c)is

x(t) =a+t(zb+3c—a)
Similarly, for the other two medians (but using s and u as parameters, rather than t)

x(s) =b+s(sa+3c—b)

x(u) =c+u(a+ib—c)
(b) The three medians meet at a common point if there are values of s, t and u such that

at+t(ib+ic—a) =b+s(lat+ic-b) = c+u(3a+ib-c)
t S S u

Zc = 2 1— 2c = =
5¢ = 5a+ (1-s)b+ 5¢ = 3
Assuming that the triangle has not degenerated to a line segment, this is the case if and
only if the coefficients of a, b and ¢ match

(1—t)a+£b+ a+%b+(1—u)c

S u
1—t=— = —
2 2
t u
o —1_g= —
2 T2
t S
L_* —1—
> u
or
s=t=u, 1—t d s=t=u 2
= = — = = = e e = —
! 2 3
The medians meet at 3(a+b + c).
DY D

Solutions to Exercises 1.4 — Jump to TABLE OF CONTENTS
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S-1: Solution 1: That’s too easy. We just guess. The plane x + y + z = 1 contains all three
given points.

Solution 2: The plane does not pass through the origin. (You can see this by just making
a quick sketch.) So the plane has an equation of the form ax + by +cz = 1.

e For (1,0,0) to be on the plane we need that
a(1) +b(0)+c(0) =1 = a=1

e For (0,1,0) to be on the plane we need that
a(0)+b(1)+c(0)=1 = b=1

e For (0,0,1) to be on the plane we need that
a(0)+b6(0)+c(l)=1 = c=1

So the planeis x +y+z = 1.

Solution 3: Both the head and the tail of the vector from (1,0,0) to (0,1,0), namely
(—1,1,0), lie in the plane. Similarly, both the head and the tail of the vector from (1,0,0)
to (0,0,1), namely (—1,0,1), lie in the plane. So the vector

i j k
(~1,1,0) x (~1,0,1) =det |-1 1 0| = (1,1,1)
-1 0 1

is a normal vector for the plane. As (1,0,0) is a point in the plane,
(1,1,1) - (x—1,y—-0,z—-0)=0 or x+y+z=1

is an equation for the plane.

S-2: Solution 1: That’s too easy. We just guess. The plane x + y + z = 2 contains all three
given points.

Solution 2: Both the head and the tail of the vector from (1,0,1) to (0,1,1), namely
(1,—1,0), lie in the plane. Similarly, both the head and the tail of the vector from (1,1,0)
to (0,1,1), namely (1,0, —1), lie in the plane. So the vector

ik
-1 0| =(,11)

0 -1

(1,-1,0) x (1,0,—1) = det

[ Y

is a normal vector for the plane. As (0,1, 1) is a point in the plane,
(1,1,1) - (x—0,y—1,z—-1) =0 or x+y+z=2

is an equation for the plane.
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S-3: The vector from (1,2,3) to (2,3,4), namely (1,1, 1) is parallel to the vector from
(1,2,3) to (3,4,5), namely (2,2,2). So the three given points are collinear. Precisely, all
three points (1,2,3), (2,3,4) and (3,4,5) are on the line x(t) = (1,2,3) +t(1,1,1). There

are many planes through that line.

S-4: (a) The plane must be parallel to (2,4,6) — (1,0,1) = (1,4,5) and to
(1,2,-1) — (1,0,1) = (0,2, —2). So its normal vector must be perpendicular to both
(1,4,5) and (0,2, —2) and hence parallel to

k
5

i
(1,4,5) x (0,2, —2) = det |1 = (-18,2,2)
0

N =~

-2

The planeis9(x —1) —y—(z—1) =0or9x —y —z = 8.

We can check this by observing that (1,0,1), (2,4,6) and (1,2, —1) all satisfy
9 —-y—z=28.

(b) The plane must be parallel to (4, —4,4) — (1,-2,—-3) = (3,-2,7) and to
(3,2,-3) — (1,—-2,-3) = (2,4,0). So its normal vector must be perpendicular to both
(3,—-2,7) and (2,4,0) and hence parallel to

j
-2
4

(3,-2,7) x (2,4,0) = det — (-28,14,16)

N W o~
NI X

The planeis 14(x — 1) = 7(y +2) —8(z+3) = 0 or 14x — 7y — 8z = 52.

We can check this by observing that (1, -2, -3), (4, —4,4) and (3,2, —3) all satisfy
14x — 7y — 8z = 52.

(c) The plane must be parallel to (5,2,1) — (1,-2,—3) = (4,4,4) and to

(—=1,—4,-5) — (1,-2,-3) = (—2,—-2,—-2). My, my. These two vectors are parallel. So the
three points are all on the same straight line. Any plane containing the line contains all
three points. If (4, b, c) is any vector perpendicular to (1,1,1) (i.e. which obeys

a+ b+ c=0)then the planea(x — 1) +b(y +2) + c(z+3) =0or
a(x—1)+b(y+2)—(a+b)(z+3) =0o0rax + by — (a+ b)z = 4a + b contains the three
given points.

We can check this by observing that (1, -2, -3), (5,2,1) and (-1, —4, —5) all satisfy the
equation ax + by — (a + b)z = 4a + b for all 2 and b.

S-5: (a) One point on the plane is (0,0,7). The vector from (—1,2,3) to (0,0,7) is

{0,0,7) — (~1,2,3) = (1,—-2,4). A unit vector perpendicular to the plane is \% (1,1,1).
The distance from (—1, 2, 3) to the plane is the length of the projecion of (1, -2,4) on

v% (1,1,1) which is

(1,1,1) - (1,-2,4) = \% =3

Sl
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(b) One point on the plane is (0,0,5). The vector from (1, —4,3) to (0,0,5) is

(0,0,5) — (1,-4,3) = (—1,4,2). A unit vector perpendicular to the plane is \/Lé (1,-2,1).
The distance from (1, —4, 3) to the plane is the length of the projecion of (—1,4,2) on

\/ig (1,—-2,1) which is the absolute value of

(1,-2,1) - (~1,4,2) = —~

&l
&

or 7/+/6.

5-6: (a) The vector from C to A, namely (1-2,1-1,3-0) = (-1, 0, 3) lies entirely
inside I'T. The vector from C to B, namely (2—-2,0—-1,2—-0) = (0, —1, 2) also lies
entirely inside I1. Consequently, the vector

ij
(=1,0,3) x (0, —1,2) =det | -1 0
0 -1

=(3,2,1)

N W RS

is perpendicular to I'l. The equation of I1 is then

3,2,1)- (x-2,y—1,2z)=0 or 3x+2y+z=38

(b) Let E be (x,y, z). Then the vector from D to E, namely (x —6, y — 1, z—2) has to be
parallel to the vector (3, 2, 1), which is perpendicular to I'l. That is, there must be a
number t such that

(x—6,y—1,z-2)=1(3,2,1)
orx=6+3t, y=1+2t, z=2+t

As (x,y,z) must be in IT,
8=3x+2y+z=3(6+3t)+2(14+2t)+(2+t)=22+14t — t=-1

So (x,y,z) = (6+3(-1),1+2(-1),2+(-1)) = (3, -1, 1).

S-7: We are going to need a direction vector for L in both parts (a) and (b). So we find one

first.

e The vector (1,1,0) is perpendicular to x + y = 1 and hence to L.

e The vector (1,2,1) is perpendicular to x + 2y + z = 3 and hence to L.
So the vector

(1,1,0) x (1,2,1) = det 1,-1,1)

—_ = e

N =~

— o R’
I
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is a direction vector for L.

(a) The plane is to contain the point (2,3,4) and is to have (—1,1, —1) as a normal vector.
So

(-1,1,-1) - (x—2,y—3,z—4)=0 or x—y+z=3
does the job.

(b) The plane is to contain the points A = (2,3,4) and (1,0,2) (which is on L) so that the
vector (2—1,3—-0,4—2) = (1,3,2) is to be parallel to the plane. The direction vector of
L, namely (—1,1, —1), is also to be parallel to the plane. So the vector

i j
(1,3,2) x (-1,1,-1) =det | 1 3
~1 1

&
2| =(-5,-1,4)
-1
is to be normal to the plane. So
(=5,-1,4) - (x—2,y—3,z—4)=0 or bSx+y—4z=-3
does the job.
5-8: (a) Let’s use z as the parameter and rename it to t. That is, z = t. Subtracting 2 times
the W, equation from the W; equation gives
—5Yy—-5z2=-5 = y=1-z=1-t
Substituting the result into the equation for W, gives
—x+3(1-t)4+3t=6 — x=-3
So a parametric equation is

(x,y,z) = (-3,1,0) +t(0,—-1,1)

(b) Solution 1
We can also parametrize M using z = t:

x=2z4+10=2t4+10, y=2z+12=2t+12 = (x,y,z)=(10,12,0)+t(2,2,1)
So one point on M is (10,12,0) and one point on L is (—3,1,0) and

v =((-3)—(10), (1) - (12), 0—0) = (13, —11, 0)

is one vector from a point on M to a point on L.
The direction vectors of L and M are (0, —1,1) and (2,2, 1), respectively. The vector

j
-1
2

n=(0,-1,1) x (2,2,1) = det =(-3,2,2)

N © =~
_ = "
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is then perpendicular to both L and M.
The distance from L to M is then the length of the projection of v on n, which is
lv-n| |39 —-22+0| V17
= =17
n|  V9+4+4
(b) Solution 2 We can also parametrize M using z = s:
x=2z+10=2s+10, y=2z+12=2s+12 = (x,y,z) = (10,12,0) +s(2,2,1)

The vector from the point (—3,1,0) + ¢ (0,—1,1) on L to the point (10,12,0) +5(2,2,1)
on M is

(13425, 11 +2s+t,s—t)

So the distance from the point (—3,1,0) + ¢ (0, —1,1) on L to the point
(10,12,0) +5(2,2,1) on M is the square root of

D(s,t) = (134 25)> + (11 425 + £)? + (s — t)?

That distance is minimized when

0= i—i):4.(13+25)+4(11+25+t)+2(s—t)
C

0= aft) = 211425 +1) —2(s — t)
o

Cleaning up those equations gives

185 + 2 = —96
2s + 4t = —22

or
9s +t = —48 (E1)
s+2t = —11 (E2)

Subtracting (E2) from twice (E1) gives
17s = -85 — s=-5
Substituting that into (E2) gives
2t =-11+5 = t=-3

Note that
134+25s=3
11+2s+t=-2
s—t=-2

So the distance is

\/D(-5,-3) = /32 + (-2)2 + (-2)2 = V17
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S-9: All planes that are parallel to the plane 4x + 2y — 4z = 3 must have (4, 2, —4) as a
normal vector and hence must have an equation of the form 4x + 2y — 4z = C for some
constant C. We must find the C’s for which the distance from 4x + 2y —4z =3 to
4x 42y — 4z = Cis 2. One point on 4x + 2y — 4z = 3is 3(1, —1, —1). The points

1 (4,2,-4) 3 2

(1, -1, 1) 2L 21, -1, —1) £ 2 (4,2, —4

2 ) 614516 6" J+5 1 )
1 1

=—-(11,1, -11), =(-5, -7,5
= ) < )

are the two points that are a distance 2 from %(1 , =1, —1) in the direction of the normal.

These two points lie on the desired planes. So the two desired planes are
1
dx +2y —4z = 6{4 x114+2x 1+ (—4) x (-11)} =15
and

4x +2y —4z = %{4x (=5)+2x (=7)+ (—4) x5} = -9

S-10: The two vectors

a=(1,-1,3)-(0,1,1) = (1,-2,2)
b=(2,0,-1)-(0,1,1) = (2,-1,-2)

both lie entirely inside the plane. So the vector

A

ik
axb=det|1 -2 2| =1(6,63)
2 -1 -2

is perpendicular to the plane. The vector ¢ = % (6,6,3) = (2,2,1) is also perpendicular to
the plane. The vector
d=(1,2,3)—(0,1,1) = (1,1,2)

joins the point to the plane. So, if 8 is the angle between d and ¢, the distance is
c.d 6

dlcos = —=—=2
. o -V

S-11: The two planes x +y + z = 3 and x + vy + z = 9 are parallel. The centre must be on
the plane x + y + z = 6 half way between them. So, the centerison x +y +z = 6,
2x —y = 0 and 3x — z = 0. Solving these three equations, or equvalently,

y=2x,z=3x, x+y+z=6x=6
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gives (1,2,3) as the centre. (1,1,1) is a pointon x + vy + z = 3. (3,3, 3) is a point on
x+y+z=29.50(2,2,2)is a vector with tailonx +y+x =3 and headonx +y+z =9.
Furthermore (2,2, 2) is perpendicular to the two planes. So the distance between the
planes is | (2,2,2) | = 2v/3 and the radius of the sphere is v/3. The sphere is

(x—1)%2+(y—-2)*+(z-3)%=3

S-12: Sety = 0 and thensolve2x +3y —z =0, x —4y +2z = —5,ie. 2x —z =0,
x + 2z = -5, or equvalently

z=2x, x+2z2=5x=-5

The result, (—1,0, —2), is one point on the plane. Set y = 5 and then solve
2x4+3y—z=0, x —4y+2z=-5,ie. 2x + 15—z = 0, x — 20 + 2z = -5, or equivalently

z=2x+15, x—20+4x+30 = -5

The result, (—3,5,9), is another point on the plane. So three points on the plane are
(—2,0,1), (-1,0,—-2) and (-3,5,9). (—2+1,0—-0,1+2) = (—1,0,3) and
(=2+3,0-5,1-9) = (1,—-5,—8) are two vectors having both head and tail in the
plane.

i ]k
(=1,0,3) x (1,-5,-8) =det [-1 0 3 | = (15,-5,5)
1 -5 -8

is a vector perpendicular to the plane. % (15,—-5,5) = (3,—1,1) is also a vector
perpendicular to the plane. The plane is

3x+1)—(y—0)+(z4+2)=0 or 3x—y+z=-5

S-13: The vector n is perpendicular to the plane n - x = c. So the line

x(t) =p+tn

passes through p and is perpendicular to the plane. It crosses the plane at the value of ¢
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which obeys
n-x(t)=c or n-[p+in]=c
namely
t=lc—n-p]/[n?
The vector
x(t) —p=tn=n[c—n-p|/In/

has head on the plane n - x = ¢, tail at p, and is perpendicular to the plane. So the
distance is the length of that vector, which is

c—n-p|/[n]

S-14: The distance from the point (x,y,z) to (1,2,3) is /(x — 1)2 + (y — 2)2 + (z — 3)2
and the distance from (x,y,z)to (5,2,7) is 4/(x —5)2 + (y — 2)2 + (z — 7)2. Hence (x,y, z)
is equidistant from (1,2,3) and (5, 2,7) if and only if

(x =12+ (y -2+ (z-3)° = (x=5)* + (y = 2)* + (z - 7)?

— X2 —2x4+1+22—62+9=2x%—10x + 25+ 2% — 14z + 49
— 8x + 8z =64
— x+z=28

This is the plane through (3,2,5) = 1(1,2,3) + 1(5,2,7) with normal vector
(1,0,1) = 1((5,2,7) — (1,2,3) ).

S-15: The distance from the point x to a is 4/(x — a) - (x — a) and the distance from x to b
is 4/(x —b) - (x — b). Hence x is equidistant from a and b if and only if

(x—a)-(x—a)=(x—b) (x—Db)
— |x\2—2a-x—|—|a|2: \x|2—2b-x-|—\b]2
— 2(b—a)-x = |b]*—|a]

This is the plane through 3a + b with normal vector b — a.

S-16: (a) One side of the triangle is AB = (1,0,1) — (0,1,1) = (1,—1,0). A second side of
the triangle is AC = (1,3,0) — (0,1,1) = (1,2, —1). If the angle between ABand AC is 6
and if we take AB as the base of the triangle, then the triangle has base length b = yﬁy
and height h = \A—)C | sin 6 and hence

—_—> —

area = 1bh = }|AB||AC|sin8 = L|AB x AC| = 1| (1,-1,0) x (1,2, -1) |

As
P gk
(1,-1,0) x (1,2,-1) =det |1 -1 0 | =i4+j+3k
1 2 -1
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we have
area = %[ (1,1,3) | = 3v11 ~ 1.658

(b) A unit vector perpendicular to the plane containing the triangle is

ABx AC  (1,1,3)

ﬁ:_) —, —
|AB x AC| V11

The distance from P to the plane containing the triangle is the length of the projection of
AD = (5,-10,2) — (0,1,1) = (5,—11,1) on fi. If 6 the angle between AP and fi, then this
is

) — —_— (1,1,3) 3
distance = |AP||cos@| = |AP-A| =|{5,—-11,1) - = ~ 0.9045
47| | ’ ’ < ) V11 \ V11

S-17: Switch to a new coordinate system with

X=x-1 Y=y-2 Z=z+1

In this new coordinate system, the sphere has equation X2 + Y2 4 Z2 = 2. So the sphere
is centred at (X, Y, Z) = (0,0,0) and has radius v/2. In the new coordinate system, the
initial point (x,y,z) = (2,2,0) has (X,Y,Z) = (1,0,1) and our final point

(x,y,z) = (2,1,-1) has (X, Y, Z) = (1,—1,0). Call the initial point P and the final point
Q. The shortest path will follow the great circle from P to Q. A great circle on a sphere is

Z

>

Q
X
the intersection of the sphere with a plane that contains the centre of the sphere. Our

strategy for finding the initial direction will be based on two observations.

e The shortest path lies on the plane IT that contains the origin and the points P and
Q. Since the shortest path lies on I, our direction vector must also lie on IT and
hence must be perpendicular to the normal vector to I1.

e The shortest path also remains on the sphere, so our initial direction must also be
perpendicular to the normal vector to the sphere at our initial point P.

As our initial direction is perpendicular to the two normal vectors, it is parallel to their
cross product.

So our main job is to find normal vectors to the plane IT and to the sphere at P.

e One way to find a normal vector to IT is to guess an equation for IT. As (0,0,0) is on
I, (0,0,0) must obey IT’s equation. So IT’s equation must be of the form
aX+bY +cZ =0.That (X,Y,Z) = (1,0,1) is on IT forces a + ¢ = 0. That
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(X,Y,Z) =(1,-1,0) ison Il forces a — b = 0. So we may takea = 1,b = 1 and
c = —1. Thatis, ITis X + Y — Z = 0. (Check that all three points (0,0,0), (1,0,1)
and (1,—1,0) do indeed obey X + Y — Z = 0.) A normal vector to ITis (1,1, —1).

e A second way to find a normal vector to I1 is to observe that both
— the vector from (0,0,0) to (1,0,1), thatis (1,0,1), lies completely inside IT and
— the vector from (0,0,0) to (1,—1,0), thatis (1, —1,0), lies completely inside IT.

So the vector

O

(1,0,1) x (1,—1,0) = det

— ) .
S = 7]
I
~>
+
~>
|
=

is perpendicular to Il

e The vector from the centre of the sphere to the point P on the sphere is
perpendicular to the sphere at P. So a normal vector to the sphere at our initial
point (X,Y,Z) = (1,0,1) is (1,0,1).

Since our initial directioni must be perpendicular to both (1,1, —1) and (1,0, 1), it must
be one of + (1,1, -1) x (1,0,1). To get from (1,0,1) to (1, —1,0) by the shortest path, our
Z coordinate should decrease from 1 to 0. So the Z coordinate of our initial direction
should be negative. This is the case for

k

i
(1,1,-1) x (1,0,1) = det |1 1| =i-2j-k
1

S =R =

&> <&

Solutions to Exercises 1.5 — Jump to TABLE OF CONTENTS

S-1: (a) The point (x,y,z) obeys both x —2z = 3 and y + 1z =5if and only if
(x,y,z) = <3 +2z,5— %z,z> = (3,5,0) + <2, -1, 1> z. So, introducing a new variable ¢

obeying t = z, we get the vector parametric equation (x,y,z) = (3,5,0) + <2, —%, 1> t.

(b) The point (x,y,z) obeys

2x —y—2z=-3 2x —y=2z-3 dx -2y =4z -6
— —
4x -3y —3z = -5 4x -3y =3z—-5 4x -3y =3z-5

{4x—2y:4z—6}
<
y=z-1

1  Note that the change of coordinates X = x —1, Y = y—2, Z = z + 1 has absolutely no effect on any
velocity or direction vector. If our position at time ¢ is (x(t), y(t),z(t)) in the original coordinate system,
then itis (X(t),Y(t),Z(t)) = (x(t) —1,y(t) — 2,z(t) + 1) in the new coordinate system. The velocity
vectors in the two coordinate systems (x'(t),y'(),2'(t)) = (X'(t),Y'(t), Z'(t)) are identical.
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Hence the point (x, y, z) is on the line if and only if

(x,9,2) = (@y+42-6),2-1,z) = (Jz-22-1,2) = (-2,-1,0) + (},1,1) z So,
introducing a new variable t obeying t = z, we get the vector parametric equation
(x,y,2) = (-2,-1,0) + (3,1, 1) t.

S5-2: (a) The normals to the two planes are (1,1,1) and (1,2, 3) respectively. The line of
intersection must have direction perpendicular to both of these normals. Its direction
vector is
ij k
(1,1,1) x (1,2,3) =det {1 1 1| =(1,-2,1)
1

2 3

Substituting z = 0 into the equations of the two planes and solving

x+y=3 x=3-y x=3-y
— <
x+2y=7 x+2y=7 3—y+2y=7
we see that z = 0, y = 4, x = —1 lies on both planes. The line of intersection is

(x,y,z) = (—1,4,0) +t (1,—2,1). This can be checked by verifying that, for all values of
t, (x,y,z) = (—1,4,0) + ¢ (1,-2,1) satisfiesbothx +y+z =3 and x + 2y + 3z = 7.

(b) The equation x + vy + z = 3 is equivalent to 2x + 2y + 2z = 6. So the two equations
x +y+z=3and 2x 4 2y + 2z = 7 are mutually contradictory. They have no solution.
The two planes are parallel and do not intersect.

S-3: (a) Note that the value of the parameter ¢ in the equation
(x,y,z) = (—3,2,4) + t (—4,2,1) need not have the same value as the parameter ¢ in the
equation (x,y,z) = (2,1,2) +t (1,1, —1). So it is much safer to change the name of the
parameter in the first equation from f to s. In order for a point (x, y, z) to lie on both lines
we need

(—3,2,4) +5(—4,2,1) = (2,1,2) + ¢ (1,1, 1)

or equivalently, writing out the three component equations and moving all s’s and t’s to
the left and constants to the right,

—4s—t=5
2s —t = -1
s+t=-2

Adding the last two equations together gives 3s = —3 or s = —1. Substituting this into
the last equation gives t = —1. Note that s = t = —1 does indeed satisfy all three
equations so that (x,y,z) = (—3,2,4) — (—4,2,1) = (1,0, 3) lies on both lines. Any plane
that contains the two lines must be parallel to both direction vectors (—4,2,1) and
(1,1,—1). So its normal vector must be perpendicular to them, i.e. must be parallel to
(—4,2,1) x (1,1,-1) = (-3,-3,—-6) = —3(1,1,2). The plane must contain (1,0,3) and
be perpendicular to (1,1,2). Its equationis (1,1,2) - (x — 1,4,z —3) =0orx+y+2z =7.
This can be checked by verifying that (—3,2,4) +s(—4,2,1) and (2,1,2) + (1,1, 1)
obey x +y + 2z = 7 for all s and ¢ respectively.
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(b) In order for a point (x, y,z) to lie on both lines we need
(—3,2,4) +s(-4,2,1) =(2,1,-1) +t(1,1,-1)

or equivalently, writing out the three component equations and moving all s’s and t’s to
the left and constants to the right,

—4s—-t =5
2s —t = -1
s+t=-5

Adding the last two equations together gives 3s = —6 or s = —2. Substituting this into
the last equation gives t = —3. However, substituting s = —2, t = —3 into the first
equation gives 11 = 5, which is impossible. The two lines do not intersect. In order for two
lines to lie in a common plane and not intersect, they must be parallel. So, in this case no
plane contains the two lines.

(c) In order for a point (x,y, z) to lie on both lines we need
(~3,2,4) +5(-2,-2,2) = (2,1, 1) + (1,1, 1)

or equivalently, writing out the three component equations and moving all s’s and t’s to
the left and constants to the right,

—-2s—t=5
—2s—t=-1
2s+t=-5

The first two equations are obviously contradictory. The two lines do not intersect. Any
plane containing the two lines must be parallel to (1,1, —1) (and hence automatically
parallel to (—2,—2,2) = —2(1,1, —1)) and must also be parallel to the vector from the
point (—3,2,4), which lies on the first line, to the point (2,1, —1), which lies on the
second. The vector is (5, —1, —5). Hence the normal to the plane is

(5,-1,-5) x (1,1,-1) = (6,0,6) = 6 (1,0,1). The plane perpendicular to (1,0, 1)
containing (2,1,-1)is (1,0,1) - (x =2,y —1,z+1) =0orx+z = 1.

(d) Again the two lines are parallel, since (—2,-2,2) = —2(1,1, —1). Furthermore the
point (3,2, -2) = (3,2,-2) + 0(—2,-2,2) = (2,1,-1) +1(1,1, —1) lies on both lines. So
the two lines not only intersect but are identical. Any plane that contains the point
(3,2,—2) and is parallel to (1,1, —1) contains both lines. In general, the plane

ax + by + cz = d contains (3,2, —2) if and only if d = 3a + 2b — 2c and is parallel to
(1,1,—1) ifand only if (a,b,c) - (1,1,—1) =a+ b —c = 0. So, for arbitrary a and b (not
both zero) ax + by + (a + b)z = a works.

S-4: First observe that
e (1,1,0) is perpendicular to x + y = 0 and hence to the line, and
e (1,—1,2) is perpendicular to x — y + 2z = 0 and hence to the line.
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Consequently

j
1
-1

(1,1,0) x (1, -1, 2) = det =(2,-2,-2)

[ G W
N © RS

is perpendicular to both (1,1,0) and (1, —1,2). So 3 (2, =2, —2) = (1,—1,—1) isalso
perpendicular to both (1,1,0) and (1, —1,2) and hence is parallel to the line. As the point
(2,—1,-1) is on the line, the vector equation of the line is

(x—=2,y+1,z+1) =t(1,-1,-1)
The scalar parametric equations for the line are
x—-2=ty+l=—t,z+1=—-t or x=2+4+ty=-1-t z=-1—-t
The symmtric equations for the line are

S\ x=2 y+1 z+1
(t=) 1 -1 -1

or x—-2=-y—-1=-z-1

S-5: Let’s parametrize L using y, renamed to ¢, as the parameter. Then y = ¢, so that

x+y=1= x+t=1 = x=1-t
and
X+2y+z=3 = 1-t+2t+2=3 = z=2-t

and
(x,y,z) =(1,0,2) +t(-1,1,-1)

is a vector parametric equation for L.

5-6: The normal vectors to the two given planes are (1,2,3) and (1, -2, 1) respectively.
Since the line is to be contained in both planes, its direction vector must be perpendicular
to both (1,2,3) and (1, -2, 1), and hence must be parallel to

j
2
-2

(1,2,3) x (1,-2,1) = det = (8,2,—4)

[ G N
—_ W B’

orto (4,1,-2). Setting z = 0in x +2y + 3z = 11, x — 2y + z = —1 and solving

x+2y =11 2y =11 —x 2y =11 —x 2y =11 —x
< < <
x—2y=-1 x—2y=-1 x—(11-x)=-1 2x =10
we see that (5,3,0) is on the line. So the vector parametric equation of the line is
(x,y,z) = (5,3,0) +t(4,1,-2) = (5+4t,3+1,-21).
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The vector from (1,0,1) to the point (5 + 4t,3 + t, —2t) on the line is

(4 +4t,3+1t,—1 —2t). In order for (5 + 4t,3 + t, —2t) to be the point of the line closest to
(1,0,1), the vector (4 + 4t,3 4+ t, —1 — 2t) joining those two points must be perpendicular
to the direction vector (4,1, —2) of the line. This is the case when

(4,1,-2) - (444,341, -1-2t)=0 or 16+16t+3+t+2+4 =0 or t=-1

The point on the line nearest (1,0, 1) is thus

(5+4t3+t, —2t)) = (5—4,3—-1,2) = (1,2,2). The distance from the point to the
f=—
line is the length of the vector from (1,0, 1) to the point on the line nearest (1,0,1). That

vector is (1,2,2) — (1,0,1) = (0,2,1). So the distance is | (0,2,1) | = /5.

S-7: (a) The plane P must be parallel to both (2,3, 2) (since it contains L) and (5,2, 4)
(since it is parallel to L,). Hence

(2,3,2) x (5,2,4) = det = (8,2,—11)

g1 N ™~
N W~
B~ N RS

is normal to P. The equation of P is thus (8,2, -11) - (x =1,y +2,z+5) =0or
8x + 2y — 11z = 59.

(b) The vector (1, -2, —5) — (—3,4, 1) = (4, -6, —4) has its head on P and tail on L;. The
distance from L; to P is the length of (4, —6, —4) times the cosine of the angle between
(4, —6,—4) and the normal to P. This is

(4,—6,—4) - (8,2,—11) 64

= ~ 4.655
(8,2, -11) | /189
S-8: The vector
i ] k
(3,—4,4) x (—3,4,1) =det | 3 -4 4| =(-20,-15,0)
-3 4 1

is perpendicular to both lines. Hence so is —% (—20,—-15,0) = (4,3,0). The point
(—2,7,2) is on the first line and the point (1, —2, —1) is on the second line. Hence
(—2,7,2) — (1,-2,-1) = (=3,9,3) is a vector joining the two lines. The desired distance
is the length of (—3,9,3) times the cosine of the angle between (—3,9,3) and (4, 3,0)
(which is perpendicular to both lines). This is

4 1
430 15,

<—3,9,3> W’O” 5
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5-9: (a) The line L must be perpendicular both to (2, 1, —1), which is a normal vector for
the plane 2x +y —z =5, and to (-1, —2, 3), which is a direction vector for the line
x =3—t,y=1-2tand z = 3t. Any such vector must be a nonzero constant times

A

i j k
(2,1, -1)x (-1, -2,3)=det | 2 1 —-1|={(1,-5,-3)
-1 -2 3

(b) For the point Q(a, b, c)
e to be a distance 2 from the xy—plane, it is necessary that |c| = 2, and
e to be a distance 3 from the xz—plane, it is necessary that |b| = 3, and
e to be a distance 4 from the yz—plane, it is necessary that |a| = 4.
Asa <0,b>0,c>0,the point Qis (—4,3,2) and the line L is
Xx=—4+t y=3-5t z=2-3t

S-10: (a) The line L intersects the xy—plane whenx +y+z=6,x —y+2z=0,and z = 0.
When z = 0 the equations of L reduce to x +y = 6, x —y = 0. So the intersection point is
(3,3,0).

The line L intersects the xz—plane when x +y+z =6, x —y + 2z = 0, and y = 0. When
y = 0 the equations of L reduce to x 4+ z = 6, x 4+ 2z = 0. Substituting x = —2z into
x 4z = 6 gives —z = 6. So the intersection point is (12,0, —6).

The line L intersects the yz—plane when x +y +z = 6, x —y + 2z = 0, and x = 0. When
x = 0 the equations of L reduce to y + z = 6, —y + 2z = 0. Substituting y = 2z into
Y+ z = 6 gives 3z = 6. So the intersection point is (0,4, 2).

(b) Our main job is to find a direction vector d for the line.

e Since the line is to be parallel to y = z, d must be perpendicular to the normal
vector for y = z, which is (0,1, —1).

e d must also be perpendicular to L. For a point (x,y, z) to be on L it must obey
x+y=6—zand x —y = —2z. Adding these two equations gives 2x = 6 — 3z and
subtracting the second equation from the first gives 2y = 6 4 z. So for a point
(x,y,z) to be on L it must obey (x,y,z) = (3,3,0) + 5 (—3,1,2). Thatis (—3,1,2) is
a direction vector for L.

So d must be perpendicular to both (0,1, —1) and (—3,1,2) and so must be a nonzero
constant times

=

j
(0,1,-1) x (=3,1,2) =det | 0 1 —1| = (3,3, 3)
1 2
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We choosed = $(3,3,3) = (1,1, 1). So
(x,y,z) = (10,11,13) +¢ (1,1, 1)

is a vector parametric equation for the line. We can also write this as x = 10 4 ¢,
y=11+t,z=13+1t.

S-11: (a) Since
X =243t — t:xT—z
y
=4t t==
y = 4
we have )
x=2_y B
3 1 z=-1

(b) The direction vector for the line r(t) = 21 — k + t(31+4j)isd =3i+4j. Anormal
vector for the plane x —y +2z =0isn = +(1 —j +2 ) The angle 6 between d and n
obeys

d-n 1 1
cos) = —— = —— = 0 = arccos —= ~ 1.49radians
dlIn|  5V6 5v/6
(We picked n = —1 +j — 2k to make 0 < 0 < 7.) Then the angle between d and the plane
is
T 1
x = — —arccos —~= ~ (.08 radians
2 516
n
6 .
\ line L
plane
rT—y+22=0

-12: Let’s use z as the parameter and call it . Then z = t and

x+y=11—t
x—y=13+1t

Adding the two equations gives 2x = 24 and subtracting the second equation from the
first gives 2y = —2 — 2t. So
(x,y,2) = (12, =1 —1t, t)
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S-13: (a) We are given one point on the line, so we just need a direction vector. That
direction vector has to be perpendicular to the triangle ABC.

The fast way to get a direction vector is to observe that all three points A, B and C, and
consequently the entire triangle ABC, are contained in the plane y = 2. A normal vector
to that plane, and consequently a direction vector for the desired line, is j.

Here is another, more mechanical, way to get a direction vector. The vector from A to B is
(2-0,2-2,2-2) =(2,,0,0) and the vector from A to C is
(6-0,2-2,1-2) =(5,,0,—1). So a vector perpendicular to the triangle ABC is

i ] k
(2,,0,0) x (5,,0,-1) =det |2 0 0 | =(0,2,0)
50 -1

The vector % (0,2,0) = (0,1, 0) is also perpendicular to the triangle ABC.

So the specified line has to contain the point (0, 2,2) and have direction vector (0,1, 0).
The parametric equations

(x,y,z) =(0,2,2) +t(0,1,0)
or
x=0,y=2+t z=2

do the job.

(b) Let P be the point (x,y, z). Then the vector from P to Ais (0 —x,2 —y, 2 —z) and the
vector from P to Bis (2 —x, 2 —y, 2 — z). These two vector are perpendicular if and only

if
0=(—x,2-y,2—2)-(2—x,2—y,2—2z2) :x(x—2)+(y—2)2+(z—2)2
= (x-1)*-1+(y-2°+(z—2)
This is a sphere.

(c) The light ray that forms A~starts at the origin, passes through A and then intersects
the plane x + 7y 4z = 32 at A. The line from the origin through A has vector parametric
equation

(x,y,z) = (0,0,0) +£(0,2,2) = (0,2¢,2f)
This line intersects the plane x + 7y + z = 32 at the point whose value of ¢ obeys

Y z
(0)+7P(5.F+F(§F:32 — t=2

So Ais (0,4,4).
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S-14: The face opposite p is the triangle with vertices q, r and s. The centroid of this

triangle is %(q + r + s). The direction vector of the line through p and the centroid

1(q+r+s)is 3(q+1r+s) — p. The points on the line through p and the centroid
%(q + r + s) are those of the form

1
X=p+t {§(q+r+s)—p}
for some real number t. Observe that when t = %

(p+q+r+s)

=] =

p+t{%(q+r+8)—p}=

so that }l(p + q + r + s) is on the line. The other three lines have vector parametric
equations

1
x=q+t{§(p+r+S)—q}

1
x:r+t[§(p+q+s)—rl

1
x:s+t[§(p+q+r)—s}

When t = %, each of the three right hand sides also reduces to %L(p + q+r+s) so that
Z%(p + q + r+ s) is also on each of these three lines.

S-15: (a) The point (0,y,0), on the y—axis, is equidistant from (2,5, —3) and (-3, 6,1) if
and only if

[(2,5,-3) = (0,,0) | = [(=3,6,1) = (0,,0) |
= 246Gy (B = (3 (6-y)+ 1
— 2y =38

— y:4

(b) The points (1,3,1) and r(0) = (0,0,2) are both on the plane. Hence the vector
(1,3,1) — (0,0,2) = (1,3, —1) joining them, and the direction vector of the line, namely
(1,1,1) are both parallel to the plane. So

A

k
1] = (4,-2,-2)

i
(1,3,-1) x (1,1,1) = det |1
1 1

— W~

is perpendicular to the plane. As the point (0,0,2) is on the plane and the vector
(4,—-2,-2) is perpendicular to the plane, the equation of the plane is

4(x-0)—2(y—0)—2(z—2)=0o0r2x —y —z = -2
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Solutions to Exercises 1.6 — Jump to TABLE OF CONTENTS

S-1: We can find the time at which the curve hits a given point by considering the two
equations that arise from the two coordinates. For the y-coordinate to be 0, we must have
(t—5)2 =0,i.e. t = 5. So, the point (—1/+/2,0) happens when ¢ = 5.

Similarly, for the y-coordinate to be 25, we need (t — 5)? = 25, so (t —5) = +5. When
t = 0, the curve hits (1,25); when t = 10, the curve hits (0, 25).

So, in order, the curve passes through the points (1,25), (—1/ v/2,0), and (0,25).

S-2: The curve “crosses itself” when the same coordinates occur for different values of ¢,

say t; and tp. So, we want to know when sin t; = sint; and also t% = t%. Since t; and t,
should be different, the second equation tells us t, = —t;. Then the first equation tells us
sint; = sinty = sin(—#;) = —sint;. Thatis, sint; = —sinty, so sint; = 0. That happens

whenever t; = 7tn for an integer n.

So, the points at which the curve crosses itself are those points (0, (7711)?) where 7 is an
integer. It passes such a point at times ¢t = 7rn and t = —7n. So, the curve hits this point
27tn time units apart.

S-3: (a) Since, on the specified part of the circle, x = /a2 — y? and y runs from 0 to 4, the
parametrizationis r(y) = \/a*> — y?i+yj, 0 <y <a.
(b) Let 0 be the angle between

e the radius vector from the origin to the point (a cos 6, asin ) on the circle and
e the positive x-axis.

The tangent line to the circle at (a cos 6, asin ) is perpendicular to the radius vector and
so makes angle ¢ = 7 + 6 with the positive x axis. (See the figure on the left below.) As
8 = ¢ — 7, the desired parametrization is

(x(¢),y(¢p)) = (acos(¢p— F),asin(¢p — F)) = (asing, —acos¢p), T <p<m

Yy Y (07 a)

¢ s~_(acosf, asinb)
22 442 = o
(acosf,asinb)
6 6
x x
w2 442 = a?

(c) Let 6 be the angle between

e the radius vector from the origin to the point (2 cos 6, asin ) on the circle and
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e the positive x-axis.

The arc from (0,a) to (acos6,asin ) subtends an angle 7 — 6 and so has length

s =a(% —0). (See the figure on the right above.) Thus § = 5 — 2 and the desired
parametrization is

—
=
~—
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S-4: Pretend that the circle is a spool of thread. As the circle rolls it dispenses the thread
along the ground. When the circle rolls 8 radians it dispenses the arc length 6a of thread
and the circle advances a distance 6a. So centre of the circle has moved 64 units to the
right from its starting point, x = a. The centre of the circle always has y-coordinate a. So,
after rolling 0 radians, the centre of the circle is at position ¢(6) = (a + a6, a).

Now, let’s consider the position of P on the circle, after the circle has rolled 6 radians.

From the diagram, we see that P is a cos § units above the centre of the circle, and a sin 6
units to the right of it. So, the position of P is (a + a6 + asinf,a + acosf).

Remark: this type of curve is known as a cycloid.

S-5: We aren’t concerned with x, so we can eliminate it by solving for it in one equation,
and plugging that into the other. Since C lies on the plane, x = —y — z, so:

1:x2—%y2+3zzz (—y—z)z—iyz—l—?)zz

= Zyz + 427 4 2yz
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Completing the square,
_ 1, y\?
1=+ (22+)
2

Since y is small, the left hand is close to 1 and the right hand side is close to (2z)2. So

2
(222) ~ 1. Since z is negative, z ~ —% and 2z + % < 0. Also, 1 — % is positive, so it has a
real square root.

_ _y_z— z
1 2z +
1 yz Yy

— Al - —< =z

S-6: To determine whether the particle is rising or falling, we only need to consider its
z-coordinate: z(t) = (t — 1)(t — 3)2. Its derivative with respect to time is

Z/(t) = 4(t—1)(t — 2)(t — 3). This is positive when 1 < t < 2 and when 3 < t, so the
particle is increasing on (1,2) U (3,) and decreasing on (0,1) U (2,3).

If r(t) is the position of the particle at time ¢, then its speed is |r'(f)|. We differentiate:
1 .
r(t) = —e'1i— t—2j+4(t— 1)(t—2)(t-3)k
So, (1) =-1i—1jand r(3) = —61—3 i — 5. The absolute value of every component of r(1)

is greater than or equal to that of the corresponding component of r(3), so |r(1)| > |r(3)].
That is, the particle is moving more swiftly at t = 1 than at ¢ = 3.

2
Note: We could also compute the sizes of both vectors directly: |r'(1)| = \/ (%) +(-1)?,
2 2
and |[r'(3)| = \/(%3) + (—%) :

S-7:
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The red vector is r(¢ + 1) — r(t). The arclength of the segment indicated by the blue line
is the (scalar) s(t + h) — s(t).

Remark: as h approaches 0, the curve (if it’s differentiable at t) starts to resemble a
straight line, with the length of the vector r(¢ + 1) — r(t) approaching the scalar
s(t + h) — s(t). This step is crucial to understanding Lemma 1.6.6 in the CLP-3 text.

S-8: Velocity is a vector-valued quantity, so it has both a magnitude and a direction.
Speed is a scalar-the magnitude of the velocity. It does not include a direction.

5-9: By the product rule

%[(r xt) 1] =@ xt) "+ (ex1t”) "+ (xx1) 1

The first term vanishes because ' x ¥ = 0. The second term vanishes because r x 1’ is
perpendicular to r”. So

%[(r xr)-1"] = (xrxr1) 1"

which is ().

S-10: We have
v(t) = r'(t) = 5v2i+5¢j + 5> k

and hence

v(t)| = [¥(t)| = 5|V2i+ et j+e k| = 5v/2 + €10t 4 =10t
Since 2 + e!% 4 ¢710F = (¢ + e*5t)2, that’s (d).

S-11: (a) By definition,

r(t) = acosti+asintj+ ctk
v(t) =1 (t) = —asinti+acostj+ck
ds
— (B = V()] = Va>+c

dt
a(t) =1"(t) = —acosti—asintj

The (x,y) = a(cos t,sin t) coordinates go around a circle of radius a and centre (0,0)
counterclockwise. One circle is completed for each increase of t by 271. At the same time,
the z coordinate increases at a constant rate. Each time the (x,y) coordinates complete
one circle, the z coordinate increases by 27tc. The path is a helix with radius 2 and with
each turn having height 27c.
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(b) By definition,

r(t) = acostsinti+asin®tj+acostk

1 — cos 2t

:gsin2ti+a j+acostf<

v(t) = (t) = acos2ti+asin2tj—asintk
d
d—i(t) = |v(t)| = aV/1 +sin* ¢t
a(t) =r"(t) = —2asin2ti+2acos2tj —acostk
The (x,y) coordinates go around a circle of radius § and centre (0, §) counterclockwise.

At the same time the z coordinate oscillates over the interval between 1 and —1 half as
fast.

S-12: (a) Since ¥'(t) = (2t,0,t?), the specified unit tangent at t = 1 is

A

_ (201

(b) We are to find the arc length between r(0) and r(—1). As & = V412 + #4, the

0
arc length = J VA2 + 4 dt
-1

The integrand is even, so

1 1 1
arc length:J 412 4+ t4 dt :f tV4+ 12 dt = [%(4+t2)3/z]0 = 1[5%/2 8]
0 0

S-13: By Lemma 1.6.6 in the CLP-3 text, the arclength of r(¢) fromt = 0tot = 1is
Sg % (t)’ dt. We'll calculate this in a few pieces to make the steps clearer.

r(t) = (t, \Etz, t3>

%(t) = (1,v61,3)

%(t)‘ = \/12 + (V62 + (32)2 = /1 + 612 + 9t4 = 4/ (312 +1)2 = 32 + 1

%(t)‘dt - Ll <3t2+1> dt =2

[
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S-14: Since r(t) is the position of the particle, its acceleration is 7 (t).

r(t) = (t+sint,cost)
' (t) = (1+ cost, —sint)
t’(t) = (—sint, —cost)

" (t)] = V/sin®t 4 cos?t = 1

The magnitude of acceleration is constant, but its direction is changing, since r”(f) is a
vector with changing direction.

S-15: (a) The speed is
ds
Ew =) =
= \/(2cost‘—2tsi1r1if)2 + (251nt+2tcost)2+t4
= V4 + 42 4 t4

=2+t

<2cost—2tsint, 2sint 4+ 2t cost, t2>‘

so the length of the curve is

2 2 342
length = ﬁdtzf(Zthz)dt:[thrt_] _ 20

(b) A tangent vector to the curve at r(7) = (— 27, 0, 7/3) is
¥ () = <2cos7'c—27'(sin7t, 2sin 71 + 27w cos 7T, 7'C2> = (=2, —2m, %)

So parametric equations for the tangent line at r(77) are
x(t) = —2m —2t
y(t) = =27t
z(t) = /3 + 2t

S-16: (a) As r(t) = (3cost,3sint,4t), the velocity of the particle is
r'(t) = (—3sint,3cost, 4)

(b) As %, the rate of change of arc length per unit time, is
ds
dt

the arclength of its path betweent =1 and t = 2 is

2 ds 2
fldta(t)—fl dt5 =5

(t) = |'(t)| = |( —3sint,3cost,4)| =5
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S-17: (a) As

¥'(t) = —sintcos® ti+sin® t costi + 3sin’ tcost k = sint cost( — costi +sintj + 3sintk)
ds

a(t) = ]sintcost\\/coszt+sin2t—|—9sin2t = |sintcost|\/1+ 9sin? ¢t

the arclength fromt = 0tot = 7 is

/2 /2
f %(t) dt = f sintcostv/'1+9sin? t dt

0 0
1 10
— Vu du with u =1+ 9sin®t, du = 18sin t cos t dt
18
1
18 [3”

1
= 55 (10V10-1)

1

(b) The arclength fromt = 0tot = rris
Tds

7T
T (t)dt = J |sintcost[V1+9sin’tdt  Don’t forget the absolute value signs!
0 0

/2 /2
:2J ]sintcost\\/1+9sin2tdt:2J sintcost\/ 1+ 9sin? t dt
0

0
since the integrand is invariant under t — 77 —f. So the arc length fromt = 0to t = 7T is
just twice the arc length from part (a), namely £ (10v/10 — 1).

S-18: Since
B2 t o
H)=—i+—j+-k
r(t) 3l—|—2]—|—2
1.
r’(t):t2i+tj+§k

ds g _\/4 , 1
E(t)_|r(t)|_ t+t+4

the length of the curve is

S-19: Since
r(t) = " "4+ 22k

3 .
Y (t) = mt" 1 mm1 4 7mt3m/2—1 k

ds _ _\/ pam— 2 M 3 o el 9 m
3 = IO =\ J2m2m2 4 T2 = g [2 4 2
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the arc length is

b b
ds B m—1 9
u dt(t)dt_Lmt (2 gt de

4 (23

= Vudu withu =2+ 2t’", du = 9—mt‘m_1
9 2_|_%am 4 4
42 2+ 5™

3B
913" Jorgum

B 9. \3/2 9 \3/2

=mle+gr) ()]

5-20: Given the position of the particle, we can find its velocity:
v(t) =1 (t) = (cost,—sint, 1)
Applying the given formula,
L(t) =r x v = (sint,cost,t) x (cost, —sint,1).

Solution 1: We can first compute the cross product, then differentiate:

L(t) = (cost 4 tsint)i + (tcost —sint)j — k
L'(t) = tcosti—tsintj

IL'(t)| = \/t2(51n2t+coszt) = V12 = |t

Solution 2: Using the product rule:

L'(t) =1 (t) x v(t) +1(t) x V()
=1 (t) x ¥'(t) +r(t) x v/(t)
—_——

= (sint,cost,t) x (—sint, —cost,0)
=tcosti—tsint]

IL'(£)] = V/2cos? t + 2sin 12 = |1

S-21: (a) The curve intersects E when
2(tsin(rt))® +2(tcos(mt)) + (B)? =24 = 22+ =24 «— (P —4)(2+6) =0

Since we needAt > 0, the desired time is t = 2 and the corresponding point is
r(2) =2j+4k.

(b) Since

¥'(t) = [sin(rt) + 7t cos(rtt)|i+ [ cos(mt) — mt sin(7t)]j + 2tk
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a tangent vector to I' at P is any nonzero multiple of

Y(2) =2mi+j+4k

(c) A normal vector to E at P is
V(2x® +2y7 +2%)] g, 4 = (40, 4y,22) [, ) = (0.8,8)

Since r'(2) and (0, 8,8) are not parallel, ' and E do not intersect at right angles.

-22:

d / d / /
T TOP+IX(OF] = L [x(0) - x(®) +2'(5) -1 (1)]
2

=2r(t)-¥'(t) +2r' (t) -1 (¢)
=2r'(t) [x(t) + 1" (1)]

=0 since r’(t) = —r(t)

Since & [|r(#)? + |¢'(#)[?] = Oforall £, [r(£)[* + |¢'(#)|? is independent of .

S-23: (a) Since z = 61, y:é:3u2andx:31/—zzu3,

(b)
Y'(u) = 3u?i+6uj+6k
v (u) = 6ui+6j

j—i(u) = ()] = V9u* + 362 + 36 = 3(1* + 2)

1
f ds = —du—J3(u2+2)du:[u3+6u}(1):7
0

(c) Denote by R(t) the position of the particle at time ¢. Then

R() = r(u(t)) — R(¢) :r'(u(t))%

In particular, if the particle is at (1, 3, 6) at time #;, then u(t;) = 1 and

du

61+12j + 12k =R'(t;) =r (1)dt

(t1) = (3i+6j+6k)=(t)

which implies that 9% (#;) = 2.
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(d) By the product and chain rules,

R(H) = (u(t) S = R'() =" (u(®) ($) ¢ () o
dt dt dt

In particular,

271 +30j + 6k = R"(#) = 1"(1) (a(tl) +7(1) 35 (1)
n A\ ~2 N A ~ dzl/l
= (61+6j)2 +(31+6]+6k)p(t1)
Simplitying
X 42 d2
3z+6]+6k:(3i+6j+6k)d—t§‘(t1) d—tg‘(tl)—1

S-24: (a) According to Newton,

mr’(t) = F(t)  sothat  r’(t) = —3ti+sintj+2e* k

Integrating once gives

t2 .
Y(t) = —SEi—cost]A—keZtk—Fc

for some constant vector ¢. We are told that r'(0) = vy = ”72 i. This forces ¢ = ”72 i+j-k

so that

2 2
Y(t) = (%—%) i+ (1—cost)j+ (¥ -1)k

Integrating a second time gives
2 3
t ot 1 .
r(t) = <% - E) i+ (t—sint)j+ (Ee% — t) k+c

for some (other) constant vector c. We are told that r(0) = ry = % k. This forces ¢ = 0 so
that

w2t BN, o (1 .
r(t) = <T_E) i+ (t—sint)j+ (Ee —t) k
(b) The particle is in the plane x = 0 when
Tt t, o 5
= — = — | = = — — +
0 < > 2) 2( 1) < t=0,t71

So the desired time is t = 7t.
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(c) At time t = 71, the velocity is

2 2
¥ () = (%—?%) i+ (1—cosm)j+ ("—1)k

= -1 +2j+ (7 -1)k

S-25: (a) Parametrize C by x. Since y = x? and z —% 3
2 54
r(x) = xi+x ]+§ k
r'(x) =1+2xj+2x%k
' (x) =2j +4xk
d
d—i:|r’(x)|:\/1+4x2—|—4x4:1—|—2x

(b) The particle travelled a distance of 21 units in % time units. This corresponds to a
speed of 2 7/2 = 6.

(c) Denote by R(t) the position of the particle at time ¢. Then

R(t) =r(x(t)) = R'(t) = r’(x(t))%

By parts (a) and (b) and the chain rule

_ds _ dsdx — (14 2x )dx:>%_ 6
T dt dxdt dt dt 14242
In particular, the particle is at (1,1, 3) at x = 1. At this time ¢4 I = T +2X1 =2and
;g dx
R'=r(1) 5 = (i+2j+2k)2=2i+4j+4k
(d) By the product and chain rules,
dx dxy? d?x
/ _ ar nigy i / a4
R(H)=¢(x() G — R'(0)=1"(x(0)(T;) +¥(x0) 55

Applying & to 6 = (1 + 2x(t)?) 4X(t) gives

dx\ 2 d2x

0=4x(5;) +1+2) 55

186



In particular, whenleand%:2,O:4x1(2)2+(3)i% gives%:—% and
" N » 2 N A ~, 16 8, . . N
R" = (2 +4k)(2)" - (1+2j+2k) 5 = —3(2+j-2k)

S-26: The question is already set up as an xy—plane, with the camera at the origin, so the
vector in the direction the camera is pointing is (x(t),y(f)). Let 6 be the angle the camera
makes with the positive x-axis (due east). The camera, the object, and the due-east
direction (positive x-axis) make a right triangle.

Y

y(t) —

camera |

tanf =

RI<

Differentiating implicitly with respect to ¢:

do  xy —yx’
2 _ Xy =y
Sec edt o x2

A ) ety 4 et
dat 7 dt dt2

dr \ dr
ot ookt ot
= ue —dt(t) gk —we dt(t)
= —ge"k

T 1,

u(T) —u(0) = —g* Tk
aT _ 1. aT _ 1 . aT _ 1 .
— (1) = u(0) &= T(0) & = vy &k




Substituting in u(T) = e*'%*(T) and multiplying through by e~*T

_ ,—aT
E(T) =e Ty, —g1 ¢

k
dt o

Integrating both sides of this equation from T = 0to T = t gives

e 1 —-1
r(t) —r(0) = — vo—g k—l—g

P | 1—1xt—e ot
Vot g—— 5 ——

k

=

“2

v/(t) = a(t) = (cost,sint,0) = v(t) = (sint+ ¢y, —cost+ ¢y, c3)

for some constants cy, ¢, c3. To satisfy v(0) = (0,-1,1), weneed c; =0, c; = 0 and
c3 =1.So v(t) = (sint, — cost, 1). Similarly,

' (t) = v(t) = (sint,—cost, 1) = r(t) = (—cost+dy, —sint +dp, t +d3)
for some constants d, dp, d3. To satisfy r(0) = (—1,0,0), we need d; = 0, d, = 0 and
d3 =0.Sor(t) = (—cost,—sint,t).

(b) To test for orthogonality, we compute the dot product
v(t)-a(t) = (sint,—cost, 1) - (cost,sint,0) = sintcost —costsint+1x0=0

sov(t) L a(t) forall ¢.

(c) Att = —7F the particleis atr( — 5) = (0,1, —7%) and has velocity v( — 5) 1,0,1).

= (-
So the tangent line must pass through (0,1, —%) and have direction vector (—1,0,1).
Here is a vector parametric equation for the tangent line.

() = (0, 1,—g> +u(-1,0,1)

(d) True. Look at the path followed by the particle from the top so that we only see x and
y coordinates. The path we see (call this the projected path) is x(¢t) = — cost,

y(t) = —sint, which is a circle of radius one centred on the origin. Any tangent line to
any circle always remains outside the circle. So no tangent line to the projected path can
pass through the (0,0). So no tangent line to the path followed by the particle can pass
through the z—axis and, in particular, through (0,0,0).

S-29: (a) Since
x(t)* +y(t)* = £ cos® (&) + sin® (&) = £ and z(t)2=#

2

are the same, the path of the particle lies on the cone z2 = x% + 2.
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(b) By definition,
velocity = (1) = [cos (&) — & sin (3)]i + [sin (%) + % cos ()] +

speed = |r'(t)| = \/[cos (%) — Zsin (%
T

(c) Att =1, the particle is at r(1) = (0,1,1) and has velocity (1) = (—5,1,1). So for
t > 1, the particle is at

(,y,2) = (0,1,1) + (t —1) <—§,1,1>

This is also a vector parametric equation for the line.

(d) Assume that the particle’s speed remains constant as it flies along L. Then the
x-coordinate of the particle at time ¢ (for t > 1) is —7 (¢ — 1). This takes the value —1
whent—-1= % So the particle hits x = -1, % seconds after it flew off the cone.

S-30: (a) The tangent vectors to the two curves are

vy (t) = <1,2t, 3t2> 1h(t) = (—sint, cost, 1)
Both curves pass through P at t = 0 and then the tangent vectors are
H(0) = (1,0,0)  15(0) = (0,1,1)
So the angle of intersection, 6, is determined by

17 (0) - 15(0) = |} (0)] [t5(0)| cos® — (1,0,0)-(0,1,1) =1-+/2-cosf
— cosf =0 — 6 =90°

(b) Our strategy will be to

e find a vector v whose tail is on one line and whose head is on the other line and
then

e find a vector n that is perpendicular to both lines.

e Then, if we denote by 0 the angle between v and n, the distance between the two

lines is |v|cos 6 = |“'n—n||

Here we go

e So the first step is to find a v.
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— One point on the line r(t) = (t, -1+ 2t,1 4 3t) isr(0) = (0, —1,1).
- (x,y,z) is on the other lineif and only if x + y —z = 4 and 2x —z = 4. In
particular, if z = O then x + y = 4and 2x = 4sothatx =2and y = 2.

- Sothevectorv=(2-0,2—(-1),0—1) = (2,3,—1) has its head on one line
and its tail on the other line.

e Next we find a vector n that is perpendicular to both lines.

— First we find a direction vector for the linex +y —z =4,2x —z = 4. We
already know that x = y = 2, z = 0 is on that line. We can find a second point
on that line by choosing, for example, z = 2 and then solving x +y = 6,2x = 6
to get x = 3, y = 3. So one direction vector for the line x +y —z = 4,
2x—z=4isd; =(3-2,3-2,2-0) =(1,1,2).

- A second way to get a direction vector for thelinex +y —z =4,2x —z = 4is
to observe that (1,1, —1) is normal to x + y — z = 4 and so is perpendicular to
the line and (2,0, —1) is normal to 2x — z = 4 and so is also perpendicular to
the line. So (1,1, —1) x (2,0, —1) is a direction vector for the line.

— A direction vector for the line r(t) = (t, -1 +2t,1 4 3¢t) isdy = ¥'(t) = (1,2,3).
- So

n=d, x d; = det

—_ =~
—_ N~
N W RS

I

~>

+

—~>

|

=

is perpendicular to both lines.

The distance between the two lines is then

: 2,3,-1)-(1,1,-1
|V|c050:|V n _ 2311 >:i:2\/§

n| (L1, -1) ] V3

L o &

Solutions to Exercises 1.7 — Jump to TABLE OF CONTENTS

S-1: (a) ¢ = % is a surface of constant (spherical coordinate) ¢. So it is a cone with vertex

at the origin. We can express ¢ = % in cartesian coordinates by observing that 0 < ¢ < 7

so thatz > 0, and

73

—7—T<:)tn ——3<:> in ——3 — x2 + 2——32
q)_3 aq)_z IOS q)_zpcosq) y_z

So the picture that corresponds to (a) is (C).

(b) As r and 6 are cylindrical coordinates
r=2c0s0 < 1> =2rcosf = X’ +y*=2x «— (x—-1)?+y* =1

There is no z appearing in (x — 1)? + y? = 1. So every constant z cross—section of
(x —1)? +y? = 1is a (horizontal) circle of radius 1 centred on the line x =1,y = 0. Itisa
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cylinder of radius 1 centred on the line x = 1, y = 0. So the picture that corresponds to

(b) is (F).

(c) Each constant z cross—section of x> + y? = z? + 1 is a (horizontal) circle centred on the
z—axis. The radius of the circle is 1 when z = 0 and grows as z moves away from z = 0.
So x% + y2 = z2 + 1 consists of a bunch of (horizontal) circles stacked on top of each other,
with the radius increasing with |z|. It is a hyperboloid of one sheet. The picture that
corresponds to (c) is (D).

(d) Every point of y = x? 4 z? has y > 0. Only (B) has that property. We can also observe
that every constant y cross—section is a circle centred on x = z = 0. The radius of the
circle is zero when y = 0 and increases as y increases. The surface y = x> + z% is a
paraboloid. The picture that corresponds to (d) is (B).

(e) As p and ¢ are spherical coordinates
p=2cosp = p*=2pco8¢ = XX +y*+22 =2z = X+ +(z-1)? =1

This is the sphere of radius 1 centred on (0,0, 1). The picture that corresponds to (e) is
(A).

(f) The only possibility left is that the picture that corresponds to (f) is (E).
5-2: (a) For each fixed ¢ > 0, the level curve x? + 2y2 = c is the ellipse centred on the

origin with x semi axis 1/c and y semi axis v/c/2. If ¢ = 0, the level curve
x? 4 2y* = ¢ = 0 is the single point (0, 0).

(b) For each fixed c # 0, the level curve xy = c is a hyperbola centred on the origin with
asymptotes the x- and y-axes. If ¢ > 0, any x and y obeying xy = c > 0 are of the same
sign. So the hyperbola is contained in the first and third quadrants. If ¢ < 0, any x and y
obeying xy = ¢ > 0 are of opposite sign. So the hyperbola is contained in the second and
fourth quadrants. If ¢ = 0, the level curve xy = ¢ = 0 is the single point (0,0).
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(c) For each fixed ¢ # 0, the level curve xe™¥ = c is the logarithmic curve y = —1In 7. Note
that, for ¢ > 0, the curve

e is restricted to x > 0, so that £ > 0 and In { is defined, and that
e asx — 0%, y goes to —oo, while

e as x — 400, y goes to +o0, and

e the curve crosses the x-axis (i.e. has y = 0) when x = c.

and for ¢ < 0, the curve

is restricted to x < 0, so that { > 0 and In { is defined, and that
asx — 07, y goes to —o0, while

as x — —0, y goes to +o0, and

the curve crosses the x-axis (i.e. has y = 0) when x = c.

If c = 0, the level curve xe ¥ = ¢ = 0 is the y-axis, x = 0.

f==1 yf_o =1

f=—2 f=2

.

5-3: If C = 0, the level curve f = C = O isjust the line y = 0. If C # 0 (of either sign), we
may rewrite the equation, f(x,y) = xzz—fyz = C, of the level curve f = C as
> 2

) ) 1\? 1
x—Eery =0 <= x*+ ==

vy-¢

which is the equation of the circle of radius ﬁ centred on (0 , %) .
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f=0

Remark. To be picky, the function f(x,y) = xf—fyz is not defined at (x,y) = (0,0). The
question should have either specified that the domain of f excludes (0,0) or have
specified a value for £(0,0). In fact, it is impossible to assign a value to f(0,0) in such a
way that f(x,y) is continuous at (0,0), because lim,_,q f(x,0) = 0 while

lim, o f(0, [y|) = 0. So it makes more sense to have the domain of f being R? with the
point (0,0) removed. That’s why there is a little hole at the origin in the above sketch.

S-4: Observe that, for any constant C, the curve —x? + 4y? = C is the level curve f = e,

o If C =0, then —x? + 4y> = C = 0 is the pair of lines y = +3.
e If C > 0, then —x% 4 4y> = C > 0 is the hyperbola y = +3+/C + x2.
e If C <0, then —x? + 4y?> = C < 0 is the hyperbola x = +4/|C| + 4y2.

S-5: (a) We can rewrite the equation as

Py =(z-12-1

The right hand side is negative for |z — 1| < 1, i.e. for 0 < z < 2. So no point on the
surface has 0 < z < 2. For any fixed z, outside that range, the curve x> + y?> = (z —1)2 — 1
is the circle of radius 1/(z — 1)2 — 1 centred on the z-axis. That radius is 0 when z = 0,2
and increases as z moves away from z = 0, 2. For very large |z|, the radius increases
roughly linearly with |z|. Here is a sketch of some level curves.
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z=—24

(b) The surface consists of two stacks of circles. One stack starts with radius 0 at z = 2.
The radius increases as z increases. The other stack starts with radius 0 at z = 0. The
radius increases as z decreases. This surface is a hyperboloid of two sheets. Here are two
sketchs. The sketch on the left is of the part of the surface in the first octant. The sketch
on the right of the full surface.

S-6: For each fixed z, 4x? + y?> = 1 + z? is an ellipse. So the surface consists of a stack of
ellipses one on top of the other. The semi axes are 3V1+22and V1 + z2. These are
smallest when z = 0 (i.e. for the ellipse in the xy-plane) and increase as |z| increases. The
intersection of the surface with the xz-plane (i.e. with the plane y = 0) is the hyperbola
4x? — z? = 1 and the intersection with the yz-pane (i.e. with the plane x = 0) is the
hyperbola y?> — z2 = 1. Here are two sketches of the surface. The sketch on the left only
shows the part of the surface in the first octant (with axes).
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S-7:(a)Ifc >0, f(x,y,2) = ¢, ie. x% +y? + 22 = ¢, is the sphere of radius /c centered at
the origin. If c = 0, f(x,y,z) = c is just the origin. If c < 0, no (x, y, z) satisfies

flxy,2) =c

() f(x,y,2z) = c, ie. x+ 2y + 3z = ¢, is the plane normal to (1,2, 3) passing through
(c,0,0).

() Ifc >0, f(x,y,2) = c, ie. x*+y? = c, is the cylinder parallel to the z-axis whose
cross-section is a circle of radius /c that is parallel to the xy-plane and is centered on the
z-axis. If c =0, f(x,y,z) = cis the z-axis. If ¢ < 0, no (x,y, z) satisfies f(x,y,z) = c.

S-8: (a) The graph is z = sin x with (x, y) running over 0 < x < 27, 0 <y < 1. For each
fixed yo between 0 and 1, the intersection of this graph with the vertical plane y = yg is
the same sin graph z = sin x with x running from 0 to 27t. So the whole graph is just a
bunch of 2-d sin graphs stacked side-by-side. This gives the graph on the left below.

= z

A

x

(b) The graph is z = +/x2 + y2. For each fixed zy > 0, the intersection of this graph with
the horizontal plane z = z is the circle 1/x% + y? = zg. This circle is centred on the z-axis
and has radius zg. So the graph is the upper half of a cone. It is the sketch on the right
above.

(c) The graph is z = |x| 4 |y|. For each fixed zy > 0, the intersection of this graph with the
horizontal plane z = z is the square |x| + |y| = zo. The side of the square with x,y > 0 is
the straight line x 4 y = zp. The side of the square with x > 0 and y < 0 is the straight
line x — y = zp and so on. The four corners of the square are (+zp,0,zg) and (0, +zg, zo).
So the graph is a stack of squares. It is an upside down four-sided pyramid. The part of
the pyramid in the first octant (that is, x, v,z > 0) is the sketch below.
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5-9: (a) For each fixed zo, the z = z( cross-section (parallel to the xy-plane) of this surface
is an ellipse centered on the origin with one semiaxis of length 2 along the x-axis and one
semiaxis of length 4 along the y-axis. So this is an elliptic cylinder parallel to the z-axis.

Here is a sketch of the part of the surface above the xy—plane.

(0,4,0)

(b) This is a plane through (4,0,0), (0,4,0) and (0,0, 2). Here is a sketch of the part of the
plane in the first octant.

(c) For each fixed xo, the x = x( cross-section parallel to the yz-plane is an ellipse with

2 2
semiaxes 34/1 + % parallel to the y-axis and 24/1 + % parallel to the z-axis. As you move

out along the x-axis, away from x = 0, the ellipses grow at a rate proportional to 4/1 + %,
which for large x is approximately |41|. This is called a hyperboloid of one sheet. Its

196



(d) For each fixed vy, the y = x( cross-section (parallel to the xz-plane) is a circle of radius
ly| centred on the y-axis. When yy = 0 the radius is 0. As you move further from the
xz-plane, in either direction, i.e. as |yo| increases, the radius grows linearly. The full
surface consists of a bunch of these circles stacked sideways. This is a circular cone
centred on the y-axis.

(e) This is an ellipsoid centered on the origin with semiaxes 3, v/12 = 21/3 and 3 along the
x, y and z-axes, respectively.

f (0,0,3)

(0,+/12,0)

=
- LT
. LR T T
.* LT
.

£7(3,0,0) (0,+/12,0)

¥y (3,0,0)

(f) Completing three squares, we have that x? + y2 + z2 + 4x — by + 9z — b = 0 if and only
if (x+2)2+ (y— %)2 + (z+ %)2 =b+4+ %2 + 8L This is a sphere of radius
ry = 33/b2 + 4b + 97 centered on (—4,b, -9).
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%(—4, b, -9 + 2Tb)

%(—4, b+ 27‘[,, —9)

(—4,b,-9)

N[

%(—4 + 2rb, b, —9)

(g) There are no points on the surface with x < 0. For each fixed xy > 0 the cross-section
x = xp parallel to the yz-plane is an ellipse centred on the x—axis with semiaxes /x¢ in
the y-axis direction and % Xo in the z—axis direction. As you increase x, i.e. move out
along the x-axis, the ellipses grow at a rate proportional to ,/x¢. This is an elliptic
paraboloid with axis the x-axis.

(h) This is called a parabolic cylinder. For any fixed yy, the ¥ = y cross-section (parallel
to the xz-plane) is the upward opening parabola z = x> which has vertex on the y-axis.

<

Solutions to Exercises 2.1 — Jump to TABLE OF CONTENTS

S-1: (a lim xy+x2) =2(=1)+22=2
_( )(x,y)a(z,—l) (xy ) =21
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(b) Switching to polar coordinates,

. X . rcosf i cos 0 .
lim 55 = lim > = lim = undefined
(xy)—(00) X +Yy r0t T -0t T
0<0<2m 0<0<2m
since, for example,
e if 6 =0, then
cos 6 . 1
lim = lim - =4
7;0; r r—0t 1
e while if 6 = 71, then
. cosf . -1
lim = lim — =-w
r9—>0+ r r—0t 71
=1
(c) Switching to polar coordinates,
2 2 a2
. X i = cos” 6 ) .
im ——— = lim ———— = lim cos?6 = undefined
(xy)—(00) X24+y% ot r? —
§ ! 0<0<27 0<b<2m
since, for example,
e if 0 =0, then
lim cos?0 = lim 1=1
rgl()(;r r—0t
e whileif § = 7, then
lim cos?6 = lim 0=0
r—0t r—0+t
0=m/2
(d) Switching to polar coordinates,
3 3 a3
. X ) r° cos” 0 .
lim m = lim — 0 = lim TCOS3 6=0
— X -0t T —0T
(x)—(00) Y 0<o<27 0<o<2r
since, | cos | < 1 for all 6.
(e) Switching to polar coordinates,
2.2 2 202 i 2
lim XYy Tcos 0 r~sin” 6 ~ lim 2sin26 cos~ 6
(xy)—(00) ¥24+1y* oot 1200820 4+ résin®l ot cos2 0 + r2sin* 0
0<6<2m 0<6<2m
=0
Here, we used that
sin2 6 cos? 6 cos? 6 ‘ cos? 6’ o1
cos2 0 + r2sin* 0 cos2 0 + r2sin* 0 cos? 0

forall r > 0.
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(f) To start, observe that

lim (sinx) (e¥ —1) {lim sinx} [lim e¥ — 1}
(x4)—(00) xy IR EE T I

sin x

We may evaluate [lim } by I’'Hopital’s rule or by using the definition of the

x—»0 X
derivative to give

sin x . sinx —sin0 d .
- = —sgsinx
x—0 X x—0 x—0 dx

=1

x=0

= COS X
x=0

ey —1

Similarly, we may evaluate {lim ] by 'Hopital’s rule or by using the definition of

y—0
the derivative to give

ey—l_l, ey —e0  d

lim = Iim = ——¢ = =1
y—0 Y =0 y=0 dy |, ‘y:O
So all together
v _ i Y -
lim (SIIIX) (e 1) — |:hm Slnx:| |:hm € 1:| = [1] [1] =1
(x9)—(00) xy 0 X oy

5-2: (a) In polar coordinates, x = rcos 6, y = rsin6, so that

B+ BcosfO+18sin®0  ,cos®H +sin® o
= =7
xt 4yt rdcosth + rtsint 0 cost 0 + sin* 6

As
cos® @ + sin® @ _ cos® 0+ 2cos*@sin* 0 +sin®@  (cos* 6 + sin? 9)2
costf +sin*f cost + sin* @ cost +sin* @
= cos* 0 +sin* 0 < 2
we have s g
< nﬁ <2rt
xt 4yt
. 4 . . xy°
As lim 2r* =0, the squeeze theorem yields lim ———- =
(xy)—(0,0) (xy)—(0,0) X° + Y
(b) In polar coordinates
xy° 7% cos 0 sin® 6 1 cosf sin’@

B4+yl0 18cos804r10sin'%9 2 cosB 6 + r2sint? 6
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As (x,y) — (0,0) the first fraction ; — oo but the second factor can take many different

values. For example, if we send (x, y) towards the origin along the y—axis, i.e. with
0=+%
L5

5
lim # l1m(1) =0
(xy)—(00) x8 + 10 550 10

x—O

but if we send (x,y) towards the origin along the line y = x, i.e. with § = 7, 3%

4774
i = = = 4
y=x
and if we send (x, y) towards the origin along the line y = —x, i.e. with6 = -7, %,
(xyl)in(loo #yj/lo }cﬂlﬁx;o B }clir(l)_%l_:—xz ==
y=—x

So % does not approach a single value as (x,) — (0,0) and the limit does not exist.

5-3: (a) In polar coordinates

3 3 3

¥ —y> _ ricos’d —1’sin’f

5 5 = 7cos’ 0 —rsin3 0
X +y r

Since
r cos> @ — rsin® 0| < 2r

and 2r — 0 as r — 0, the limit exists and is 0.
(b) The limit as we approach (0,0) along the x-axis is

4
hmxz_y
t—0 X +y

On the other hand the limit as we approach (0,0) along the y-axis is

2 4

02_t4

ad =lim —— = —

hmz—_y
t—0 x2 + y*

These are different, so the limit as (x, y) — 0 does not exist.

We can gain a more detailed understanding of the behaviour of y4 near the origin by
switching to polar coordinates.

2

x2—y*t  1?cos?0—risin*0  cos?0—r?sin*0

X2+t 1200820 + r4sin® 6 " o2 +r2sin* 0
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Now fix any 6 and let » — 0 (so that we are approaching the origin along the ray that
makes an angle 6 with the positive x-axis). If cos # 0 (i.e. the ray is not part of the
y-axis)

’ cos20 —r2sin*d  cos? 6
im = =
r—0cos20 + r2sin*0  cos?0

But if cos @ = 0 (i.e. the ray is part of the y-axis)

cos?0 —r?sin*0 . —r?sin*0  —sin'6 .

lim = lim =
r—0 cos20 + r2sin*@® r—0 r2sin*6 sin% 0

S-4: In spherical coordinates, x = psin ¢ cos, y = psin ¢sin6, z = p cos ¢ so that

02 sin? ¢ cos 0sin § + p® sin @ sin § cos? @ + % sin ¢ cos? ¢
p2sin? ¢ + p* cos? ¢
_ sin? g cosBsin + psin ¢sin 6 cos? ¢ + psin ¢ cos O cos? ¢

sin® ¢ + p2 cos ¢

As (x,y,z) — (0,0,0), the radius p — 0 and the second and third terms in the numerator
and the second term in the denominator converge to 0. But that leaves

.2 .
sin“ @ cos0sin 6 .
L4 — cosfsin 6

sin? [

which takes many different values. In particular, if we send (x,y,z) — (0,0,0) along
either the x— or y—axis, that is with z = 0 and either x = 0 or y = 0, then

xy + yz% + xz? 0
xz -+ yZ + Z4 x=0 ciroy:O

converges to 0. But, if we send (x,y,z) — (0,0,0) along the liney = x,z =0

Xy + yz2 + xz?
X2 +y?4z4

y=x
z=0

xy—i—yzz—i—xzz
X2ty 424
and the limit does not exist.

converges to 1/2. So does not approach a single value as (x,y,z) — (0,0,0)

S-5: (a) In polar coordinates x = rcos ), y = rsin6

2x2 + x%y — y?x +2y% 212 cos? 0 + 13 cos? 0sin O — 13 cos Osin? O + 2r% sin® 0

22+ 2
— 2—|—r[c05295in9—sin29c089}
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As
r|cosZOSin9—sin29cos(9] <2r—>0asr—0

we have
lim 2x? + x%y — y?x + 2y? _ 5
(xy)—(0,0) x>+ y?
(b) Since
xzyz _ 2x2y +x2 B xz(y —1)2

P+ -2 +172 24 (y—1)2)°

and, in polar coordinates centred on (0,1), x = rcosf, y = 1+ rsin9,

2(y-1)2  rtcos?fsin?0

5 7} = cos?0sin? 0
[+ (=17 f

we have that the limit does not exist. For example, if we send (x, y) to (0,1) along the
line y = 1, so that 6 = 0, we get the limit 0, while if we send (x, y) to (0,1) along the line
y = x+1,s0that = Z, we get the limit .

5-6: (a) We have

. . . (rcos0)?(rsin0)
| 0, 0) =1
r_l)%kf(rcos rsinf) 0+ (rcosB)* + (rsinb)?
. cos?fsin6
= lim r —
r—0+ 12 cost @ + sin“ 60
. ) cos? fsin6
= lim r lim

r—0t -0t r2cos* 0 + sin? 0
Observe that, if sinf = 0, then

cos?fsin6 B
2 cost 0 + sinZ 0

forallr # 0. If sin6 # 0,

cos?fsin6 cos?fsin6 cos? 0
im —— = — = —
r—0* 12 cost 0 + sin“ 0 sin“ 6 sin @
cos? 0 sin 6

So the limit lim exists (and is finite) for all fixed 6 and

r—0+ 12 cos? 0 + sin? 0
lim f(rcosf,rsinf) =0
r—0t
(b) We have
2.2 4
lim f(x,2%) = lim — % —lim > =1
x—0 x—0 x4 4 (x2) x—0 2X 2
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(c) Note that in part (a) we showed that as (x,y) approachs (0,0) along any straight line,
f(x,y) approachs the limit zero. In part (b) we have just shown that as (x,y) approachs
(0,0) along the parabola y = x2, f(x,y) approachs the limit , not zero. So f(x,y) takes
values very close to 0, for some (x,y)’s that are really near (0,0) and also takes values
very close to 1, for other (x,y)’s that are really near (0,0). There is no single number, L,
with the property that f(x,y) is really close to L for all (x,y) that are really close to (0,0).
So the limit does not exist.

S-7: (a) Since, in polar coordinates,

xy  r?cosfsin®
2rE 2

— cosfsin 6

we have that the limit does not exist. For example,

e if we send (x,vy) to (0,0) along the positive x-axis, so that 6 = 0, we get the limit
sin 6 cos 9]9:0 =0,

e while if we send (x,y) to (0,0) along the line y = x in the first quadrant, so that
1

0 = 7, we get the limit sinf cos6[,__ , = ;.

(b) This limit does not exist, since if it were to exist the limit

xy xy  sin(xy)

lim ——~— = lim : L~ lim ' xy lim s12n(xy2)
(x,y)—(0,0) X +y (x,y)—(0,0) Sln(xy) X +y (x,y)—(0,0) Sln(xy) (x,y)—(0,0) X +y

would also exist. (Recall that 11118 SI?t =1)

(c) Since
lim [ 422 +y*] = (-1)*+2(-1)(1)*+ (1)* =0
(xy)—(=11)
lim [1+y]=1+1)*=2
(xy)—(-11) [ y ] @
and the second limit is nonzero,

2 2 4
lim X +2xy4+y :9—
(xy)—(-1,1) 1+y 2

(d) Since the limit along the positive x-axis

=1lim0f =1im0 =0
xy)=(t0) 20 e

lim
t—0
t>0

and the limit along the y-axis

= 11m|i,‘|O =liml=1
x,y)=(0,t) t— t—0

hm

are different, the limit as (x,y) — 0 does not exist.
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Solutions to Exercises 2.2 — Jump to TABLE OF CONTENTS

S-1: (a) By definition

(b) By definition

(c) By definition

(b)

af(0,0) — lim f(Aer) —f(0,0)

ox Ax—0 Ax
(Ax?)(0) 0
— lim %402

Ax—0 Ax

Ay—0 Ay

d o fbD) -~ F(0,0)

—f(t,t
dt( )t:O t—0

(2)(t)

. 2 2
— lim £

h—0

. t/2
= lim —

-0 t

1

2

fx (x/ yi Z) == 3x2y425
o y,2) = 497
Fo(,y,2) = 5y

0

£(0,-1,-1) =0
fy(0,-1,-1) =0
£00,-1,-1) = 0

Zexyz
wy(x,y,z) = 1y+ T wy(2,0,-1) =0
xze*Y*
wy(x,y,2) = T o wy(2,0,-1) = -1
x eXyZ
wZ(x/y’Z) = 1i|y_exyz wz(zlol _1) =0
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fx(x,y) = —W fx(=3,4) = 5
/ fy(=3,4) = —1%

fy(x,y) = —m

5-3: By the quotient rule

oz (ME-p - ) -2y
A P RNEEE
oz M-y -+l 2
Y = (x_yP =P
Hence - - —_—
o) g (vy) = = =0

S-4: (a) We are told that z(x,y) obeys
2(xy)y—y+x =In(xyz(xy))

for all (x,y) (near (—1, —2)). Differentiating (+) with respect to x gives

0z 1 Z(ny) 0z 1
Vet ey &Y T

or, dropping the arguments (x,y) and multiplying both the numerator and denominator
by xz,

oz _z—xz _ z(1-x)

ox  xyz—x x(yz—1)

Differentiating (+) with respect to y gives

1 Sy o )_§+1—Z(x,y)
’ 1

2(0y) +y (ey) 1= = o (y) =
%y y o z(xy) oy Y= g

or, dropping the arguments (x, y) and multiplying both the numerator and denominator

by vz,
oz _ z+yz—yz>  z(1+y-—yz)
vy yzoy ylyz—=1)

206



(b) When (x,y,z) = (-1,-2,1/2),

1 1
14 1.1 1
%( 1,-2) = X _ 1 _Z
ox _1 -2-2 2
Y=z (xy,2)=(-1,-2,1/2)
%_ B %4—1—2 B 12_|_1_%_
( 1’ 2)_ 1 0
0 y—1 —2-2
z (xy,2)=(-1,-2,1/2)

S-5: We are told that the four variables T, U, V, W obey the the single equation

(TU — V)?In(W — UV) = In2. So they are not all independent variables. Roughly
speaking, we can treat any three of them as independent variables and solve the given
equation for the fourth as a function of the three chosen independent variables.

We are first asked to find ‘2—%[. This implicitly tells to treat T, V and W as independent
variables and to view U as a function U(T, V, W) that obeys

(TU(T,V,W) - V)*In (W - U(T,V,W) V) = In2 (E1)
for all (T, U, V, W) sufficiently near (1,1,2,4). Differentiating (E1) with respect to T gives

2(TU(T,V,W) - V) [U(T, V,W)+T i—LT[(T, v, W)] In (W —U(T,V,W) V)

2 1 ou
— (TU(T,V,W) - V) Wiu(T’V’W)Va—T(T,V,W)V_O

In particular, for (T, U, V, W) = (1,1,2,4),

200 -2) [1+ O 129)] 04~ )2)
~ ()0 -2 =57 7 (124 @) =0
This simplifies to
L [1 + %(1,2,4)} In(2) - (2—?(1,2,4) _0 — ZLTI(1,2,4) _ —%

We are then asked to find 2—5 This implicitly tells to treat U, V and W as independent
variables and to view T as a function T(U, V, W) that obeys

(T(U,V,W)U - V)’ In(W—-UV) =n2 (E2)
for all (T, U, V, W) sufficiently near (1,1, 2,4). Differentiating (E2) with respect to V gives
oT

2(T(L[,V,W)U—V) a—V(U,V,W)U—l ln(W—L[V)
2 u -
—(T(U,V,W)U—V) W—O
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In particular, for (T, U, V,W) = (1,1,2,4),

oT
2(01)-2) [0 5;0.2.4) -1 I (4- 1)(2)
2 1
—((1)(1) = 2) ——— =0
This simplifies to
oT 1 oT 1
S-6: The function
u(p,r,0) = [prcos 6}2 + [prsin 6] pr
= p?*r? cos? 0 + p*r* sin
So
ou 2 2 2,
E(p,r,e) = 2p°r cos” 0 + 2p“rsin 6
and
ou

(2,3,7/2) = 22) 3)(0) +22) (3)(1) = 24
S-7: By definition

f(x0 + Ax,y0) — f(x0, Yo) f(x0,y0 + Ay) — f(x0, yo)

fe(x0,y0) = lim Ax fu(xoryo) = lim, Ay

Setting xg = yo = 0,

2 2
f(Ax,0) —f(0,0): lim f(Ax,0) ~ lim ((Ax)*—2x0%)/(Ax —0)
Ax—0 Ax Ax—0  Ax Ax—0 Ax

_ . fOAy)—f(0,0) . f(0,Ay) _ .. (0*-2(Ay)*)/(0-Ay)
f3(0,0) _AI;I—I}O Ay _AI;I—I}O Ay —Al;r_r}o Ay
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S-8: Asz(x,y) = f(x*>+y?)

0z
5, (1Y) =2xf' (2 +y)
0z
oy oY) = 2yf' (x> + %)

by the (ordinary single variable) chain rule. So

Vo x5 = Y20f (44~ x2)f (4 4) = 0

and the differential equation is always satisfied, assuming that f is differentiable, so that
the chain rule applies.

S-9: By definition

a—f(o, O) — lim f(Ax/ 0) —f(0,0)

ox Ax—0 Ax
Cidy 0
a Al}l{r_r}o Ax
o M
= Anoo Ax
=1

and

(b) f(x,y) is not continuous at (0,0), even though both partial derivatives exist there. To
see this, make a change of coordinates from (x,y) to (X, y) with X = x + y (the

denominator). Of course, (x,y) — (0,0) if and only if (X,y) — (0,0). Now watch what
happens when (X,y) — (0,0) with X a lot smaller than y. For example, X = ay?. Then

(x+2y)*  X+y)? (+y)?* (Q+ay)? 1

2
= = = s —

x+y X ay? a a

This depends on a. So approaching (0,0) along different paths gives different limits.
(You can see the same effect without changing coordinates by sending (x,y) — (0,0)
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with x = —y + ay?.) Even more dramatically, watch what happens when (X, y) — (0,0)
with X = y°. Then

(x+29)? _ (X+y)? _ @P+y? _ A+

x+y X y3 y

&> <&

Solutions to Exercises 2.3 — Jump to TABLE OF CONTENTS

S-1: We have to derive a bunch of equalities.

e Fix any real number x and set ¢(v,z) = fx(x,y,z). By (Clairaut’s) Theorem 2.3.4 in
the CLP-3 text g, (v, z) = gzy(y,2), so

fryz(x,y,2) = gyZ(]/rZ) = 8zy(yrz) = fxzy(x/yfz)

e For every fixed real number z, (Clairaut’s) Theorem 2.3.4 in the CLP-3 text gives
fxy(x/ y/ Z) == fyx (X, y, Z). SO
0 0
fxyz(X, Y,z) = Efxy(x’ Y,z) = Efyx(x, y,z) = fyxz (x,v,2)

So far, we have

fxyZ(x/yrZ) = fxzy(xrl/fz) = fyxZ(xz Y,2)

e Fix any real number y and set g(x,z) = f,(x,y,z). By (Clairaut’s) Theorem 2.3.4 in
the CLP-3 text gxz(x,z) = gzx(%, 2). So

fyxz(X,y,Z) = gxz(%,2) = gax(%,2) = fyzx(x, Y, 2)

So far, we have
fxyZ(xz Yy,z) = fxzy(X,}/,Z) = fyxz(X,]/,Z) = fyZX(x/}//Z)

e For every fixed real number y, (Clairaut’s) Theorem 2.3.4 in the CLP-3 text gives
fXZ(nyIZ) = fzx(x, Y, Z). So

0 0
frzy(x,y,2) = @fxz(x,y,Z) = @fzx(x,y,Z) = fuy(%,y,2)
So far, we have
fxyz(x/yzz) = fxzy(x/yzz) = fyxz(x/yzz) = fyzx(x/yrz) = fzxy(xz]/;z)

e Fix any real number z and set ¢(x,y) = fz(x,y, z). By (Clairaut’s) Theorem 2.3.4 in
the CLP-3 text gvy(x, ) = gyx(x,y). So

fzxy(X,y,Z) = gxy(x/y) = 8yx(xry) = fzxy(xr Y,2)

We now have all of

fayz(0,y,2) = fazy(0,y,2) = fyez(2,9,2) = frax(X,Y,2) = foxy(X, ¥, 2) = faxy (¥, 1, 2)
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S-2: No such f(x,y) exists, because if it were to exist, then we would have that
fry(x,y) = fyx(x,y). But

0 0
fxy(x’ y) any(x/y) aye e

Frelo) = S fuloy) = S =e

are not equal.

5-3: (a) We have

fe(x,y) = 2xy° fer(x,y) = 2¢°
fay(xy) = 6xy” fxy(x,y) = fayy(x,y) = 12xy
(b) We have
filoy) =P fulxy) = yte fey(x,y) = 47" 4 2™
Fy(x,y) = 29e + 202 fryy(2,y) = (2 + 42 + 62y + 4xPy*) e
= (2 + 10xy* + 4x2y4)exy2
(c) We have
of B 1
a2 = s
o f 4
ou 0v (,0,w) = (u + 20 + 3w)?
Af 36
ou 0v 8w(u’ ow) == (u + 20 + 3w)*

In particular

df 36 36 9

3,2,1) = — — -
au&vaw( ) (B+2x24+3x1)4 104 2500

S-4: Let f(x,y) = /x> + 5y2. Then

fom X fom L 1 (x)(2x) foy = — & (x) (10y)
/A2 152 /A2 4+5y2 2(x2+5y2)3/2 v 2 (x% 4 5y2)3/2
£, = 5y frr = 5 1 (5y)(10y) o= 1 (5y)(2x)
POVATERR s 2(2 B 2 (x 4 5y
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. e . . . 1 X245
Simplifying, and in particular using that T sy

5 5x 5x2
fax = 2 / 2\3/2 fry = fyx = — 2 yz 3/2 foy = 2 2\3/2
(x? + 5y2) (x? + 5y2) (x2 +5y2)

S-5: (a) As f(x,y,z) = arctan (ev*?) is independent of z, we have f.(x,y,z) = 0 and
hence

fryz(X,9,2) = faxy(x,y,2) = 0
(b) Write u(x,y,z) = arctan (ev*), v(x,y,z) = arctan (¢V*?) and
w(x,y,z) = arctan (ev¥?). Then

e Asu(x,y,z) = arctan (ev*'?) is independent of z, we have u;(x,y,z) = 0 and hence
Uryz(X,Y,2) = Uzry(X,y,2) =0

e Asv(x,y,z) = arctan (e\/ﬁ) is independent of y, we have vy (x,y,z) = 0 and hence
Uxyz(%,Y,2) = Uyaz(x,,2) =0

e Asw(x,y,z) = arctan (e\/ﬁ) is independent of x, we have wy(x,y,z) = 0 and hence
Wyyz(X,Y,2) =0

As f(x,y,z) =u(x,y,z) +v(x,y,z) + w(x,y,z), we have

Fryz(,1,2) = tyz(X, 1, 2) + Vxyz(X, Y, 2) + Wiyz(X,y,2) =0

(c) In the course of evaluating fxx(x,0,0), both y and z are held fixed at 0. Thus, if we set
g(x) = f(x,0,0), then fyx(x,0,0) = (x) Now

g(x) = f(x,0,0) = arctan (eV*¥?)

7T
= arctan(1) = =
yorg ~ rctan(l) =3

for all x. So ¢'(x) = 0 and ¢”(x) = 0 for all x. In particular,

fxx(1,0,0) = 8”(1) =0

S-6: (a) The first order derivatives are
fo(r,0) = mr"™tcosmf  fo(r,0) = —mr™ sinmf
The second order derivatives are

for(r,8) = m(m —1)r'"2cosml  frg(r,0) = —m*r"™ Lsinm@ foo(r,0) = —m*r™ cos mé

so that

frr(1,0) = m(m —1), f9(1,0) =0, fae(1,0) = —m?
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(b) By part (a), the expression
A 1 m—2 m—2 2,m—2
frr+7fr+r—2f99 = m(m — 1)r™"* cos mO + Amr™ = cos mf — m“r™ == cos mo

vanishes for all r and 6 if and only if

mm—1)+Am—-—m?>=0 < m(A-1)=0 < A =1

S-7: As
31 _(x2+ 2+zz)/(4zxt) 1 2 2 ) _(XZJr 2+ZZ)/(4M’)
ur(x,y,2,t) = Y Y + W(x +y-+z%)e Y
ux(x,y, z,t) = -3 :5/26—(x2+y2+22)/(4zxt)
«
2
= —(x*+y?+2%)/ (dat) X — (2242 +22) / (4at)
Unx(X,Y,2,1) = — e~ (¥ Y+ + ¢
2u 5/2 4n2 1772
wyy(X,Y,2,t) = — 1 o~ (P HyP+22)/ (dut) 4 Y o (2 +22)/ (dact)
o 2u t5/2 402 1772
2
= —(F+y*+2%)/ (4at) 2T (2P 2)/ (dat)
Uz (x,y,2,t) = — (Chy™+2)/ (dact) e
2u 5/2 4n2 1772

we have

?5)/2 R VI BN yzy/Jzr 2 ey ()
2t 4ot

o (Uxx + Uy 4+ Uzz) = — = Uy

L o &

Solutions to Exercises 2.4 — Jump to TABLE OF CONTENTS

S-1:

(c) We'll start with part (c) and follow the procedure given in §2.4.1 in the CLP-3 text. We
are to compute the derivative of i(x,y,z) = f(u(x,y,z),v(x,y), w(x)) with respect to x.
For this function, the template of Step 2 in §2.4.1 is

ch _of

ox  oOx
Note that

e The function h appears once in the numerator on the left. The function f, from
which h is constructed by a change of variables, appears once in the numerator on
the right.

e The variable, x, in the denominator on the left appears once in the denominator on
the right.
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Now we fill in the blanks with every variable that makes sense. In particular, since f is a
function of u, v and w, it may only be differentiated with respect to u, v and w. So we add
together three copies of our template — one for each of u, v and w:

o _ofou , of oo of du
0x oudx Ovidx Owdx

Since w is a function of only one variable, we use the ordinary derivative symbol %}'

rather than the partial derivative symbol %—f in the third copy. Finally we put in the only
functional depedence that makes sense. The left hand side is a function of x, y and z,
because # is a function of x, y and z. Hence the right hand side must also be a function of
x,y and z. As f is a function of u, v and w, this is achieved by evaluating f at
u=u(x,y,z),v=o(xy) and w = w(x).

A wy2) = Loy, 000 9),000) 2,2 + L y,2), 06 y), 0(00) 2 (x,y)

- (uty,2), 000 ),000) 2 )

(a) We again follow the procedure given in §2.4.1 in the CLP-3 text. We are to compute
the derivative of h(x,y) = f(x,u(x,y)) with respect to x. For this function, the template
of Step 2in §2.4.1 is

oh  of

ox  Ox
Now we fill in the blanks with every variable that makes sense. In particular, since f is a
function of x and u, it may only be differentiated with respect to x, and u. So we add
together two copies of our template — one for x and one for u:
oh  dfdx Jf du

ox Oxdx  Ouodx

In % we are to differentiate the (explicit) function x (i.e. the function F(x) = x) with
respect to x. The answer is of course 1. So
oh_of | of du

ox Ox Oudx

Finally we put in the only functional depedence that makes sense. The left hand side is a
function of x, and y, because h is a function of x and y. Hence the right hand side must
also be a function of x and y. As f is a function of x, u, this is achieved by evaluating f at

u=u(x,y).

(b) Yet again we follow the procedure given in §2.4.1 in the CLP-3 text. We are to
compute the derivative of i(x) = f(x,u(x),v(x)) with respect to x. For this function, the
template of Step 2 in §2.4.1 is

dh  of

dx = ox
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(As h is function of only one variable, we use the ordinary derivative symbol % on the
left hand side.) Now we fill in the blanks with every variable that makes sense. In
particular, since f is a function of x, u and v, it may only be differentiated with respect to
x, u and v. So we add together three copies of our template — one for each of x, u and v:
dh _ofdr  ofdu  of do

dx odxdx  OJudx Odvdx
o o orav
 Ox  oOudx Ovdx

Finally we put in the only functional depedence that makes sense.

j_Z(X) = (;—];(x,u(X),v(x)) + g—i(x,u(x),v(x))%(x) iﬁ: (x,u(x), U(x)>a(x)

S-2: Applying the chain rule to w(t) = f(x(t),y(t),t) gives

0 = L0y0.0 50+ L x0v0.0 50+ L =000,

Substituting in the values given in the question

Cg:_le 3x24+5=1

ft gives the rate of change of f(x,y,t) as t varies while x and y are held fixed. dt gives

the rate of change of f(x(t),y(t),t). For the latter all of x = x(t), y = y(t) and t are
changing at once.

S-3: The basic assumption is that the three quantites x, y and z are not independent.
Given any two of them, the third is uniquely determined. They are assumed to satisfy a
relationship F(x,y,z) = 0, which determines x as a function of y and z (say x = f(y, z))
and determines y as a function of x and z (say y = g(x, z)) and determines z as a function
of x and y (say z = h(x,y)). Saying that F(x,y,z) = 0 determines x = f(y,z) means that

F(f(y,2),y,z) =0

for all y and z. Differentiating this equation with respect to z gives, by the chain rule,

oF of oF B of . E(fy2).y2)
5 FW 222 w2+ = (f2),02) =0 — = (y,2) __g—i(f(y,z),y,z)

for all y and z. Similarly, differentiating F (x, g(x,z), z) = 0 with respect to x and
F(x,y,h(x,y)) = 0 with respect to y gives

g T {7 G0 WM L)
ox S(rglxz),z) L vy h(xy))
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If (x,y,z) is any point satisfying F(x,y,z) = 0 (so that x = f(y,z) and y = ¢(x,z)) and
z = h(x,y)), then

Fom o Elowd g Eews) a Ewd
VDT ey BT T E ey YT Ty
and
of (8, |0 Loz Gz &y2)
E(ylz) a(x Z) (x y) g—F(x Y,z (x’ylz) F) (X Y, )
=-1

S-4: The problem is that - is used to represent two completely different functions in the
same equation. The careful way to write the equation is the following. Let f(x,y,z) and

g(x,y) be continuously differentiable functions and define w(x,y) = f(x,y,¢(x,y)). By
the chain rule,

ow

Wiy =L oy aey) a—f;( w8 Lt Ly g By
(xy (x,

y)

of ox
ox ox
= P (xy.50ey) +

—+ y))
e >a—g

& (x,8(x,y)). For

While w(x,y) = f(x,y,g(x,y)), it is not true that $2(x,y) =
x,y) = 0forall (x,y), so that

example, take f(x,y,z) = x —z and g(x,y) = x. Then w(
‘gﬁ‘c’(x y) = 0 while %(x,y, ) =1forall (x,y,z).

S-5: Method 1: Since w(s, t) = x(s,t)? 4+ y(s, t)* + z(s,t)? with x(s, t) = st, y(s,t) = scost
and z(s, t) = ssint we can write out w(s, t) explicitly:

w(s, t) = (st)*> + (scost)* + (ssint)? = s?(t* 4+ 1)
— ws(s,t) = 25(t> +1) and  wi(s,t) = s*(2t)

Method 2: Applying the chain rule to w(s, t) = W (x(s, t),y(s, t),z(s, t)) with
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W(x,y,z) = x2 + y? + 22, and noting that ¥ = 2x, %‘;‘/ 2y, ¥ = 2z, gives

) = S (x(5, ), 905,10, 206, 0) 5161+ 0 (205, 0), 906, 1,205, 0) L5
+ W (x50, y05,0),2(5,8) Z s, )

= 2x(s,t) xs(s,t) +2y(s,t) ys(s, t) + 2z(s, t) zs(s, t)

= 2(st) t+2(scost) cost+ 2(ssint) sint

= 2st% 4 25
N = T (x5, )yl 1), 2(5,8) o s 1) + %( (5,0, y(5,1),2(5,1) (5,1
+ W (x(s,1), 90,0, 2(5.) Z s, )
= 2x(s,t) x¢(s, t) +2y(s, t) ye(s, t) + 2z(s, t) z¢(s, )
= 2(st) s +2(scost) (—ssint) +2(ssint) (scost)

— 25°t

5-6: By three applications of the chain rule

3 02
Wf@x + 3y, xy) = P 3 [3f1 (2x + 3y, xy) + xf2(2x + 3y, xy)]

0
== [9f11 (2x + 3y, xy) + 6x f12(2x + 3y, xy) + x> f2(2x + 3y, xy)}

= 18f111 +9yfi12  +6f12+12xfi1 + 6xyf1zz  +2xfo + 2% fox1 + XY fom
=6 fi +2x fn +18 fin + 9y +12x) finz + (62 +22%) fio + 2%y foo
All functions on the right hand side have arguments (2x + 3y, xy). Here the subscript 1
means take the partial derivative with respect to the first argument while holding the
second argument fixed and the subscript 2 means take the partial derivative with respect
to the second argument while holding the first argument fixed. The notation f,; means

tirst differentiate with respect to the second argument and then differentiate with respect
to the first argument. For example, if f(x,y) = % sin x, then

019 2Y g _2 2y o — 20Y
fa(x,y) = 8x[(9y(e Slnx)]—ax[2e smx}—Ze Cos X

S-7: The given function is
Q(s, t) = f(2s + 3t,3s — 2t)

The first order derivatives are

9s(s,t) = 2f1(2s 4 3t,3s — 2t) + 3f»(2s + 3t,3s — 2t)
Qe(s, t) = 3f1(2s + 3t,3s — 2t) — 2f»(2s + 3t,3s — 2t)
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The second order derivatives are

gss(s,t) =4f11+6f12+6f21 +9fn

= 4f11(2s + 3t,3s — 2t) + 12 f15(25 4 3t,35 — 2t) + 9f2»(25 4 3t,35 — 2t)
gst(s,t) = 6f11 —4f12 +9f21 —6f2

= 6f11(25 + 3t,3s — 2t) + 5f12(25 4 3t,3s — 2t) — 620 (25 + 3t, 35 — 2t)
git(s,t) = 9f11 — 6f12 — 6fo1 +4f2

= 9f11(2s + 3t,3s — 2t) — 12f15(25 + 3t,3s — 2t) + 4fp0(25 + 3,35 — 2t)

Here f; denotes the partial derivative of f with respect to its first argument, fi, is the
result of first taking one partial derivative of f with respect to its first argument and then
taking a partial derivative with respect to its second argument, and so on.

S-8: By the chain rule,

g—‘g(s,t) a—f(s—t s+t)+%(s—t,s+t)
0%g o [of of
(st === (s—t,s +t)+@(s—t,s+t)
’f ’f
8x2(s_t s+1) + Syox (s—t,s+t)
2 2
f (o s
+0xy(s t,s+1)+ 57 s(s—t,s+1t)
gf( t):—a—i(s—t,s+t)+g§(s—t 5+ 1)
Pg, o[ of of
W(S t)_(?_ —a—x(s—t,s—l—t) y(s—t s+1)
*f f
axz( —t,s+1t) — Syox (s—t,s+t)
_Pf

f\Zf
&x&y(s_t's+t) y( —t,s5+1)

Suppressing the arguments

org g (O°f 262f
0s2 = o

02 02 02 02
ox2 T oxdy * &yj;} * {axjg a Zﬁxé[y * &yjzr}
2f P
[axz @yz]
=0

as desired.

S-9: The notation in the statement of this question is horrendous — the symbol z is used
with two different meanings in one equation. On the left hand side, it is a function of x
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and y, and on the right hand side, it is a function of s and . Unfortunately that abuse of
notation is also very common. Let us undo the notation conflict by renaming the function
of sand f to F(s,t). Thatis

F(s,t) = f(2s+t,s5—1)

In this new notation, we are being asked to find 4, b and c so that

A A e
“ox2 6x§y é‘yz 052 o2

with the arguments on the right hand side being (s, ) and the arguments on the left hand
side being (25 +t, s —t).

By the chain rule,

of

Z_f(s’t): Zf(ZSth S_t)+6y(25+t's_t)
ﬁis»)—g Pasrt,s—n+ Lot s
zf o2

5 (25 +t, s—t)—l—Z%(Zs—i—t,s—t)
Za;({y(ZS—I—t,s—t)+Ziy]2c(2s+t,s—t)
(g—f(s,t) ;£(25+t s—t)— 25(25+t,s—t)
(f;tl;(s,t):% 2£(25+t,s—t)—g—]yc(25+t,s—t)
2227];(25+t,st) a;f (25415 1)
—;jgy(ZSth,s—t) ;f(2s+t s—t)

Suppressing the arguments

2 2 2 2 2
PE L PE_ O P
0s2  ot2 oxz  Toxdy T oy?

Finally, translating back into the notation of the question

Po B2 Ba Pa s
0s2 o2 Tox2  Toxoy T oy?

sothata=5and b =c¢c = 2.
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S-10: By the chain rule

s_yp (x* =y, 2xy) = F,(x* — v, 2xy) (—2y) + Fo(x* — %, 2xy) (2x)

62
0x oy

F(x* —y%,2xy) = g {—2yFu(x2 — 2, 2xy) + 2xF,(x2 — 12, 2xy)}

X
= —4xyFu, (x* — y?,2xy) — 4y Fup(x* — v, 2xy)
+ 2F,(x? — 2, 2xy) + 4x* Fy (x* — v, 2xy)
+ 4xyFyp (x* — %, 2xy)
= 2 Fy(x% — y2,2xy) — 4xy Fy (2% — 12, 2xy)
+4(x* — y?) Fuo(x® — %, 2xy)
+ 4xy Fpo (¥ — 2, 2xy)

S-11: For any (differentiable) function F, we have, by the chain rule,

'3
%(x,y) =eY F'(xe_yz) eV’
Z—;(x,y) =eY F(xe’yz) +eY F’(xe’yz) (—2xy)e ™’

(a) In particular, when F(z) = In(z), F/(z) =  and

Z

ou 1 2 &Y

- — oY -y =

a,x (.X', y) e xe*yz e x

0

%(x,y) =e’ In (xe_yz) +eY xel—yz (—2xy)e_y2 =¢é/ In (xe_yz) — 2yeY

= e In(x) — y?e¥ — 2ye¥

(b) In general
nyg—z + % = 2xy eV F' (xe_yz) eVt oY F(xe_yz) +eY F’(xe_yz) (—Zch)e_y2
=Y F(xe_y2)
=u

S-12: By the chain rule,

%(s,t) = 3f"(2s + 3t) — 64’ (s — 6t)
621/1 " "
W(S’t) =9f"(2s +3t) + 365" (s — 6t)
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In particular

0%h

=2(2.1) =9f"(7) + 368" (—4) = 9(~2) +36(-1) = —54

S-13: We'll first compute the first order partial derivatives of w(x, y,z). By the chain rule,

z—f(x, y,z) = j—x [Fxz,y2)] = 2 ez

ox
w G B _f
Sow2) = £ [z )] = 22 ez, )
ow 0 _of of
Sr2) = Sz y)] = x5 () + e (2, e)
So
6w ow _Of of B of of ow
X +y— oy zﬁx(xz,yz) +yzay(xz,yz) =z xéx(xz, yz) +y@(xz,yz) =25
as desired.

S-14: By definition z(r,t) = f(rcost, rsint).

(a) By the chain rule
0z ., Of . of .
t) = —rsint = t, rsint P t, rsint
o —(r,t) = —rsin P (rcost, rsint) 4 rcos 3y (rcost, rsint)

(b) By linearity, the product rule and the chain rule

2z R

0
W(r,t) =% rsmta—x rcost, rsint)} —|—§ {rcost%(;’cost, rsint)
0
:—rcost—f(rcost rsint)
2 2
+r?sin’ ¢ f(rcost,rsint)—rzsintcost d f(rcost,rsint)
oyox
0
—rsinti(rcost,rsint)
%y
02 02
—r2sintcost f(rcost,rsint)—l—rzcoszt(Q—yj;(rcost,rsint)
:—rcostg—rsintg
ox oy
2 2 2
+ % sin taj; 21'Zsint‘cost‘a {/+r cos tayjzc

with all of the partial derivatives of f evaluated at (rcost, rsint).
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S-15: By the chain rule

d
g f (0 y(0) =¥ (1) fo(x (1), y(8) + /' () fy (x(E), y(£))
=4t £ (212, 1) + 382 £, (22, 1°)
Then, by linearity, the product rule and the chain rule

2
%f(X(t),y(t)) = % 4t fo(22, 2)] +% 32 £, )]

=4 £ (282, £3) + 168 frx (22, ) +128% £ (217, %)
+6t (27, 1) +128 f (282, £°) + 9t fiy (282, 1)
In particular, when t = 1, and as that fy,(2,1) = f,x(2,1),
d?

g/ F0m)| =45 +16(2) +12()
t=
+6(-2)+12(1)+9(—4)
=28
S-16: By the chain rule
0G OF
—(7,8,t) = A—(7+s,7—s, At)
ot 0z
0G oF oF
E(’Y/Srt) = a(“YJFSr’Y—S/At) + @(VJFS/“Y—S//U)
2G 02F 0%F
A0 7 /t — A5 7 Oy A A 7 9y
572(7 s,t) = za(r+s7—s At)+ayax(v+s v — s, At)
0*F 02F
+ ax(}y('ers,'y—s,At) + a—yz('yqts,'y—s,At)
0%F 2 02F
- W(’)/_FS/’Y_SIAt) +2§yax(7+51')’ _S/At) + a_:yz(r)/+slr)/_S/At)
0G oF OF
= (1st) = (v +57-s5At) —@(’y—FS,’y—s,At)
G 02F 02F
= ) = —— _ _ 2 _
(352 (,)//S/ ) (33(2 (’Y‘i‘S,')/ S, At) ayax (’Y‘i‘S,’)’ S, At)
0%F 02F
—M('y—ks,'y—s,At) +a—y2('y+s,'y—s,At)
02F 02F %F
= — -5, At) —2— — - —
ax2 (r)/—i_slr)/ S, ) ayax(ry_FS/rY SIAt) + ayZ (,)/+S/,y S/At)

So, suppressing the arguments,

PG G 06 _,FE L FE 0808 oF
oy: 082 ot Tox2 Toy? 0z oz oz

0
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if A=2.

S-17: By the chain rule

In particular

S-18: We are told that the function z(x, y) obeys

fxz(x,y), yz(x,y)) =

for all x and y. Differentiating this equation with respect to x and with respect to y gives,
by the chain rule,

fulxz(x,y), yz(x,y)) [2(xy) + x 2 (0, 9)] + fo(x2(x,y), y2(x,y)) yzx(x,y) = 0
fulxz(x,y), yz(x,y)) xzy(x,y) + fo(x2(x,y), y2(x,y) [2(xy) +yzy(x,y)] =

or, leaving out the arguments,

fulz4+xze] + foyzy =0
fuxzy+ folz+yzy] =0

Solving the first equation for z, and the second for z, gives

SR TR
* xfu+yfv
z, = 2
e xfu‘i“yfv

so that

a +yaz Xzfu  yzfo _ z(xfutyfo) _
oy xfu"‘yfv X futY fo X fu+tY fo
as desired.

Remark: This is of course under the assumption that x f, + v f, is nonzero. That is
equivalent, by the chain rule, to the assumption that % [f(xz,yz)] is non zero. That, in
turn, is almost, but not quite, equivalent to the statement that f(xz, yz) = 0 is soluble for
z as a function of x and y.
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S-19: (a) By the chain rule

0
ws(s, 1) = = [1(25 + 31,35 — 2t)| = 21, (25 + 3t,3s — 2t) 4+ 31, (25 + 3t,3s — 2t)

and

wes (s, 1) = 2? [MX(ZS +3t,3s — 2t)] + 3? [1y(25 + 3t,3s — 2t)]

+ [61yx(25 + 3t, 3s — 2t) + uyy (25 + 3t,3s — 2t)]

= 4uyy(25 4 3t,35 — 2t) + 12145 (25 + 3t,35 — 2t) 4 9 uy,, (25 + 3t,3s — 2t)

(b) Again by the chain rule

[1(25 + 31,35 — 2t)] = Bux(2s + 3t,3s — 2t) — 2, (2s + 3t,3s — 2t)

Q)l )
N

wi(s, t) =

and

wy (s, t) = g [ux(25 4+ 38,35 — 2t)] — 2% [1y(25 4 3t,3s — 21)]

= [9uxx(25 + 31,35 — 2t) — 61y (25 + 3t,3s — 2t)]
+ [ = 6uyx (25 + 3t,3s — 2t) + 4y (25 + 3t, 35 — 2t)]

= 9 uyy (25 + 3t,35 — 2t) — 12 uyy (25 + 3t,35 — 2t) + 4 uy, (25 4 3t, 35 — 2t)

Consquently, for any constant A,

Given that uyy + uy, = 0 this will be zero, as desired, if A = —1.
S-20: (a) By the chain rule
[f(rcos®, rsinf)| = —rsinf fx(rcosf, rsinf) +rcos f,(rcosf, rsinf)

[f(rcos®, rsinf)] = cosf fy(rcosf, rsinf) +sinb f, (rcosf, rsin6)

(o))
‘ AR

[f(rcosf, rsinf)]| = %[rsin@fx(rCOSQ, rsinf) +rcos® f,(rcost, rsin@)}

= —sinf fy +cos0 f,
— rsin@cos @ fyy + r[cos? @

or 06
— sin® 0] fy, + rsinf cos b fyy

with the arguments of fy, fy, fxx, fxy and fyy all being (rcos 6, rsinf).
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(b) By the chain rule

%[g(rcos(%, rsinf)] = —rsinf g,(rcosf, rsinf) 4+ rcos6 g, (rcosf, rsinf)

= —rsinf f, (rcos@, rsin@) —rcos 6 fx(rcos6, rsinf)

= —r% [f(rcos@, rsin®)]

%[g(rcos@, rsinf)] = cos0 gy (rcosf, rsinf) +sinb g, (rcosb, rsinb)
= cos 0 fy(rcosf, rsin®) —sinf fx(rcosf, rsinf)

= %%[f(rcos@, rsinf)]

or
j—r[f(rcos(% rsinf)] = —%%[g(rcos@, rsinf)]
%[f(rcosf), rsinf)] = g[ (rcosf, rsind)]
S-21: By the chain rule
S = S0 0) = sl h60) B0+ L ists0, 16 0) T 60
Z (1) = CA (6000 0) = Lgls,0,105,) B(s, )+ %(g(s,t),h(s,t))%(s,t)

In particular

Z0.2) = Lga2,m0, 2))2—% 2+ s, 2,n0,2) 5 0,2
=7x(-1)+8x (— )
0z ch

1,2 = L(01,2,10,2) B1,2) + a—f( £(1,2),1(1,2)) 2 (1,2)

ot
:7><4-|—8><10=108

Hence Vz(1,2) = (—47,108).

S-22: (a) By the product and chain rules
wx(r,y) =eVf(x—y) wy(xy)=—-eflx—y)—eVf(x—y)

Hence

as desired.
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(b) Applying < to both sides of x = u(x,y)® — 3u(x,y)v(x,y)? and to both sides of
y = 3u(x,y)?v(x,y) —v(x,y)? gives

1= 3u(xy) e (vy) 35 (xy) ol y)? — 6u(x,y) o(x,y) So (x,)

ou 5 00 5 00
0=6u(xy) - (xy)o(xy) +3uxy)? a—(x y) =30(x,y)’ a—(x Y)
Substitutinginx =2,y =11, u = 2, v = 1 gives

1— 122—”(2 1) - 32“(2 1) —122 (2,11) = 95—”(2 1) —12?(2 11)
0— (2 1) +12?(2 1) - 32 (2,11) = 122 (2,11) +92—”(2 1)
From the second equatlon 20(2,11) = —294(2,11). Substituting into the first equation
gives 1 = 25%4(2,11) so that 94(2,11) = & and §2(2,11) = — . Hence
Z (o) = 2u(xy) e (wy)  20(0,y) 2 (x,y)
— 2—;‘;(2,11) 42 (2,11) — 222(2,11) = 4% +274—5 - % - 14—5

S-23: (a) We are told that

2

x(u,v)? —y(u,v)cos(uv) =v  x(u,v)*+ y(u,v)* — sin(uv) = %u

Applying g—u to both equations gives

2x(u,v)2—z(u,v) — Y (4, 0) cos(uv) + vy(u, v) sin(uv) = 0

ou
ox 0
2x(u,v)£(u,v) + Zy(ulv)%(

Settingu = 5,v=0,x(5,0) =1,y(5,0) =1 gives

ox (Tt ay B
25 (3:0) 5 (20) =

ox (7T (9]/ 4
25 (3:0) +25, (30) = %
Substituting S—Z (5,0) = 2% (5,0), from the first equation, into the second equation gives
6%(%,0) = % so that S—Z(%,O) 37T and & 2(%,0) = =

|

u,v) —vcos(uv) =

(b) From part (a), N
20 (5 Z (0w (G0 LG5
=15 (70) +15, (3:9)
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S-24: This question uses bad (but standard) notation, in that the one symbol f is used for
two different functions, namely f(u,v) and f(x,y) = f(u,v) ]u:x S A better
statement is

Let f(x,y) and F(u,v) be differentiable functions such that
f(x,y) = F(x +y,x —y). Find a constant, «, such that

fx( ) + fy(xy)* =a{F(x+y,x —y)* + F(x +y,x —y)*}

By the chain rule
0 0 0
T ey) = Pl by v —y) e (e b y) + Falr by, v —y) e (x—y)
=F(x+yx—y)+Fx+yx—y)
U () = Fulx 41,5~ 1) (x4 1)+ Folx 9,5 — y) - (x— 1)
3 Fu(x+y, Vgt v x=y)5, -y
=F(x+yx—y) —FEx+yx—y)
Hence
2
fx(x,y)2+fy(x,y)2 = [Fu(ery,x—y)+Fv(x+y,x—y)}
2
+[Fu(ery,x—y)—Fv(Hy,x—y)
=2F,(x+y,x —y)* +2F,(x +y,x —y)?
Sona = 2.

-25: Recall that u(x, t) = v(&(x, t),5(x,t)). By the chain rule

S0t = ZE )5+ 50 (e 0) 5
S €, D) + 5 (@D n)
S0 = S ) 5 + 5 (6 (x,0) 5]




Again by the chain rule

02 Jd o 0
SE G = S F @ nm0xn) + 5 ()
62 oF 2 on &~ p
= a;(é(x,t),n(x,t))£+a gg(é( )1, 1) 5] a@gn (§(X,t),17(x,t))£
02 P
+ a0 n) 5
v 0% v 020

= G € 0(x ) + 252 (200,16 1) + 55 (@0, 1(x,1)

and
02 0 0
et = 5[ @ n(en) +eg @), n(x )
& o ? on 2
= e €, 1) 5 S T (G 0 ) F o+ e (G (e 1)
320 ; / 7
g (Ewn )G
02 2 2
= @ () 0) =28 5 (€ ) () + 5 (€0, )
so that ) , ,
0 0 0
a0~ 5 () = 452 (G (x D)
Hence
62u 1 82u ﬁzv

W(x, t) — C—zm(x,t) =0forall (x,t) < 485&17 (&(x,t),n(x,t)) =0forall (x,t)

(32

— 6(3(977 (‘: 77) 0 for all ((;[/ 77)

(b) Now £ agan (& n) = ag [a”} = 0. Temporarily rename ¢ = w. The equation

on an
a_g 2(¢,n) = 0 says that, for each fixed 17, w(&, 1) is a constant. The value of the constant
may depend on 7. That is, 0;7 %(&,n) =w(&,n) = H(n), for some function H. (As a check,

observe that (%H () = 0.) So the derivative of v with respect to 7, (viewing ¢ as a
constant) is H(7).

Let G(77) be any function whose derivative is H(7) (i.e. an indefinite integral of H(7)).
Then g_"l [0(&, 1) — G(7)] = H(n) — H(y7) = 0. This is the case if and only if, for each fixed

¢, v(¢,n) — G(¢,n) is a constant, independent of 7. That is, if and only if
v(G,1) — G(in) = F(¢)
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for some function F. Hence

02 1 02 02

a—xbzl(x,t) — c_zé_tl;(x't) =0 < 65;]17 (&,n) =0forall (¢,7)
<= 0v(¢,n) = F(&) + G(1) for some functions F and G
— u(x,t) =0(8(x,t),1(x,t)) = F(&(x, 1)) + G(n(x,1))

v
F(x —ct)+ G(x +ct)

(c) We'll give the interpretation of F(x — ct). The case G(x + ct) is similar. Suppose that
u(x,t) = F(x —ct). Think of u(x, t) as the height of water at position x and time ¢. Pick
any number z. All points (x, t) in space time for which x — ¢t = z have the same value of
u, namely F(z). So if you move so that your position is x = z + ct (i.e. you move the right
with speed ¢) you always see the same wave height. Thus F(x — cf) represents a wave
moving to the right with speed c. Similarly, G(x + ct) represents a wave moving to the
left with speed c.

S-26: (a) We are told to evaluate %. So y has to be a function of z and possibly some other
variables. We are also told that x, y, and z are related by e¥> — x>zIny = 7. So we are to
think of x and z as being independent variables and think of y(x, z) as being determined
by solving e¥* — x?zIny = 7 for y as a function of x and z. That is, the function y(x, z)
obeys

V%27 _x27Iny(x,z) = 7

for all x and z. Applying % to both sides of this equation gives

%Y yxz)z o2 N
y(x,z) +Z@z (x,z)| e x“Iny(x,z) —x Zy(x,z) P (x,z) =0
0 x2Iny(x,z) —y(x,z)eV (%22
VY (y,2) = y(x,z) —y( 2)
0z zey(xz)z _ _x°z_
y(x.z)

(b) We are told to evaluate %. So y has to be a function of the single variable x. We are
also told that x and y are related by F(x,y, x> — y?) = 0. So the function y(x) has to obey

F(x,y(x),2* —y(x)?) =0

for all x. Applying % to both sides of that equation gives

Fi(xy(), 2~ y(x?) + B y(x), 2~ y(x)?) L)
B (xy(), 22— y(@)?) [2x - 290 L (w)| =0

o) o) 30, o)
dx Fa(x,y(x), x2 — y(x)2) — 2y(x) F3(x, y(x), ¥ — y(x)?)
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(c) We are told to evaluate (%) , which is the partial derivative of y with respect to x

with u being held fixed. So x and 1 have to be independent variables and y has to be a
function of x and u.

Now the four variables x, y, u and v are related by the two equations xyuv = 1 and
x+y+u+ov=0.Asxand u are to be independent variables, y = y(x, u), v = v(x, u)
are to be determined by solving xyuv =1, x + y + u + v = 0 for y and v as functions of x
and u. That is

xy(x,u)uo(x,u) =1
x+y(x,u)+u+o(x,u)=0

for all x and u. Applying g—x to both sides of both of these equations gives

uv+xa—yuv—|—x ua—v—O
4 ox Thox T

oy v

1+ =+0+—=0
* ox o ox

Substituting, g—z =-1- %/ from the second equation, into the first equation gives
%y A
yuov + xS U xyu (1+§_x> =0

Now u cannot be 0 because x y(x, u) uv(x,u) = 1. So

R G T T

L g a

Solutions to Exercises 2.5 — Jump to TABLE OF CONTENTS

S-1: We are going to use Theorem 2.5.1 in the CLP-3 text. To do so, we need the first order
derivatives of f(x,y) at (x,y) = (—1,1). So we find them first.

 2xy x%y(4x3) 2 4 2
fx(x’y)_x4+2y2 (x4 +2y2)° flFL ) =3+ 5 =5
x? x?y(4y) 1 4 1
fy(x’y)_x4+2y2_(x4+2y2)2 MAN=37327
The tangent plane is
1 2 1
2= L) AL () + (L) (1) = 5o e+ 1)~ g (y-1)
2 2. 1
9 9" 9’

or2x +y+9z = 2.
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S-2: The equation of the given surface is of the form G(x,y,z) = 9 with
——27____ So, by Theorem 2.5.5 in the CLP-3 text, a normal vector to the

Clov2) = Fampans

surface at (2,1,1) is

1 27
VG(2,1,1) = — 2x,2y,2
( ) = (x2+y2+22+3)3/2< ¥ 2, 22) (xy,2)=(2,1,1)

= —(2,1,1)

and the equation of the tangent plane is

-(2,1,1)- (x—-2,y—1,z—1)=0 or 2x+y+z=6

S-3: (a) The specified graphis z = f(x,y) = x> —y? or F(x,y,z) = x* —y* —z = 0.
Observe that f(—2,1) = 3. The vector

VF(-2,1,3) = (F:(x,y,2), F)(x,y,2), F:(x,y,2))

(xy,2)=(-2,1,3)

(2x, -2y, —1)

(xy,2)=(-21,3)

(—4,-2,-1)
is a normal vector to the graph at (—2,1,3). So the tangent plane is
—4(x+2)—-2(y—1)—(z—3)=0o0rd4x+2y+z= -3

and the normal line is
(x,y,z) = (=2,1,3) +t(4,2,1)

(b) The specified graphisz = f(x,y) = e*¥ or F(x,y,z) = e*Y —z = 0. Observe that
f(2,0) = 1. The vector

VF(2,0,1) = (Fx(x,y,2), Fy(x,y,2), F:(x,y,2))

(xy,2)=(2,0,1)
= (ye*, xe*, 1)

(xy,2)=(2,01)
= (0,2, 1)

is a normal vector to the graph at (2,0, 1). So the tangent plane is
O(x—2)+2(y—0)—(z—1)=00r2y—z=-1

and the normal line is
(x,y,z) = (2,0,1) +t (0,2, 1)
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S-4: We may use G(x,y,z) = xyz? + y*z> — 3 — x* = 0 as an equation for the surface.
Note that (—1, 1, 2) really is on the surface since

G(-1,1,2) = (-1)(D(2)%+ (1)?(2)* -3 - (-1)> = —4+8-3-1=0
By Theorem 2.5.5 in the CLP-3 text, since

Gy(x,y,2) = yz2 — 2x Gx(-1,1,2) =6
Gy(x,y,z) = xz? + 2yz° Gy(-1,1,2) =12
Gz(x,y,z) = 2xyz + 3y222 .(-1,1,2) =

one normal vector to the surface at (—1,1,2) is VG(-1,1,2) = (6, 12, 8) and an
equation of the tangent plane to the surface at (—1,1,2) is

6,12,8) - (x+1,y—1,z—2)=0 or 6x+12y+8z=22

or

Z__3x_3z+11
472 4

S-5: (a) The surface is G(x,y,z) = z — x? + 2xy — y*> = 0. When x = a and y = 24 and
(x,v,z) is on the surface, we have z = a?> — 2(a)(2a) + (2a)? = a?. So, by Theorem 2.5.5 in
the CLP-3 text, a normal vector to this surface at (a, 24, az) is

VG(a,2a,a%) = (—2x+ 2y, 2x — 2y, 1)

= (2a, —2a,1)
(xy,2)=(a,2a,a%)

and the equation of the tangent plane is

(Za,—2a,1>-<x—a,y—2a,z—a2>:O or  2ax —2ay+z=—a’

(b) The two planes are parallel when their two normal vectors, namely (22, —2a, 1) and

(1, =1, 1), are parallel. This is the case if and only if a = %

S-6: The first order partial derivatives of f are

4 8
fr(x,y) = —ﬁ fx(—1,2) = 75
2
) = - s A1) =2 =

So, by Theorem 2.5.1 in the CLP-3 text, a normal vector to the surface at (x,y) = (—1,2)
is <% , —% ,—1). As f(-1,2) = %, the tangent plane is

8 6 4 8 6 8
<g,—g,—1><x+1,y—2,z—g>—0 or Z—SX—%]/—Z——E




and the normal line is

4 8 6
={(-1,2 = -
(x,y,2) < ,,5>+t<25, e >

S-7: A normal vector to the surface x> + 9y? + 42> = 17 at the point (x,y, z) is

(2x, 18y, 8z). A normal vector to the plane x —8z = 0is (1, 0, —8). So we want

(2x, 18y, 8z) to be parallel to (1, 0, —8), i.e. to be a nonzero constant times (1, 0, —8).
This is the case whenever y = 0 and z = —2x with x # 0. In addition, we want (x, y,z) to
lie on the surface x? + 9y? + 4z% = 17. So we want y = 0, z = —2x and

17 =24+ 9y +42° = X +4(—2%)> = 17x* — x = +1
So the allowed points are +(1,0, —2).
S-8: The equation of S is of the form G(x,y,z) = x* 4+ 2y* 4+ 2y — z = 1. So one normal
vector to S at the point (xo, Yo, zo) is
VG(xo,v0,20) = 2x0i + (4yo +2)j — k
and the normal line to S at (x, yo, o) is
(x,y,z) = (x0,Y0,20) + 1 (2x0, 4yp + 2, —1)
For this normal line to pass through the origin, there must be a t with

(0,0,0) = (x0,Y0,20) +t (2x0, 4yo +2, —1)

or
X0+ 2xpt =0 (E1)

Yo+ (4yo+2)t =0 (E2)

20—t =0 (E3)

Equation (E3) forces t = zg. Substituting this into equations (E1) and (E2) gives

xo(l + 220) =0 (E1)
Yo + (4-]/0 + Z)Z() =0 (E2)
The question specifies that xg # 0, so (E1) forces zp = —%. Substituting zp = —% into (E2)

gives

—yo—lzo - yoz—l
Finally x is determined by the requirement that (xg, yo, zo) must lie on S and so must
obey

1 1
20 =X3+2y5+ 2y -1 — _§:x5+2(—1)2+2(—1)—1 — xé:E

So the allowed points P are (=, -1, —1) and (-

1
V27

233



S-9: Let (xo, o, z0) be a point on the hyperboloid z? = 4x? + y?> — 1 where the tangent
plane is parallel to the plane 2x — y + z = 0. A normal vector to the plane 2x —y +z = 0
is (2,—1,1). Because the hyperboloid is G(x,y,z) = 4x> + y* —z> — 1 and

VG(x,y,z) = (8x,2y, —2z), a normal vector to the hyperboloid at (xo, yo, z0) is

VG(x0,v0,20) = (8x0,2y0, —220). So (X0, Yo, z9) satisfies the required conditions if and
only if there is a nonzero t obeying

(8x0,2y0, —2z9) =t (2,—1,1) and z% = 4x5 + y% -1

t t
— XOZZ' yQ:zoz—Eandz%:4x%+y%—1
e tz—i—tz 1and x t z !
= — = — _— = — = = — =

= t=42 (XOIyO/ZO) = i(%/ -1,-1

S-10: One vector normal to the surface F(x,y,z) = 4x> +9y> —z2 = 0 at (2,1, -5) is

VE(2,1,-5) = (8, 18y, —2z) ) = (16,18, 10)

(2,1,-5)
One vector normal to the surface G(x,y,z) = 6x +3y +2z =5at (2,1,-5) is
VG(2,1,-5) = (6,3,2)

Now

e The curve lies in the surface z2 = 4x? + 9y%. So the tangent vector to the curve at
(2,1, -5) is perpendicular to the normal vector % (16,18,10) = (8,9,5).

e The curve also lies in the surface 6x + 3y + 2z = 5. So the tangent vector to the
curve at (2,1, —5) is also perpendicular to the normal vector (6,3, 2).

e So the tangent vector to the curve at (2,1, —5) is parallel to

i k
(8,9,5) x (6,3,2) =det |8 9 5| = (3,14, -30)
6 3 2
The desired vectors are
(3,14, -30) 3
+v3 L L = +4/——(3,14,-30
_\F\ (3,14,-30)| "~V 1105 < )

S-11: Let (xo, yo,zo) be any point on the surface. A vector normal to the surface at
(x0, Yo, 20) is

\Y% (xye’("zwz)/2 —z

(x0,¥0.20)

= <yoe*(x%+y%)/2 — yoe (FHR)/2 xe= (BH8)/2 120~ (F+8)/2, _1>
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The tangent plane to the surface at (x, Yo, zo) is horizontal if and only if this vector is
vertical, which is the case if and only if its x- and y-components are zero, which in turn is
the case if and only if
yo(1—x5) = 0and xo(1 —y§) =0

«— {yo=0o0rxg=1orxg=—1}and {xg =0o0ryp=1loryy = -1}

<~ (x0,¥0) = (0,0) or (1,1) or (1,—1) or (—1,1) or (—1,-1)
The values of z at these points are 0, el —e7l —eland e, respectively. So the
horizontal tangent planes are z = 0,z = ¢~ and z = —¢~!. At the highest and lowest
points of the surface, the tangent plane is horizontal. So the largest and smallest values of
zaree ! and —e~!, respectively.

S-12: (a) A normal vector to the surface at (0,2,1) is
V(xy—2x+yz+x*+y*+2° — 7)\(0,2,1) = <yf2+2x, x+z+2y, y+3zz> \(0,2/1)
= (0,5,5)
So the tangent plane is
O(x—0)+5(y—2)+5(z—1)=00ry+z=3
The vector parametric equations for the normal line are
r(t) =(0,2,1) +t(0,5,5)

(b) Differentiating
xy—2x+yz(x,y) + x>+ +z(xy)} =7
gives
— 2+ yze(x,y) + 20 4+ 32(x, )%z (2, ) = 0 = z,(x )—HA
y Yzx(X%, Y YY) 2 (X Y) = A\ XY ~ y+3z(r,y)?
x+z(x,y) +yzy(x,y) + 2y + 3z(x,y)2zy(x,y) =0 —zy(xv,y) = _x;—jgz-:;(;),g)
In particular, at (0,2,1), z,(0,2) = —‘2% = -1.
(c) Differentiating z, with respect to y gives
1 2-2x—y
Zyy(x,y) = — — 1+6z(x,1v)z,(x,
xy( y) v+ 3z(x,y)? [y+3z(x,y)2]2( (x,y) ]/( ]/))
1 2-2x—y ( x+2y+z(x,y))
- _ — 1—6z(x,
y+32(x,y)* [y +3z(x,y)?)? (y)y+34mw2

As an alternate solution, we could also differentiate z, with respect to x. This gives
Cl4zi(xvy) | x+2y+2z(xy)
y+32(x,y)* [y +3z(x,y)2)?
B 1 2-2x—y X+ 2y +z(x,y) 2-2x—y
__y+34%yﬁ< y+34%yﬁ> [y + 3z(x,y)2)? (’wy+34myﬁ

zyx(x,y) = 6z(x,y)zx(x,y)
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S-13: (a) A vector perpendicular to x> +z? = 10 at (1,1,3) is

. .1
V(x* +2°)| = (2x1 + 2zk)) =2i+6kor - (2,0,6) = (1,0,3)

(1,1,3) (1,1,3)

(b) A vector perpendicular to y? +z2 = 10 at (1,1,3) is

. . PO |
V(2 + ZZ)\(1,1,3) = (2yj + 2zk)| (113 = 2 +6kor 3 (0,2,6) = (0,1,3)

A vector is tangent to the specified curve at the specified point if and only if it
perpendicular to both (1,0,3) and (0, 1,3). One such vector is

i

(0,1,3) x (1,0,3) = det |0 = (3,3,-1)

O =~
W W

(c) The specified tangent line passes through (1,1,3) and has direction vector (1,1,3) and
so has vector parametric equation

r(t) = (1,1,3) + £ (3,3,-1)

S-14: r(t) = (x(t), y(t), z(t)) intersects z> + xyz — 2 = 0 when
2P+ x()y(H)z(t) —2=0 — (B + (B)(O)(F) —2=0 «— 26°=2 > t=1
since t is required to be positive. The direction vector for the curve att = 1is
r(1) =3i+j+2k
A normal vector for the surface atr(1) = (1,1,1) is
V(z> + xyz)|

a1y = WA +xz] + (32% + xy)k 10y =1+ + 4k

The angle 0 between the curve and the normal vector to the surface is determined by

1(3,1,2)](1,1,4) | cos® = (3,1,2) - (1,1,4) < V14v18cost = 12
<= /7 x36cosf0 =12

«— cosf = —

V7
— 0 = 40.89°

The angle between the curve and the surface is 90 — 40.89 = 49.11° (to two decimal
places).
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S-15: Let (x,y,z) be any point on the paraboloid z = x* + y?. The square of the distance
from (1,1,0) to this point is

D(x,y) = (x—1)>+ (y—1)2 + 22
— (x =12+ (y =12+ (P + )’

We wish to minimize D(x,y). That is, to find the lowest point on the graph z = D(x, y).
At this lowest point, the tangent plane to z = D(x,y) is horizontal. So at the minimum,
the normal vector to z = D(x, y) has x and y components zero. So

0= loy) =20x-1)+ 262 +17)(2x)

0= z—lj(x,y) =2(y—1) +2(x* + %) (2y)

By symmetry (or multiplying the first equation by y, multiplying the second equation by
x and subtracting) the solution will have x = y with
0=2(x—1)4+2(x®+x?)(2x) = 8x° +2x -2

Observe that the value of 8x% +2x —2 = 2(4x® + x — 1) at x = 3 is 0. (See Appendix A.16

of the CLP-2 text for some useful tricks that can help you guess roots of polynomials with

integer coefficients.) So (x — 1) is a factor of

04 a- 14§ ]) —4(x- D) (P4 b+ ]
and the minimizing (x,y) obeys x = y and
0=8x>+2x—2=8(x—1)(x*+ix+1)=0
By the quadratic root formula, x? + 1x + 1 has no real roots, so the only solution is

xX=y=14%2z= (%)2 + (%)2 = 1 and the distance is \/(% — 1)2 + (3 - 1)2 + (%)2 = \/73

&> <&

Solutions to Exercises 2.6 — Jump to TABLE OF CONTENTS

S-1: Apply the linear approximation

(0.01,1.05) ~ £(0,1) + f(0,1)(0.01) + £,(0,1)(0.05), with

f(x,y) =sin(ntxy + Iny) f(0,1) =sin0=0
fx(x,y) = mycos(mxy + Iny) fx(0,1) = mcos0 =17
fy(x,y) = (nx + %) cos(mtxy + Iny) fy(0,1) = cos0 =1

This gives

£(0.01,1.05) ~ £(0,1) + f+(0,1)(0.01) + £,(0,1)(0.05) = 0+ 7(0.01) + 1(0.05)
= 0.01 77+ 0.05 ~ 0.0814
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S-2: We are going to need the first order derivatives of f(x,y) at (x,y) = (—1,1). So we
find them first.

2xy x%y(4x3) 2 4 2

(xy) = - (“11)= -S4 2 =%

fx(xy) A2y (x4 4 2y2) S ) 3 + 32 9
x? x%y(4y) 1 4 1
) = _ ) ==
foouy) = gy (h + 242)? f-1 D) =3-3 =

The linear approximation to f(x,y) about (—1,1) is

Floy) ~= L)+ (L) )+ fy(-L1) (-1 = 3 — 2 (14 1) =5 (s~ 1)
In particular
f(—0.9,1.1)m%—%(o.l)—%(m) gg 03

S-3: Let the four numbers be x1, X7, x3 and x4. Let the four rounded numbers be x; + €1,
Xy + €3, x3 + €3 and x4 + €4. Then 0 < x1, X, x3, x4 < 50 and |e1], |e2], |es|, |e4| < 0.05. If
P(x1,x2,X3,x4) = X1X2X3X4, then the error in the product introduced by rounding is,
using the four variable variant of the linear approximation (2.6.2) of the CLP-3 text,

|P(x1 + €1, %2 + €2, %3 + €3, x4 + €4) — P(x1, X2, X3, x4)|
oP oP oP 0P
~ !— X1, X2, X3, Xa)€1 + (¥, %2, X3, Xa)ea + = (%1, %2, X3, X )3 + 5~ (x1, %2, %3, %4 )és|
X1 7.')(2 (7.7(3 X4
= |x2X304€1 + X1X3X4€0 + X1X2X4E3 + X1X0X3E4]

<4 x50 x 50 x 50 x 0.05 = 25000

S-4: Denote by x and y the lengths of sides with x =3 £ 0.01 and y = 4 £ 0.02. Then the
length of the hypotenuse is f(x,y) = 1/x2 + y2. Note that

fluy) =/ +y>  f(3,4) =

floy) = o=y FBA) =

filod) = oo A=

Ull = U1l Gl

By the linear approximation

Fluy) ~ F34) + Fo(3,4) (x=3) + fy(3,4) (y = 4) =543 (x~3) + 5 (y 4
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So the approximate maximum error in calculating the length of the hypotenuse is

3 4 1.1
=(01)4+=(02) = — =0.
5( )—|—5( ) 5 0.22

S-5: The function R(R1, Ry) is defined implictly by

1 1 1

In particular

1 1. 1 5 8
= — - = — R(2 = _
R2s 278" 8 ~ R28=3
We wish to use the linear approximation
R R
R(R1,Ry) ~ R(2 2 R1—2)+—-(2 Ry —
(Ry, Ry) ~ R(2,8) + 55 (2,8) (R1 = 2) + 55-(2,8) (Ry = 8)

To do so, we need the partial derivatives g—é{l (2,8) and 3—152 (2,8). To find them, we
differentiate (x) with respect to Ry and Ry:

1 OR 1
- Ri,Ry) = ——
R(R, R )2 0R; K1 R2) R?
1 J0R 1
- Ri,Ry) = ——=
R(R1,Ry)? aRz( 1 R2) R?
Setting Ry = 2 and R, = 8 gives
1 OR 1 0R 16
————s5(2,8) = —— —(2,8) = —
GERR 2Y =1 = RV
1 0OR 1 JR 1
———55(2,8) = —— —(2,8) = —
GRS T T T R
So the specified change in R is
16 1 15
R(1.9,81) - R(2,8) ~ —=(-0.1) + —=(0.1) = —z= = —0.

S-6: First, we compute the values of the partial derivatives of R(R1, Ry, R3) at the
measured values of Ry, Ry, R3. Applying 06_1%" with i = 1,2,3 to both sides of the defining
equation

1 1 1 1

R(Rll RZ/ R3) Rl RZ R3
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for R(R1, Ry, R3) gives

_R(R1,1132, R3)? 51151 (R1, Ry, R3) = —Ri%
_R(R1,1122, R3)? SISZ(RLRZ’ R3) = —Ri%
R(Rl,;z, R3)2 Szfg(Rl’Rz’ Rs) = Ri%
When R; = 25Q0), R, = 40Q) and Rz = 50Q)
m = % + % + % = %L = R(25,40,50) = 21070 = 11.765
Substituting in these values of Ry, Ry, R3 and R,
211;1 (25,40,50) = 12(2%2'50)2: % = 0.221
2152 (25,40,50) = 12(2%2’50)2: % = 0.0865
211;3 (25,40,50) = 12(2#2'50)2: % = 0.0554

If the absolute errors in measuring Ry, R, and R3 are denoted €1, €5 and &3, respectively,
then, , using the linear approximation (2.6.2) of the CLP-3 text, the corresponding error E
in Ris
E = R(25+ €1,40 + €3,50 4 €3) — R(25, 40, 50)
OR

OR OR
25,4 25,4 25,4
6R1(5 05O)€1+&R(5 050)€2+6R(5 0,50)e3
and obeys
16

or |E| <0.221|eq| + 0.0865(ez| + 0.0554|e3|
We are told that the percentage error in each measurement is no more that 0.5%. So

0.5 1 0.5 1 05 1
2205 — ~ = 0125 < 2240=2=02 2250 = - =025
o1l < 75 3 el < 70 5 el < 100 1

so that

E| < 8 N 5 N 4 1
172 0172 0172 17

or |E| <0.221 x 0.125+ 0.0865 x 0.2 4 0.0554 x 0.25 = 0.059
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S 7: By the linear approximation

AS ~ ?i (20,12) AA + f{f\[ (20,12) AW
C
with S(A, W) = 45 =1+ %. So
A 20 5
S(AW) = +—% 5(20,12) =2 =3
W 12 3
A 20 5
Sw(A,W) = m Sw(20,12) = 2 = 16

For any given AA and AW, the percentage error is

AS 2/ 3 5
100=2] = [1002 ( — —AA + —AW
‘OOS 'OO5< 16°" " 16 )‘

We are told that |[AA| < 0.01 and |AW| < 0.02. To maximize [1002( — £AA + SAW)]
take AA = —0.01 and AW = +0.02. So the maximum percentage error is

21 3 5 2 13 13 .
1005[ 1¢(-001) + 16(002)]_§XR_40 0.325%

S-8: The linear approximation to P(s,r) at (2,2) is
P(s,r) ~ P(2,2) + Ps(2,2) (s —2) + P(2,2) (r — 2)

As
P(2,2) = (2)(2)[4(2)> - (2)*~2] =40  (which we don’t actually need)
Py(2,2) = [1252r P Zr} — 84
s=r=2
P (2,2) = [453 32 - 25} —4
s=r=2

the linear approximation is
P(s,r) ~40+84(s—2)+4(r—2)
Under method 1, the maximum error in P will have magnitude at most (approximately)
84(0.01) +4(0.1) =1.24
Under method 2, the maximum error in P will have magnitude at most (approximately)
84(0.02) +4(0.02) = 1.76
Method 1 is better.
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5-9: Using the four variable variant of the linear approximation (2.6.2) of the CLP-3 text,

oS oS oS oS pt* [Ap AL Aw Ak
AS ~ %AH%AH(? Aw+ = A =C- s ; +47—;—37

Whenw ~ 0.1and h ~ 0.2,

A toaw 3R < 1san
w h

Soa change in height by Ah = € produces a change in sag of about AS = 15¢ times
—_CEE. ptt
w3’

AS = 10¢ times the same —C. -5 p 5. The sag is more sensitive to Ah.

while a change Aw in width by the same ¢ produces a change in sag of about

-10: The first order partial derivatives of f are

Pl = fe(-1,2) =
£y) 2 4y 2 16 6
y\XYy) =

x2+y2_(x2+y2)2 fy(—l,Z)zg_%:_ﬁ

The linear approximation of f(x,y) about (—1,2) is

foy) = f(-1L,2) + fx(-L2) (x+ 1) + f(-1,2) (y = 2)
4 8 6
=gt () -2 (-2

In particular, for x = —0.8 and y = 2.1,

4 8 6
f(-08,2.1) ~ £+ 52 (02) - 5 (01)
= 0.84
S-11: (a) The function f(x,y) obeys
xy fxy) +x+y° + flxy) =0 (*)
for all x and y (sufficiently close to (—1,1)). Differentiating (=) with respect to x gives
1
’ x\Ar 1 3 ’ 2 x\Ay =0 x\Ar = - yf(x,y)+
yfxy) oy fuly) 14 3f () faloy) =0 = fxlxy) = =375

Without knowing f(x, y) explicitly, there’s not much that we can do with this.
(b) f(—1,1) obeys

DMLY+ D)+ ()24 f(-1,1)° =0 <= f(-1,1)° - f(-1,1) =0
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Since f(—1,1) < 0 we may divide this equation by f(—1,1) < 0, giving f(—1,1)> —1 = 0.
Since f(—1,1) < 0, we must have f(—1,1) = —1. By part (a)

ALY
A1, 12+ (1))

To get the linear approximation, we still need f,(—1,1). Differentiating () with respect
to y gives

fx(_lll) = _3

x f(x,y) +xy fy(x,y) +2y +3f (x,y)* fy (x,y) = 0
Then setting x = -1,y = 1 and f(—1,1) = —1 gives

(-1) (1) + (-1)(1) fy(-1,1) +2(1) + 3(-1)*fy(-1,1) =0 = f,(-1,1) = _g

So the linear approximation is
3
foy) ~ fFELD+ ALY 0+ D+ f (L) (y—1) = ~1-5(y —1)

(c) By part (b),

f(—102A197)Q,—1-§(097-1)=:—0955

S-12: By definition, the differential at x = a,y = b is
fx(a,b)dx + fy(a,b)dy
so we have to determine the partial derivatives fy(a,b) and f,(a, b). We are told that
/Y 4y f(x,y) =x+y

for all x and y. Differentiating this equation with respect to x and with respect to y gives,
by the chain rule,

ef(x,y)fx(x,y) +yfx(x,y) =1
ef(x'y)fy(xrl/) +f(xy) +yfy(xy) =1

Solving the first equation for f, and the second for f, gives

1
fx(x,}/) = ef (xy) +y
_1-flxy)
fy(x,y) - €f(x’y)+]/

So the differential at x = a,y = b is

dx N 1—f(a,b)
ef(ab) +b ef(ab) +b

dy
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Since we can’t solve explicitly for f(a,b) for general a and b. There’s not much more that
we can do with this.

(b) In particular, when a = 1 and b = 0, we have
10 L 0£(1,00 =140 — /M0 =1 — £(1,0) =0
and the linear approximation simpifies to

N dx 1-£(1,0)
f(1+dx’dy)“f(1’0)+ef(1,0)+0+ef(10)+ dy = dx +dy

Choosing dx = —0.01 and dy = 0.01, we have

f(0.99, 0.01) ~—-001+0.01=0

S-13: Let C(A, B,8) = VA2 + B2 —2ABcos 6. Then C(3,4, %) = 5. Differentiating
C? = A2 4 B2 —2ABcos 6 gives

oC oC .
2C—=(A,B,0) =24 -2Bcosf  — 105—A(34—)—6
oC oC
2C8B(AB9)—2B—2ACOSQ — 108_B(34_)_8
oC : oC B
2C09 (A,B,6) = 2ABsin6 = 10--(3,4,5) =24
Hence the approximate maximum error in the computed value of C is
oC oC oC
AC|~ | == (3,4, 5)AA+ — 5 (3,4, 5)AB + %(3,4,%)&9
< (0.6)(0.1) +(0.8)(0.1) + (2.4)%
= 7—5 +0.14 < 0.182

S-14: Substituting (xo,y0) = (3,4) and (x,y) = (3.02,3.96) into
f(xy) ~ f(xo,v0) + fx(x0,y0) (x — x0) + fy(x0,v0) (¥ — vo)
gives
£(3.02,3.96) ~ £(3,4) +0.02f,(3,4) — 0.04f,(3,4)
= 60 + 0.02 (20 + 356) —0.04 (15 + 458)

= 59.560
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since

x2 xy?
fx(x,y) zy\/m+\/ﬁ—yz fy(x,y) Zx\/m+—\/#y2

S-15: The volume of a cylinder of diameter d and height 1 is V(d, h) = 7t (4 ) h. The
wording of the question is a bit ambiguous in that it does not specify if the given
dimensions are inside dimensions or outside dimensions. Assume that they are outside
dimensions. Then the volume of the can, including the metal, is V(8,12) and the volume
of the interior, excluding the metal, is

V(8 —2x0.04,12—2 % 0.04) ~ V(8,12) + V;4(8,12)(~2 x 0.04) + V,(8,12)(~2 x 0.04)
1 2
=V(8,12) + ST % 8x12x (—2x0.04) + 7 (g) (—2x 0.04)
— V(8,12) — 7 x 128 x 0.04

So the volume of metal is approximately 7t x 128 x 0.04 = 5.127t ~ 16.1cc. (To this level
of approximation, it doesn’t matter whether the dimensions are inside or outside
dimensions.)

S-16: (a) The function z(x, y) obeys

2(x,y)° —z(x,y) +2xy —y* =0
for all (x,y) near (2,4). Differentiating with respect to x and y

32(x,y) () — o (xy) +2y =0

0z 0z
2 _ = — =
32(x,y)5, (% y) ay(x,y)i—Zx 2y =0
Substituting in x =2,y =4 and z(2,4) = 1 gives
0z 0z 0z
0z 0z 0z

The linear approximation is

z(x,y) ~z(2,4) +zx(2,4)(x —2) +2z,(2,4)(y—4) =1 —-4(x—2) +2(y — 4)
—1—4x+2y

(b) Substituting in x = 2.02 and y = 3.96 gives
2(2.02,3.96) ~ 1 —4 x 0.02+2 x (—0.04) = 0.84
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S-17: (a) We are told that

z(x,y)® —xyz(x,y)? —4x =0
for all (x,y) (sufficiently near (1,1)). Differentiating this equation with respect to x gives

oz oz
3Z(x,y)za( x,y) —yz(x,y)* — 2xyz(x, y)a( x,y)—4=0
[ 4+ yz?

ox 322 —2xyz
and differentiating with respect to y gives

0z 0z
3z(x,y)? ay(x y) —xz(x,y)? ZXyZ(x,y)@(x,y) =0

0z xz2

— oy  3z%2—2xyz

(b) When (x,y,z) = (1,1,2),

0z 4+(1)(2* 0z (1)(2)? 1
M= mr e - &

(c) Under the linear approximation at (1,1)

2(ey) ~ 2(L1) +2(L1) (0~ 1) 42y (LD (1) = 24+ (x~ 1) + 55— 1)

So errors of £0.03 in x and +0.02 in y leads of errors of about

[O 03+ = (O 02)} = +0.04
in z.
(d) By the chain rule

%z(x(@),y((?)) = zx (x(0),y(0)) x'(6) + 2, (x(0),y(6)) v/ (9)

= —2,(1+ cos,sinf) sinb + z, (1 + cos,sinb) coso

AtA,x =2,y =0,z =2 (since z° — (2)(0)z? — 4(2) = 0) and 6 = 0, so that

Gz ax@@F 1 ez, (@@ 2
=2V =500 3 w2V T Er-2000 3
and
dz 2 2
B- 3 sin(0) + 3 cos(0) 3




AtB,x =1,y =1,z =2and 0 = 7, so that, by part (b),
0z 0z 1
FN=1 S =3

and

dz__inrt+1 7(__1
dg = My T8y T

—X

S-18: We are going to need the first order partial derivatives of f(x,y) = ye™* at

(x,y) = (1,e). Here they are.

fx(x,y) = —ye™* fr(le) = —ee =1
fy(xy)=e™* fy(le)=e"

(a) The linear approximation to f(x,y) at (x,y) = (1,e) is
floy) ~ f(Le)+ fe(Le) (x=1) + fy(Le) (y—e) =1 (x=1) +e (y —e)

The maximum error is then approximately

14e1

~1(=0.1) +e71(0.1) = o

(b) The equation of the graph is g(x,y,z) = f(x,y) —z = 0. Any vector that is a nonzero
constant times

Vs(l,e1) = (fe(le), f,(1e), —1) = <— ,—1>
is perpendicular to g =0 at (1,¢,1).

S-19: (a) We are told that for all x, y (with (x,y,z) near (2,—1/2,1)), the function z(x, y)
obeys

z(x,y)* — xy’z(x,y)* +y =0 ()

Differentiating () with respect to x gives

£(x, y) i—(x y) el y) -~ 2xye(xy) 2 (xy) =0
Zx

y) = yz(x,y)®
4z(x,y)° - 2xy’z(x, y)

Similarly, differentiating this equation with respect to x gives

5 2 2 @Z .
4z(x,y)° ay( %y) =20y 2(x,y)" = 2xy 2% y) 7 (% y) +1=0
0z o 2xyz(x,y)? -1
- 4z(x,y)3 — 2xy%z(x, y)
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(b) Substituting (x,y,z) = (2,—1/2,1) into the results of part (a) gives

0z 1/4 1
Z2,-1/2) = L= = =
8x(' /2) 4—-1 12
0z —2-1
—(2,-1/2) = =-1
(By(' /2) 4-1

(c) Under the linear approximation about (2, —1/2),
flx,y) ~ f(2,-1/2) + f2(2,-1/2) (x = 2) + f,(2,-1/2) (y +1/2)

=14 5 (r—2) ~ (y+05)

In particular

£(1.94,-04) ~ 1— % —0.1

so that

£(1.94,-0.4) — 1 ~ —0.105

(d) The tangent plane is
z=f(2,-1/2)+ fu(2,-1/2) (x = 2) + f,(2,-1/2) (y +1/2)

“ 1+ (x-2) - (y+05)

S-20: (a) The linear approximation to f(x,y) at (1,3) is

floy) ~ f(1,3) + fx(1,3) (x = 1) + f4(1,3) (y =3) = 1 +3(x = 1) = 2(y - 3)
So the change is z is approximately

3(12-1)—-2(26-3) = 1.4

(b) The equation of the tangent plane is

z=f(1,3) + fx(1,3) (x = 1) + fy(1,3) (y =3) =1+ 3(x = 1) —=2(y - 3)

3x -2y —z=—4
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S-21: Think of the volume as being the function V(p, T) of pressure and temperature that
is determined implicitly (at least for p ~ 1, T ~ 5 and V & 2) by the equation

(pV(p, T +16)(V(p,T) —1) = TV(p, T)? (+)

To determine the approximate change in V, we will use the linear approximation to
V(p,T)atp =1, T = 5. So we will need the partial derivatives V,(1,5) and Vr(1,5). As
the equation () is valid for all p near 1 and T near 5, we may differentiate () with
respect to p, giving

(V242pVV,) (V —1) + (pV> 4+ 16)V, = 2TVV,
and we may also differentiate (+) with respect to T, giving

(2pVVr)(V—=1) + (pV*+16)Vr = V2 + 2TV
In particular, whenp =1,V =2, T =5,

(44+4V,(1,5))(2—1) + (4 +16) V,(1,5) = 20V,(1,5) = V,(1,5) = -1
4Vr(1,5)(2—1) + (4+16)Vr(1,5) = 4+20Vp(1,5) = V¢(1,5) =1

so that the change in V' is

V(1.2,53) = V(1,5) ~ V,(1,5) (0.2) + V¢(1,5) (0.3) = —02 + 0.3 = 0.1

S-22: Since

fx(2,1) = —2xe VY =—4

(xy)=(2,1)

=8
(xy)=(21)

fy(zl 1) — 8y67x2+4y2

The tangent plane to z = f(x,y) at (2,1) is

z=f2)+f(21)(x-2)+£21)([H-1)=1-4(x-2)+8(y-1)
=1—-4x+8y

and the tangent plane approximation to the value of (1.99,1.01) is

£(1.99,1.01) ~ 1 —4(1.99 —2) +8(1.01 — 1) = 1.12

S-23: (a) The linear approximation to f(x,y) at (a,b) is

f(x,y) ~ fla,b) + fx(a,b) (x —a) + fy(a,b) (y —b)

8a 2b
2 2 _ _
=In(4a”+b°) + PR (x—a)+ 12 (y—b)
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In particular, fora =0and b =1,
flry)~2(y-1)
and, forx =0.1andy = 1.2,

£(0.1,1.2) ~ 0.4

(b) The point (a, b, c) is on the surface z = f(x,y) if and only if
¢ = f(a,b) = In(4a® + b?)

Note that this forces 4a> + b? to be nonzero. The tangent plane to the surface z = f(x,y)
at the point (g, b, c) is parallel to the plane 2x + 2y —z = 3 if and only if (2,2, —1) isa
normal vector for the tangent plane. That is, there is a nonzero number ¢ such that

8a 2b
(2,2, -1) =t(fx(a,b), fy(a,b), —1) = t<4a2—|—b2' AR 1>

For the z—coordinates to be equal, t must be 1. Then, for the x— and y—coordinates to be
equal, we need

8a

2% 9
4a2 4 b2

2b
2 9
4a? + b2

Note that these equations force both a4 and b to be nonzero. Dividing these equations
gives g—g = 1 and hence b = 4a. Substituting b = 4a into either of the two equations gives

2042

S-24: (a) The surface has equation G(x,y,z) = x?z° + ysin(7x) + y* = 0. So a normal
vector to the surface at (1,1 —1) is

VG(1,1,-1) = [(2x2° + my cos(7x) )i + (sin(7x) + 2y)j + 3z°x* K]
= (-2-m)i+2j+3k

(xy,2)=(1,1,-1)

So the equation of the tangent plane is

(=2-m)(x=1)+2(y—-1)+3(z+1)=0 or —(2+mx+2y+3z=-1-3
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(b) The functions z(x, y) obeys
x*z(x,y)% 4+ ysin(mx) +y* =0

for all x and y. Differentiating this equation with respect to x gives
2xz(x,y)% + 3xzz(x,y)22—i(x,y) + 7y cos(rtx) =0

Evaluating at (1,1, —1) gives

0z 0z T+ 2

(c) Using the linear approximation about (x,y) = (1,1),

z(x,1) =~ z(1,1) + 2_325(1’1) (x—1)

gives

T+ 2 T+ 2 T+ 102
z(097,1) ~ -1+ T+ (-0.03) = -1 — 00— ;FOO

S-25: (a) The function F(y, z) obeys F(y,z)* 4+ y* +z* + F(y,z)yz = 17 for all y and z near
y =1,z = 2. Applying the derivatives g—y and % to this equation gives

4F(y,2)°Fy(y,2) +4y° + Fy(y, 2)yz + F(y,2)z = 0

4F(y,2)°F:(y,2) +42° + E:(y,2)yz + F(y,2)y = 0
Substiututing F(1,2) =0,y = 1 and z = 2 gives

4+2F(1,2) =0 = F/(1,2)=-2
324+2F(1,2) =0 — F(1,2)=-16
(b) Using the tangent plane to x = F(y,z) aty = 1 and z = 2, which is
x~F(1,2)+F(1,2)(y-1)+ E(1,2) (z—2)
with y = 1.01 and z = 1.98 gives
x = F(1.01,1.98) ~ F(1,2) + F,(1,2)(1.01 - 1) + F;(1,2)(1.98 — 2)
=0-2(.01) —16(—0.02) = 0.3

&> <&

Solutions to Exercises 2.7 — Jump to TABLE OF CONTENTS
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S-1: The partial derivatives, at a general point (x, y,z) and also at the point of interest
(0,1,1), are

fx(xy,2) =yze¥*  f2(0,1,1) =1
fy(x,y,2) = xze™V* fx(0,1,1) =0
fxy,z) = xye  £(0,1,1) =0

SoV£(0,1,1) = (1,0,0) and the specified directional derivative is

D =(1,0,0) -
o1 ( ) 7

S-2: In two dimensions, write g(x,y) = y* + sin(xy). Then

Vg = (8x, gy) = (ycos(xy), 2y + x cos(xy))

In three dimensions, write ¢(x,v,z) = y* + sin(xy). Then

Vg = (8x, 8y, 8z) = (ycos(xy), 2y + x cos(xy) , 0)

S-3: (a) The gradient of f is V f(x,y) = (3, —4). So the specified rate of change is

3,4y =20 _ 4

(b) The gradient of f is Vf(x,y,z) = (—x2,—y~2,—z~2). In particular, the gradient of f
at the point (2,-3,4)is Vf(2,-3,4) = <—}I, —%, _1%>' So the specified rate of change is

1 1 1\ (11,1 61
—_, =, —— . = — a3 —02446
< 49 16> V3 144+/3

S-4: The gradient of f(x,y)is Vf(x,y) = (y, x). In particular, the gradient of f at the
point (2,0) is V£(2,0) = (0,2). So the rate of change in the direction that makes angle 6
with respect to the x-axis, that is, in the direction (cos 6, sin 6) is

(cos@,sinf) - Vf(2,0) = (cosf,sinf) - (0,2) = 2sin6
(a) To get a rate —1, we need

sinf = —% — 0 = -30°, —150°
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So the desired directions are

(cosf,sinf) = <i?,—%>

(b) To get a rate —2, we need
sinf = -1 =— 6 = -90°
So the desired direction is

(cos@,sinf) = (0, —1)

(c) To get a rate —3, we need
sinf = —§
2

No 6 obeys this, since —1 < sinf < 1 for all 6. So no direction works!
S-5: Denote V f(a,b) = («, B). We are told that

. (06,,5>-<\%,\/i§>:3\/§ or a+p=6
(o, B) - <§,—%> =5 or 3a—4B=25

Adding 4 times the first equation to the second equation gives 7a = 49. Substituting
a = 7 into the first equation gives f = —1. So Vf(a,b) = (7,—-1).

S-6: Use a coordinate system with the positive y—axis pointing north, with the positive
x—axis pointing east and with our current location being x = y = 0. Denote by z(x, y) the
elevation of the earth’s surface at (x,y). We are told that

Vz(0,0) - (_j) =4

Vvz(0,0) - (%) =2

The first equation implies that z,(0,0) = —4 and the second equation implies that

2(0,0) — 2,(0,0)
V2

So the slope in the eastern direction is

=2 = 2,(0,0) = 2,(0,0) +2 = -2

Vz(0,0) -1 =2z,(0,0) = -2

S-7: (a) Use V f(P) to denote the gradient vector of f at P. We are told that

e directional derivative of f at P is a maximum in the direction 27 —j + k, which
implies that V f(P) is parallel to 21 — j + k, and
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e the magnitude of the directional derivative in that direction is 3v/6, which implies

that [V £(P)| = 3v/6.

V£(P) = 3v62 ’*k — 61— 3j 4 3k

28 —j+k|

(b) The directional derivative of f at P in the directioni +j is

i+j 1 o At (2 s 3
VFf(P) —% =—=(60—-3]+3k) - (i+]) = —=
f(P) g = R @ -3 +3k) - (14]) = 7
S-8: (a) The gradient of f at (x,y) = (2,1) is
V£(2,1) = (—y*, —2x = (-1, -4
fen) = (- —2y)| =14

So the path of steepest ascent is in the direction — \} (1, 4), which is a little west of
south. The slope is

ViR DI=[(-1, -4)| = V17

(b) The directional derivative in the north direction is
D1y f(2,1) =Vf(2,1)-(0,1) = (-1, -4)-(0,1) = —4
So the hiker descends with slope | — 4| = 4.

(c) To contour, i.e. remain at the same height, the hiker should walk in a direction
perpendlcular to Vf(2,1) = (-1, —4). Two unit vectors perpendicular to (—1, —4) are

+-L (4,1,

S-9: The gradient of h(x,y) = 1000 — 2x? — 3y? is Vh(x,y) = (—4x, —6y). This gradient
(which points in the direction of steepest ascent) must be parallel to the tangent to
y = ax? at all points on y = ax’. A tangent to y = ax is <1, %> = (1,abx""1).
b-1

(—4x, —6y) | <1, abxb’1> = abx1 = _ZZ — gy — abx?
This is true at all points on y = ax? if and only if b = % As (1,1) must also be on y = ax?,
we need 1 = a1?, which forces a = 1, b = 3. Here is a contour map showing the hiking
trail.

y = ax®

h(z,y) = 600
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S-10: (a) The temperature gradient at (3,2,1) is

VT(3,2,1) = (4x, 2y, —2z)

— (12,4, -2)
(3,2)=(321)

She wishes to fly in a direction that is perpendicular to VT(3,2,1). That is, she wishes to
fly in a direction (a, b, c) that obeys

0=(12,4,-2)-(a,b,c) =12a+4b—2c

Any nonzero (a, b, ¢) that obeys 12a + 4b — 2c = 0 is an allowed direction. Four allowed

) (0,1,2) (1,-3,0)
unit vectors are + 7 and + T

(b) No they need not be the same. Four different explicit directions were given in part (a).

(c) To cool down as quickly as possible, she should move in the direction opposite to the

temperature gradient. A unit vector in that direction is —%.
S-11: The temperature gradient at (2,1,3) is
VT(2,1,3) = (2x, z, ={4,3,1
eLY=@rzy| =630

(a) The bird is flying in the direction (4 —2,3—1,4—3) = (2,2, 1) at speed 2 and so
has velocity v = 2%
experienced by the bird at that instant is

VT(2,1,3) v = % (4,3,1)-(2,2,1) = 10

= % (2,2, 1). The rate of change of air temperature

(b) To maintain constant altitude (while not being stationary), the bird’s direction of
travel has to be of the form (a, b, 0), for some constants a and b, not both zero. To keep
the air temperature fixed, its direction of travel has to be perpendicular to
VT(2,1,3) = (4, 3, 1). So a and b have to obey
4

0=(a,b,0)-(4,3,1) =4a+3b < b:—ga
and the direction of travel has to be a nonzero constant times (3, —4,0). The two such
unit vectors are 1 (3, —4,0).

S-12: We are going to need, in both parts of this question, the gradient of f(x,y) at
(x,y) = (1, —%) . So we find it first.

fx(x,y) =4x+3y  fx(1,-4/3) =0
fy(x,y) =3x+2y  fy(1,-4/3) =

QW =
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soVf (1,—%) = <0,%>.

(a) The maximum rate of change of f at P is
o (1-4) o) -

(b) If (a,b) is a unit vector, the directional derivative of f at P in the direction (a, b) is

Dip f (1/—%> =Vf (1/—%) {a,b) = <0/%> (a,b) =5

So we need % = % and hence b = % For (a, b) to be a unit vector, we also need

32 16 4
2 2 2 2

S-13: The slope of y = x? at (1,1) is %xz‘ = 2. So a unit vector in the bug’s direction
xX=

of motion is % and the bug’s velocity vector is v = O.OlL\/?.

6711158
[67]]€V)

So the allowed directions are <i ,

The temperature gradient at (1,1) is

VT(1,1) = <2xye"2 , ex2>

= {2e,e
(xy)=(L1) < )

and the rate of change of T (per unit time) that the bug feels as it passes through the
point (1,1) is
0.04¢

V5

VT(1,1)-v= % (2e,e)-(1,2) =

S-14: (a) We are to find the directional derivative in the direction
(0-3,1-2,2-1)=(-2,-1,1)
As the gradient of F is
VE(x,y,z)=(y—1, x -2y, 2z)

the directional derivative is

<—2,—1,1>
D, _ F(3,2,1) = VF(3,2,1)-
2oy FG21) = VG2 - 1=
(=2, -1,1)
={(2-1,3-2(2),2(1))-
< 2), 200) - 15 =1y,

Sl
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(b) The temperature decreases most rapidly in the direction opposite the gradient. A unit
vector in that direction is

C VE(3,2,1)  (1,-1,2)

IVF(3,2,1)]  [(1,-1,2)]

~—

(-1,1, =2)

Sl

(c) The velocity vector at time 0 is

v =(x'(0),(0),7(0) = <365 —2sint, N%> Lo N <3' v %>

So the rate of change of temperature with respect to t at t = 0 is

VFE(3,2,1)-v=(1,-1,2)- <3,0, %> —4

(d) Fori+ 5] + ak to be tangent to the level surface F(x,y,z) =3 at (3,2,1),i+ 5] + ak
must be perpendicular to VF(3,2,1). So
0=(1,5,a)-(1,-1,2) = —4+2a

Soa=2.

S-15: (a) The first order partial derivatives of f and g are

a—f(x, y,z) = 20~ (CHVHE) 0y (0x y)em (PHHE) (9_f(0, 1,-1) =2¢2

0x ox

%(x, y,z) = e~ (A=) 2y(2x +y)e_(x2+y2+zz) — %(O, 1,-1) = -2
Z—];(x, y,z) = —2z(2x +y)e_(x2+y2+zz) — Z—JZC(O/ 1,-1) =22
Z—i(x,y,z):z = %(O,l,—l):—l
%(x,y12)=2y+z — %(0,1,—1):1
Z—‘g(x,y,z):x+y+2z S Z—‘E(O,l,—l):—l

so that gradients are

V£(0,1,-1)=e2(2,-1,2)  Vg(0,1,-1) = (-1,1,-1)

(b) The bird’s velocity is the vector of length 6 in the direction of V (0,1, —1), which is

(2,-1,2)

V=62l
1(2,-1,2) |

= (4,-2,4)

The rate of change of g (per unit time) seen by the bird is
Vg(0,1,-1)-v=(-1,1,-1)- (4,-2,4) = 10
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(c) The direction of flight for the bat has to be perpendicular to both
V£(0,1,-1) =e2(2,-1,2) and Vg(0,1,—-1) = (—1,1, —1). Any vector which is a non
zero constant times

i j k
(2,-1,2) x (-1,1,-1) =det | 2 -1 2 | =(-1,0,1)
-1 1 -1

is perpendicular to both V£(0,1, —1) and Vg(0,1, —1). In addition, the direction of flight
for the bat must have a positive z—component. So any vector which is a (strictly) positive
constant times (—1, 0, 1) is fine.

S-16: (a) Let’s use v to denote the bee’s velocity vector at time t = 2.
e The bee’s direction of motion is tangent to the curve. That tangent is perpendicular
to both the normal vector to 3z + x2 + yz =2at(1,1,0), which is

(2x, 2y, 3) =(2,2,3)

(xy,2)=(1,1,0)

and the normal vector to z = x2 — yz at (1,1,0), which is

2%, —2y, —1 — (2, -2 -1
< X Y > (xy,2)=(1,1,0) < >
So v has to be some constant times
i ] k
(2,2,3)x(2,-2,-1)=det |2 2 3 |=¢(4,8,-8)
2 -2 -1

or, equivalently, some constant times (1, 2, —2).

e Since the z—component of v has to be positive, v has to be a positive constant times
(-1, =2, 2).

e Since the speed has to be 6, v has to have length 6.
As|(-1,-2,2)| =3
v=2(-1,-2,2)=(-2,-4,4)

(b) Suppose that the bee is at (x(t),y(t),z(t)) at time t. Then the temperature that the bee
feels at time t is

T(x(t),y(t),z(t),t) = x(t)y(t) — 3x(t) + 2y ()t + z(t)
Then the rate of change of temperature (per unit time) felt by the bee at time t = 2 is

ST, (1), 2(0,1)] | =2@)y(2) + x(@)y (2) - 3¢(2) + 2/ 212+ 29(2) +2(2)
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Recalling that, at time t = 2, the bee is at (1,1,0) and has velocity (-2, —4, 4)

ST (1), (1), 2(0),0)| _ = (-2)(1) + (1)(~4) ~3(-2) +2(~4)2+2(1) +4

= —-10

S-17: (a) We are to find the rate of change of T(x,y,z) at (1,2, —1) in the direction
(1,1,0) — (1,2, —1) = (0, —1,1). That rate of change (per unit distance) is the directional
derivative

(0,-1,1)
Dy-11yT(1,2,-1) =VT(1,2,-1) ——F—+
e (27D = VI 22 0
As
Z_Z(x, y,z) = —20xe 2V %(112/ -1) = —20¢™”
g_iyr(x,y,z) = —10ye 2V %(1,2,—1) = -20e”"
Z_Z(x,y,z) = 30z 2 V% Z—:(l,z, 1) =307

the directional derivative

0,-1,1) 50
Do_1nT(1,2,—1) =e 2 (=20, 20,30 Ao-L) % =252¢7°
<0,\[;/1> ( ) < > \/E \/E

(b) The direction of maximum rate of decrease is —VT(1,2,—1). A unit vector in that
(2,2,-3)
V17
(c) The maximum rate of decrease at P is
—|VT(1,2,-1)| = —10e7%| (=2, -2,3) | = —10v/17e~°.

direction is

S-18: Denote by (a, b, c) the gradient of the function f at P. We are told

(a,b,c)-(1,0,0)=2

<a,b,c)'\%(l,1,0>:—\/§
1 5
a,b,c)-—{1,1,1) = ———
{ )75 )=~
Simplifying
a =
a+b=-2
a+b+c=-5
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From these equations we read off, in order, 4 = 2, b = —4 and ¢ = —3. The function f has
maximum rate of change at P in the direction if the gradient of f. The unit vector in that
direction is

(2, -4, -3) (2, -4, -3)

(2, -4, -3)] V29

The maximum rate of change is the magnitude of the gradient, which is 1/29.

S-19: We are told that the direction of fastest increase for the function f(x,y) at the origin
is given by the vector (1,2). This implies that V £(0,0) is parallel to (1,2). This in turn
implies that (1,2) is normal to the level curve of f(x,y) that passes through the origin. So
(2,—1), being perpendicular to (1,2), is tangent to the level curve of f(x,y) that passes
through the origin. The unit vectors that are parallel to (2, —1) are i\% (2,-1).

S-20: Write h(x,y) = 1000 — 0.02 x> — 0.01y? so that the hill is z = h(x, ).

(a) The direction of steepest ascent at (0,100,900) is the direction of maximum rate of
increase of h(x,y) at (0,100) which is VA(0,100) = (0, —0.01(2)(100)) = (0, —2). In
compass directions that is South.

(b) The slope of the hill there is

Vh(0,100) - (0, —1) = —%(0, 100) = 2

(c) Denote by (x(t),y(t),z(t)) your position at time ¢ and suppose that you are at
(0,100,900) at time t = 0. Then we know

e z(t) = 1000 — 0.02 x(t)? — 0.01y(t)?, so that 2/(t) = —0.04 x(¢)x'(t) — 0.02y(t)v'(t),
since you are on the hill and

e X'(0) =0and y'(0) > 0 since you are going in the direction of steepest descent and
e x/(0)2+1'(0) +2/(0)? = 25 since you are moving at speed 5.
Since x(0) and y(0) = 100, we have z/(0) = —0.02(100)y’(0) = —2y/(0). So

25 = ¥'(0)% +y/(0)* +2(0) = 55/(0 = ¥(0) =5
— (¥(0), ¥'(0), Z(0)) = <o, V5, _2\f5>

and your rate of change of altitude is

%h(X(t),y(t))\ — Vh(0,100) - (x'(0), ¥'(0)) = (0, —2) - <0, \f5> _ 2B

t=0

S-21: Reading through the question as a whole we see that we will need

e for part (a), the gradient of PT at (2t,t> —1,cost) )t*O =(0,-1,1)
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e for part (b), the gradients of both P and T at (0,—1,1) and

e for part (c), the gradient of T at (0, —1,1) and the gradient of S = z3 + xz + y? at
(0,—1,1) (to get the normal vector to the surface at that point).

So, by way of preparation, let’s compute all of these gradients.

o2, 4y, (PP42y7)2z, N,
VP(x,y,z)—1_1_221—1—1%_22 11 22) k VP(0,-1,1) = -2j-k
VT(x,y,z) =yi+xj—2zk vT(0,-1,1) = i -2k
VS(x,y,z) = zi+2yj+ (x +32%) k Vs(0,-1,1) =1—-2j+3k

To get the gradient of PT we use the product rule
V(PT)(x,y,z) = T(x,y,z) VP(x,y,2z) + P(x,y,2) VT (x,y,2)

so that
v(prT)(0,-1,1) =T(0,-1,1) VP(0,-1,1) + P(0,-1,1) VT(0,-1,1)
N 0+2, . &
= (5+ )( k)+—1+1(—1—2k)
—i—8j—6f<

(a) Since $;(PT)? = 2(PT) < (PT), and the velocity vector of the plane at time 0 is

d 2 _ , _
5 <2t,t - 1,cost> ‘t:O = (2,2t, —sint) ’t:O = (2,0,0)
we have
%(PT)ZL ,=2P(0,-1,1) T(0,~1,1) V(PT)(0,~1,1) - (2,0,0)
0+2
=277 (5+0-1)(-1,-8,-6) - (2,0,0)
— 16

(b) The direction should be perpendicular to VP (0, —1,1) (to keep P constant) and
should also be perpendicular to VT (0, —1,1) (to keep T constant). So any nonzero
constant times

A

1
+VP(0,-1,1) x VT(0,-1,1) = + (0, =2, —1) x (=1, 0, —2) = + det |0
1

S N =
N —~, 7]

+(4,1,-2)
are allowed directions.

(c) We want the direction to be as close as possible to VT(0,—1,1) = (-1, 0, —2) while
still being tangent to the surface, i.e. being perpendicular to the normal vector
VS5(0,-1,1) = (1, —2, 3). We can get that optimal direction by subtracting from
VT(0,-1,1) the projection of VT (0, —1,1) onto the normal vector.
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—projys VT

tangent plane

The projection of VT(0,—1,1) onto the normal vector VS(0,—1,1) is
VT(0,-1,1)-VS(0,~1,1)

PrOjVS(0,71,1)VT(Of—1/1) = VS(0,—1,1)2 Vs5(0,-1,1)
_(1,0,2)(1, 2,3,
= ’<1’_2’3> ’2 <1, 2,3)
-7
= ﬂ <1, —2, 3>

So the optimal direction is
d = VT(0,-1,1) - projyg,11)VT(0,-1,1)

-7
~1,0, =2y —=—(1, -2
< ’0’ > 14< 4 ’3>

1 1
=(-= -1, -=
()

So any positive non zero multiple of — (1, 2, 1) will do. Note, as a check, that — (1, 2, 1)
has dot product zero, i.e. is perpendicular to, VS(0,-1,1) = (1, -2, 3).

S-22: Write Vf(a,b,c) = (F, G, H). We are told that

Duf = —(1,1,2)-(F,G,H) =0

Sl

Dwfzzié(L—Jq—1y<FA1fﬂ::O

Dwf::i%<L1J)-G3GJ¥)=4
so that
F+G+2H=0 (E1)
F-G-H=0 (E2)
F+G+H=4V3 (E3)
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Adding (E2) and (E3) gives 2F = 4+/3 or F = 24/3. Substituting F = 2+/3 into (E1) and
(E2) gives

G+2H =-2V3 (E1)
~G—H=-2V3 (E2)

Adding (E1) and (E2) gives H = —4+/3 and substituting H = —4+/3 back into (E2) gives
G = 6+/3. All together
Vf(a,b,c) =+3(2,6,—4)

S-23: (a) The expression lim;_, ! ((1’1)+t;1)_f (L1) js the directional derivative of fat(1,1)

in the direction u, which is Dy f(1,1) = Vf(1,1) - u. This is mazimized when u is parallel
to Vf(1,1). Since

X—=Y _ 2,2, —x—Y

x*ye X=y _ 2.2 ,—x—Yy

fe(x,y) = 2xy*e” fy(x,y) = 2xye” xye

we have

VF(1,1) =e2%(1,1)
so that the desired unit vector u is \% (1,1).
(b) In order to remain at elevation e~2, the ant must move so that Dy f(1,1) = 0. This is
the case if u L V£(1,1). For example, we can take u = (1, —1). When the ant moves in
this direction, while remaining on the surface of the hill, its vertical component of
velocity is zero. So v = ¢ (1, -1, 0) for any nonzero constant c.

(c) In order to maximize its instantaneous rate of level increase, the ant must choose the x
and y coordinates of its velocity vector in the same direction as V f(1,1). Namely

u = ¢ (1,1) for any ¢ > 0. To make u a unit vector, we choose ¢ = Lz The corresponding
value of the z coordinate of its velocity vector is the rate of change of f per unit
horizontal distance travelled, which is the directional derivative

Duf(1,1) = Vf(1,1)-u=¢"2(1,1) - (c,c) = 2ce™>

4

Sov = 7

<1, 1, 26*2>. Any positive multiple of this vector is also a correct answer.

S-24: (a) The direction of motion at s = 1 is given by the tangent vector

¥ (s) = <52,2,25> = (1,2,2)
Since the length of the velocity vector must be 3,

(1,2,2)

(12,2~ (22

velocity = v =3

(b) The rate of change of temperature per unit distance felt by the sparrow ats = 11is
VT(%, 2,1) - . The rate of change of temperature per unit time felt by the sparrow at

V]
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s=1is

1 v 1
VT (5,2,1> M=V (5,2,1> v =v-(6x,y,4z)
=(1,2,2)-(2,2,4) =14"/s

(321)

(c) The temperature decreases at maximum rate in the direction opposite the temperature
gradient, which is (any positive constant times) — (2,2,4).

(d) The eagle is moving at right angles to the direction of motion of the sparrow, which is
(1,2,2). As the eagle is also moving in a direction for which the temperature remains
constant, it must be moving perpendicularly to the temperature gradient, (2,2,4). So the
direction of the eagle must be (a posiitve constant times) one of

+(1,2,2) x (2,2,4) = + det = +(4,0,-2)

N /) =
N N S
=N R

or equivalently, any positive constant times + (2,0, —1).

S-25: (a) The moth is moving the direction of the temperature gradient at (3,4, 0), which
s

[y

2xi + 2yj + 2zk i+4j
VT(3,4,0) = 200 222 2K o yppd Y
(1+ 22 +y? +22)*|340) 26
Since the speed of the moth is 1m /s its velocity vector is a vector of length one in
direction —% (3,4,0) and henceis v = — ‘giga = <§, é, 0>

(b) The rate of change of temperature (per unit time) the moth feels at that time is

400 3 4 400 x 25 500
T(3,4,0) - 40)-(2,20) = — 22 L 296°
VT(40)-v =755 (340 <5’5’0> 262 x5 169 " 20/s
S-26: (a) We are told that T(x,y,z) = | <x§/2>| = \/ﬁw for some constant k and that
120 =T(1,2,2) = HTkZH — k=120 x /1422 +22 =360
(b) The (unit) direction from (1,2,2) to (2,1,3) is
d= ‘gigi:g;;i‘ = g }R = %ﬁ (1,—1,1). The desired rate of change of temperature is

xi+yj + zk

(x2+12 + 22)3/2 )<1,2,2> ‘
(1,2,2) (1,-1,1) 40
27 V3 33

D4T(1,2,2) = VT(1,2,2) - d = —360

= —-360 ~ —7.70
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degrees per unit distance.

(c) At (x,v, z), the direction of greatest increase is in the direction of the temperature

gradient at (x,y,z), whichis VT(x,y,z) = —360% and which points opposite
x=Ty

to the radius vector. That is, it points towards the origin. This argument only fails at
(x,y,z) = (0,0,0), where the gradient, and indeed T(x, y, z), is not defined.

S-27: (a) The shoreline is f(x,y) = 0 or x> + 4x + 4y*> = 32 or (x + 2)% + 4y?> = 36, which
is an ellipse centred on (—2,0) with semiaxes 6 in the x-direction and 3 in the y-direction.

Y

[ag

(b,c) The gradient of f at (—1,1) is
Vf(-1,1) = [(—2x —4)1—8y]] (L11) = —21-8j

To remain at constant depth, he should swim perpendicular to the depth gradient. So he
should swim in direction +—= f (4, —1). To increase his depth as rapidly as possible, he

should swim in the direction of the depth gradient, which is —\/Lﬁ (1,4).

S-28: (a) The curve on wh1ch the temperature is T is x? — Zy = Tp. If Ty = 0, this is the
pair pair of straight lines y = \f If Tp > 0, it is a hyperbola on which x? = Zy + Ty = Ty. If

Tp < 0, it is a hyperbola on which Zy = x2 — Ty > |To|. Here is a sketch which show the
isotherms T = 0, 1, —1 as well as the branch of the T = 2 isotherm that contains the ant’s
location (2, —1).

Note that the temperature gradient is VT (x,y) = (2x, —4y). In particular, the
temperature gradient at (2,—1) is VT (2, —1) = (4,4).

(b) To achieve maximum rate of cooling, the ant should move in the direction opposite
the temperature gradient at (2, —1). So the direction of maximum rate of cooling is

(4,4 (~1,-1)
42 V2
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(c) If the ant moves in the direction of part (b), its rate of cooling per unit distance is
IVT(2,-1)| = | (4,4) | = 4v/2. Tt the ant is moving at speed v, its rate of cooling per unit
time is 4v/2 .

(d) If the ant moves from (2, —1) in direction (—1, —2) its temperature increases at the rate

(—1,-2) 12
D,, Tz,_]_ = 4,4 e — = —
per unit distance. So, if the ant is moving at speed v, its rate of decrease of temperature

per unit time 1s 50

(e) Suppose that the ant moves along the curve y = y(x). For the ant to always
experience maximum rate of cooling (or maximum rate of heating), the tangent to this
curve must be parallel to VT (x,y) at every point of the curve. A tangent to the curve at

(x,y)is <1, %(x)>. This is parallel to VT (x,y) = (2x, —4y) when

X

dy
—4 d dx
& _ "% _ 4y — _ 2
1~ o v 2x — Iny 2Inx+C — y=Cx

To pass through (2, —1), weneed C' = —4,soy = —%.

S-29: The first order partial derivatives of f, both at a general point (x, y,z) and at the
point (1,0, 71/2), are

fr(x,y,2) = 2x £:(1,0,71/2) =2

fy(x,y,2z) = —zsin(yz) fy(1,0,t/2) =0

fz(x,y,z) = —ysin(yz) f2(1,0,t/2) =0

(a) The rate of increase of f is largest in the direction of V (1,0, 77/2) = (2,0,0). A unit
vector in that direction is i.

(b) The gradient vector V£(1,0,7t/2) = (2,0,0) is a normal vector to the surface f = 1 at
(1,0, 7/2). So the specified tangent plane is

(2,0,0)-(x—1,y—0,z—m/2)=0 or «x=1
(c) The vector from the point (0,1,0) to the point (1,1,0), on T, is (1,0,0), which is

perpendicular to T. So (1,1, 0) is the point on T nearest (0,1,0) and the distance from
(0,1,0) to Tis | (1,0,0) | = 1.

(d) The vector (1,0, 1) is perpendicular to the plane x + z = 0. So the angle between the
planes T and x + z = 0 is the same as the angle 6 between the vectors (1,0,0) and
(1,0,1), which obeys

1(1,0,0)]](1,0,1)| cos® =|(1,0,0)-(1,0,1) | =1

:cos@zi :92%

V2
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S-30: (a) We are being asked for the directional derivative of T in the direction of the unit

vector from P = (2,1,1) to Q = (3,2,2), which is % That directional derivative is

VT(P)- <1’¢1§1> = (1,2,3) - <1’\1ﬁ;’1> =243

(b) The linear approximation to T at P is

T(2+Ax,14+ Ay, 1+ Az) ~ T(P) + Tx(P) Ax + T, (P) Ay + T(P) Az
=5+ Ax+2Ay+3Az

Applying this with Ax = —0.1, Ay = 0, Az = 0.2 gives
T(19,1,12)~5+(-0.1)4+2(0)+3(0.2) =55

(c) For the rate of change of T to be zero, the direction of motion must be perpendicular
to VT(P) = (1,2,3). For the rate of change of S to also be zero, the direction of motion
must also be perpendicular to VS(P) = (1,0,1). The vector

= (2,2,-2)

S N =
— W ="

i
(1,2,3) x (1,0,1) = det |1
1

(1,1,-1)

is perpendicular to both VT (P) and VS(P). So the desired unit vectors are + 73

S-31: We are going to need the gradients of both F and G at (0,1,2). So we compute

oF ., oF B oF o
Swuh =iz Sewn=2w Sy =32
oG oG oG
a—x(x,y,z) =3 @(x,y,z)——l E(x,y,z)—él

and then

VE(0,1,2) = (3,0,12)  VG(0,1,2) = (3,1,4)
(a) The linear approximation to F at (0,1,2) is
F(x,y,z) ~ F(0,1,2) + Fx(0,1,2) x + F,(0,1,2) (v — 1) + F2(0,1,2) (z — 2)
=8+43x+12(z-2)
In particular

F(0.1,09,1.8) — F(0,1,2) ~ 3(0.1) + 12(—0.2) = —2.1

(b) The direction along which G increases most rapidly at P is VG(0,1,2) = (3, —1,4).
The directional derivative of F in that direction is

(3,—1,4) (3,—1,4)

Dy 14 F(0,1,2) =VF(0,1,2) - = (3,0,12) - >0
(3;/2%4) ( ) ( ) \/% < > \/%
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So F increases.

(c) For the rate of change of F to be zero, (a, b, c) must be perpendicular to
VF(0,1,2) = (3,0,12).

For the rate of change of G to be zero, (a, b, c¢) must be perpendicular to
VG(0,1,2) = (3,-1,4).

So any nonzero constant times

A

i j k
det |3 0 12| =(12,24,-3)=3(4,8, 1)
3 -1 4
is an allowed direction.
S-32: (a) Since
_ 100 _ 100
24 2x+4y2+ 11 (x+1)2+4y2 4+ 10
the bottom of the crater is at x = —1, y = 0 (where the denominator is a minimum) and

the contours (level curves) are ellipses having equations (x + 1)? + 4y? = C. In the sketch
below, the filled dot represents the bottom of the crater and the open dot represents the
car park. The contours sketched are (from inside out) z = —7.5, =5, —2.5, —1. Note that
the trail crosses the contour lines at right angles.

Y

)

o)

(b) The trail is to be parallel to

100
Vz = 2x +2,8
(x2—|—2x+4y2—|—11)2( 2

At the car park Vz(4,5) || (10,40) || (1,4). To move towards the bottom of the crater, we
should leave in the direction — (1, 4).

S-33: We have

Vh(x,y) = —200¢~ (*+29°) (x,2y) and, in particular, VA (3,2) = —200e~' (3,4)
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(a) At (3,2) the dune slopes downward the most steeply in the direction opposite
Vh(3,2), which is (any positive multiple of) (3,4).

(b) The rate is Djh(3,2) = Vh(3,2) - j = —800e 7.

(c) To remain at the same height, you should walk perpendicular to Vi(3,2). So you

should walk in one of the directions + (%, —%) .

(d) Suppose that you are walking along a steepest descent curve. Then the direction from
(x,y) to (x + dx,y + dy), with (dx, dy) infinitesmal, must be opposite to
Vh(x,y) = —200e~ (*+21%) (x, 2y). Thus (dx, dy) must be parallel to (x,2y) so that the
slope

dy _ 2y dy dx

o x y L — Iny 2Inx+C

We must choose C to obey In2 = 21In3 + C in order to pass through the point (3,2). Thus

C =In2 and the curveisIny = 2Inx+ InZ ory = 3x°.

S-34: (a) Denote V£(1,2) = (a, b). We are told that

3 4

Duf(1,2) =u- (ll,b) = 5&1"‘ gb =10
Dof(1,2) = v (a,b) = ‘;ia— ‘5517 —

Adding these two equations gives ¢a = 12, which forces a = 10, and subtracting the two
equations gives %b = 8, which forces b = 5, as desired.

(b) The rate of change of f at (1,2) in the direction of the vector i 4 2j is

i+2j 1
— —_.Vf£(1,2) = —=(1,2) - (10,5) = 4v/5 ~ 8.944
Ty V(L2 = 2 (1.2)-(10,5) = 4V5

(c) Applying (2.6.1 in the CLP3 text, which is

a o]
f(xo+ Ax, yo+ Ay) ~ f(x0, yo) +a—j;(xO,yo) Ax+%(xo,yo) Ay

with xg = 1, Ax = 0.01, yo = 2, and Ay = 0.05, gives

£(1.01,2.05) ~ £(1,2) + £x(1,2) x (1.01 = 1) + £,(1,2) x (2.05—2)
—=7+10x0.01+5 x 0.05
=7.35

&> <&

Solutions to Exercises 2.9 — Jump to TABLE OF CONTENTS
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S-1: a) (i) V£ is zero at critical points. The point T is a local maximum and the point U is
a saddle point. The remaining points P, R, S, are not critical points.

(a) (ii) Only U is a saddle point.

(a) (iii) We have f,(x,y) > 01if f increases as you move vertically upward through (x,y).
Looking at the diagram, we see

fPY<0 Q<0 fR)=0  £(>0 F(T)=0 f(U)=0
So only S works.

(a) (iv) The directional derivative of f in the direction (0, —1) is Vf - (0, -1) = —f,. Itis
negative if and only if f, > 0. So, again, only S works.

(b) (i) The function z = F(x,2) is increasing at x = 1, because the y = 2.0 graph in the
diagram has positive slope at x = 1. So F(1,2) > 0.

(b) (ii) The function z = F(x, 2) is also increasing (though slowly) at x = 2, because the
y = 2.0 graph in the diagram has positive slope at x = 2. So Fx(2,2) > 0. So F does not
have a critical point at (2,2).

(b) (iii) From the diagram the looks like Fy(1,1.9) > F¢(1,2.0) > F¢(1,2.1). That s, it looks
like the slope of the y = 1.9 graph at x = 1 is larger than the slope of the y = 2.0 graph at
x = 1, which in turn is larger than the slope of the y = 2.1 graph at x = 1. So it looks like
Fy(1,y) decreases as y increases through y = 2, and consequently Fy,(1,2) < 0.

S-2: The height 4/x2 + y? at (x, y) is the distance from (x, y) to (0,0). So the minimum
height is zero at (0,0,0). The surface is a cone. The cone has a point at (0,0,0) and the
derivatives z, and z, do not exist there. The maximum height is achieved when (x, y) is
as far as possible from (0,0). The highest points are at (+1, +1,v/2). There zy and z, exist
but are not zero. These points would not be the highest points if it were not for the
restriction |x|, [y| < 1.

S-3: Define f(t) = g(a + td) and determine ¢y by xo = a + tpd. Then
f'(t) = Vg(a+td) - d. To see this, write a = (a1,4ap,a3) and d = (dq,dp, d3). Then

f(t) = g(ay + tdy, a2 + tdy, a3 + td3)

So, by the chain rule,

0 0
f/(t) = %(”1 + tdy,ay + tdp, a3 + i’b‘l3) d| + a—i(al + tdy,ay + tdp, a3 + i’b‘l3) ds

0
+ a_g(m +tdy, ap + tdz, a3 + td3) d

=Vg(a+td)-d

Then xq is a local max or min of the restriction of g to the specified line if and only if ¢; is
a local max or min of f(t). If so, f'(tp) necessarily vanishes. So if xg is a local max or min
of the restriction of ¢ to the specified line, then Vg(xp) -d = 0,i.e. Vg(xp) L d, and

Xo = a + tod for some tj. The second condition is to ensure that x( lies on the line.
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S-4: (a)
e The level curve z = 0 is y? — x2 = 0, which is the pair of 45° lines y = +x.

e When C > 0, the level curve z = C*is (y? — xz)2 = C*, which is the pair of
hyperbolae y? — x? = C?,y? — x> = —C? or

y=+Vx2+C?  x=+44/y2+C?

The hyperbola y?> — x> = C? crosses the y—axis (i.e. the line x = 0) at (0, £C). The
hyperbola y?> — x> = —C? crosses the x—axis (i.e. the line y = 0) at (+C,0).

Here is a sketch showing the level curvesz =0,z =1 (i.e. C =1),and z = 16 (i.e. C = 2).

(b) As fx(x,y) = —4x(y* — x*) and £, (x,y) = 4y(y* — x?), we have £,(0,0) = £,(0,0) =0
so that (0,0) is a critical point. Note that

e f(0,0) =0,
e f(x,y) = 0forall xand y.
So (0,0) is a local (and also absolute) minimum.

(c) Note that

frx(x,y) = _4y2 + 1247 frx(x,y) =0

foy(x,y) = 12y — 42 fyy(x,y) =0
fry(x,y) = —8xy fax(x,y) =0

As fxx(0,0) fyy(0,0) — fxy(0,0)? = 0, the Second Derivative Test (Theorem 2.9.16 in the
CLP-3 text) tells us absolutely nothing.
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S-5: Write f(x,y) = x> + cxy + y2. Then

fr(x,y) =2x+cy £+(0,0) =0
fy(x,y) = cx +2y fy(0,0) =0
fex(x,y) =2
fey(x,y) = ¢
fyy(xy) =2

As £,(0,0) = £,(0,0) = 0, we have that (0,0) is always a critical point for f. According to
the Second Derivative Test, (0,0) is also a saddle point for f if

frx(0,0)f4(0,0) — f1y(0,0)> <0 «= 4—c* <0 < |c[>2

As a remark, the Second Derivative Test provides no information when the expression
fxx(0,0) f44(0,0) — fx,(0,0)* = 0, i.e. when ¢ = +2. But when ¢ = +2,

flx,y) = x> +2xy +y* = (x +y)?

and f has a local minimum, not a saddle point, at (0,0).

5-6: To find the critical points we will need the gradient of f, and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f=x -y —2xy+6
fx = 3x2 — 2y fxx = 6x fxy — _2
fy = —3y* - 2x foy=—6y  fyx=-2

The critical points are the solutions of
fi=3x2-2y=0 f,=-3y>-2x=0

Substituting y = %xz, from the first equation, into the second equation gives

3 ,\? 33
-3 (Exz) 2x =0 — —2x (?x?’qtl) =

= X = 2
"3
So there are two critical points: (0,0), (-3, 3).
The classification is
C;Ictilcﬁl fecfyy = iy frx type
(0,0) 0x0—(-2)?2<0 saddle point
(-%,3) | (-4) x (—4)—(-2)>>0| —4 | local max
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S-7: To find the critical points we will need the gradient of f, and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f=x+x%y+xy* 9
fe=3+2xy+1y* -9  fur=6x+2y  fr, =2x+2y
fy= X2+ 2xy foy = 2x fyx = 2x +2y

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The critical points are the solutions of

fe=3+2xy+y*—9=0 (E1)
fy = x(x+2y) =0 (E2)
Equation (E2) is satisfied if at least one of x = 0, x = —2y.
e If x = 0, equation (E1) reduces to y> — 9 = 0, which is satisfied if y = +3.
e If x = —2y, equation (E1) reduces to
0=3(-2y)*+2(2y)y +y*—9=9y* -9

which is satisfied if y = +1.
So there are four critical points: (0,3), (0,—3), (—2,1) and (2, —1). The classification is

C;gif{il fexfoy — oy frx type
(0,3) (6) x (0) — (6)> <0 saddle point
(0,-3) | (—6)x (0)—(—6)><0 saddle point

(=2,1) | (=10) x (—4) — (-2)>>0| =10 | local max
(2,-1) (10) x (4) — (2)2>0 10 | local min

S-8: The region of interest is

D={(xyz)|x=0y>0,2>02x+y+z=5}

First observe that, on the boundary of this region, at least one of x, y and z is zero. So
f(x,y,z) = x*y?z is zero on the boundary. As f takes values which are strictly bigger
than zero at all points of D that are not on the boundary, the minimum value of f is 0 on

oD ={(x,y,2) |x=0,y=>0,2z>0, 2x+y+z =5, atleast one of x, y, z zero }

The maximum value of f will be taken at a critical point. On D

f=x*y*(5-2x —y) = 5x*y? — 223 — x%°
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So the critical points are the solutions of
0 = fr(x,y) = 10xy? — 6x°y* — 2x°
0= fy(x,y) = 10x%y — 4x>y — 3x%y*
or, dividing by the first equation by xy? and the second equation by x?y, (recall that
x,y # 0)
10-6x -2y =0 or 3x+y=5
10-4x—-3y=0 or 4x+3y=10
Substituting y = 5 — 3x, from the first equation, into the second equation gives
4x+3(5-3x) =10 = -BSx+15=10 = x=1,y=5-3(1) =2
So the maximum value of fis (1)2(2)2(5—-2—2) =4 at (1,2,1).

5-9: To find the critical points we will need the gradient of f, and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f=x+yP2+xy+4
fx =2x+42xy frx =2+2y fry = 2x
fy=2y+x* fy =2
The critical points are the solutions of
fxr=0 fy=0
— 2x(1+y)=0 2y+x*=0
< x=0o0ry=-1 2y+x*=0

When x = 0, y must be 0. When y = —1, x> must be 2. So, there are three critical points:

(0,0), (+v2,-1).

The classification is

ey Fexfoy = Fy frx type

(0,0) 2x2-0>>0 2>0| local min
(V2,-1) | 0x2—(2v/2)2<0 saddle point
(—v2,-1) | 0x2—(-2v/2)2 <0 saddle point

S-10: To find the critical points we will need the gradient of f, and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f=x+x>-2xy+vy*>—x
fe=34+2x-2y—1 fu=6x+2  fo=-2
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(Of course, fy, and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The critical points are the solutions of

fr=3x*+2x-2y—-1=0 (E1)
fy=—2x+2y =0 (E2)

Substituting y = x, from (E2), into (E1) gives

1
3x*~1=0 x=1+—2=0
— \@
So there are two critical points: + (\/Lg, \%)
The classification is
ey frcfyy = fy fex type
(%I \%) (2v34+2) x (2) = (=2)>>0 |2v/3+2>0| local min
—(\%, \%) (—2v3+2) x (2) - (-2)?> <0 saddle point

S-11: To find the critical points we will need the gradient of f and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f=x3+xy? —3x> —4y* +4
fy = 2xy — 8y fyy =2x—8 fyx =2y

(Of course, fy, and f,» have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The critical points are the solutions of
fe=32+y —6x=0 fy=2(x—-4)y=0
The second equation is satisfied if at least one of x = 4, y = 0 are satisfied.

o If x = 4, the first equation reduces to yz = —24, which has no real solutions.

o If y = 0, the first equation reduces to 3x(x — 2) = 0, which is satisfied if either x = 0
orx = 2.

So there are two critical points: (0,0), (2,0).

The classification is

C;iﬁiﬁil faxfyy — f y%y Jxx type
(0,0) | (—6) x (—8) —(0)>>0| —6 | local max
(2,0) 6 x (—4) —(0)2<0 saddle point
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S-12: The specified function and its first order derivatives are

floy) =xy-xy*  fulxy) =y -3y fy(xy) =x-2x%y
e First, we find the critical points.
fr=0 <= y(1-3x*y)=0 <= y=0o0r3x’y=1
fr=0 <= x(1-2x"y)=0 < x=0o0r2x’y=1
- If y = 0, we cannot have 2x?y = 1, so we must have x = 0.

— If 3x?*y = 1, we cannot have x = 0, so we must have 2x?y = 1. Dividing gives

2
1= ;z—zz = %which is impossible.

So the only critical point in the square is (0,0). There f = 0.
e Next, we look at the part of the boundary with x = 0. There f = 0.
e Next, we look at the part of the boundary with y = 0. There f = 0.

o Next, we look at the part of the boundary with x = 1. There f = y — y>. As
g—y (y —y?) = 1 — 2y, the max and min of y — y? for 0 < y < 1 must occur either at
y =0, where f = 0,0oraty = 1, where f = 1, oraty = 1, where f = 0.

e Next, we look at the part of the boundary with y = 1. There f = x — x>. As

4 (x — x%) = 1 - 322, the max and min of x — x° for 0 < x < 1 must occur either at
x =0,where f =0,oratx = \%,Wheref: %@,oratx =1, where f = 0.

All together, we have the following candidates for max and min.

point | (0,0) |x=0|y=0|(L0)| (L5 |11 (01| (51| (L1
valueof f | 0 0 0 0 : 0 0 NG 0
min min min min min | min max min

The largest and smallest values of f in this table are

min =0 max = i ~ 0.385

33

S-13: The specified temperature and its first order derivatives are

T(x,y) = (x_’_y)efoiyz
Te(x,y) = (1—2x% — ny)e_xz_yz
Ty(x, ]/) = (1 — ny _ 2y2)e_x2_y2
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e First, we find the critical points.

Tyr=0 << 2x(x+y)=1
T,=0 <= 2yx+y)=1

As x + y may not vanish, this forces x = y and then x =y = J_r%. So the only critical
points are (3, 1) and (-3, —3).

e On the boundary x = cosf and y = sinf,s0 T = (cos® +sinf)e!. Thisis a
periodic function and so takes its max and min at zeroes of
‘é—g = (—sinf + cosf)e!. That is, when sin 6 = cos 6, which forces

0 — — 41
sm@—cosé—irﬁ.

All together, we have the following candidates for max and min.

point | (31 | (D] () [
1 1 2
valueof T | 1.~ 061 -1 V2 5 0.52 2
max min
The largest and smallest values of T in this table are
min = — 1 max = 1
= , — G

S-14: (a) To find the critical points we will need the gradient of f and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f:x3+3xy+3y2—6x—3y—6
fx:3x2_|_3y—6 fxx:6x fxy:3

The critical points are the solutions of
fr=3x"+3y-6=0 f,=3x+6y—3=0
Subtracting the second equation from 2 times the first equation gives
3
6x2—3x—9=0 «<— 3(2x-3)(x+1) =0 «— x= 5 1

Since y = 15* (from the second equation), the critical points are (3, —1), (—1,1) and the
classification is

C;)ig;il f xxf yy — 9%_1/ f xx type
G- 9)x6)-(3)2>0 | 9 | local min
(=1,1) | (=6) x (6) — (3)2 <0 saddle point
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(b) Both of the functions f(x,y) = 1/x2 + y2 (i.e. (ii)) and f(x,y) = x* + y? (i.e. (iv)) are
invariant under rotations around the (0, 0). So their level curves are circles centred on the
origin. In polar coordinates 1/x? + y? is r. So the sketched level curves of the function in
(ii) arer = 0,0.1,0.2,...,1.9,2. They are equally spaced. So at this point, we know that
the third picture goes with (iv) and the fourth picture goes with (ii).

Notice that the lines x = y, x = —y and y = 0 are all level curves of the function
f(x,y) =y(x+y)(x—y)+1(ie. of (iii)) with f = 1. So the first picture goes with (iii).
And the second picture goes with (i).

Here are the pictures with critical points marked on them. There are saddle points where
level curves cross and there are local max’s or min’s at “bull’s eyes”.

2

S-15: To find the critical points we will need the gradient of f, and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f:x3+3xy+3y2—6x—3y—6
fx:3x2_|_3y—6 frax = 6x fxy:3

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The critical points are the solutions of

fr=3x>+3y—6=0 (E1)
fy=3x +6y—3 =0 (E2)
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Subtracting equation (E2) from twice equation (E1) gives
61> —3x—-9=0 < (2x—3)(3x+3) =0

So we must have either x = % orx = —1.

o If x =3, (E2) reducesto 3 + 6y —3=0soy = —1.

=

o If x = -1, (E2) reducesto -3+ 6y —3 =0soy = 1.
So there are two critical points: (3, —1) and (-1,1).

The classification is

C}I;icgi;il Jaxfyy — f)%y frx type
(%/ —411) (9)x (6)—(3)>2>0 | 9 local min
(-1,1) | (-6) x (6) —(3)> <0 saddle point

S-16: (a) To find the critical points we will need the gradient of & and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

h=y(4-2* -y
hx — _Z.Xy hxx — _2y hxy — —2X

hy =4-— x> — 3y hy, = —6y hyy = —2x

(Of course, hxy and hyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The critical points are the solutions of
hey=-2xy=0 hy=4-x>-3*=0

The first equation is satisfied if at least one of x = 0, y = 0 are satisfied.

e If x = 0, the second equation reduces to 4 — 3y> = 0, which is satisfied if y = +-2

%I

e If y = 0, the second equation reduces to 4 — x> = 0 which is satisfied if x = +2.
So there are four critical points: (0, \%), (0, —%), (2,0), (=2,0).

The classification is

C;i;j;il Ixhyy — h2, Hx type
2 —4 12 2 —4
O,f> ([) X ( \@) (O) >0 7 local max
2 4 12 _ (0)2 4 -
(0 \/5) (I) X <\[) (0)>0 75 | local min
(2,0) 0x0—(—4)2<0 saddle point
(-2,0) 0x0—(4)2<0 saddle point
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(b) The absolute max and min can occur either in the interior of the disk or on the
boundary of the disk. The boundary of the disk is the circle x? + y? = 1.

e Any absolute max or min in the interior of the disk must also be a local max or min
and, since there are no singular points, must also be a critical point of 1. We found
all of the critical points of & in part (a). Since 2 > 1 and % > 1 none of the critical

points are in the disk.

e Ateach point of x> + y?> = 1 we have h(x,y) = 3y with —1 < y < 1. Clearly the
maximum value is 3 (at (0,1)) and the minimum value is —3 (at (0, —1)).

So all together, the maximum and minimum values of h(x,y) in x? + y?> < 1 are 3 (at
(0,1)) and —3 (at (0, —1)), respectively.

S-17: The maximum and minimum must either occur at a critical point or on the
boundary of R.

e The critical points are the solutions of

0= fulxy) =2-2x
0= fy(x,y) = -8y

So the only critical point is (1,0).
e On theside x = —1, -1 <y < 1 of the boundary of R

f(-Ly) =2 -4y

This function decreases as |y| increases. So its maximum value on —1 <y < 1lis
achieved at y = 0 and its minimum value is achieved at y = +1.

e Ontheside x =3, -1 <y < 1 of the boundary of R

fBy)=2—4y

This function decreases as |y| increases. So its maximum value on —1 <y < 1is
achieved at y = 0 and its minimum value is achieved at y = +1.

e Onbothsidesy = +1, —1 < x < 3 of the boundary of R
fla, 1) =1+2x —x* =2 — (x —1)?

This function decreases as |x — 1| increases. So its maximum value on —1 < x < 3 is
achieved at x = 1 and its minimum value is achieved at x = 3 and x = —1 (both of
whom are a distance 2 from x = 1).

So we have the following candidates for the locations of the min and max

point (1,0) | (—=1,0) | (1,£1) | (=1,£1) | (3,0) | (3,+1)
valueof f | 6 2 2 -2 2 -2

max min min
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So the minimum is —2 and the maximum is 6.

S-18: Since Vh = (—4, —2) is never zero, h has no critical points and the minimum of &
on the disk % 4+ y? < 1 must be taken on the boundary, x> + > = 1, of the disk. To find
the minimum on the boundary, we parametrize x*> + y?> < 1 by x = cos6, y = sin and
find the minimum of

H(0) = —4cosf —2sinf +6

Since

0=H'(f) =4sinf —2cosf = x =cosf =2sinh =2y
So

1:x2+y2:4y2+y2=5y2 = y:Jri x:+i

IRV
At these two points
h=6—-4x -2y =6—-10 —6$E—6$2\f5
Y Yy NG

The minimum is 6 — 2/5.

S-19: (a) Thinking a little way ahead, to find the critical points we will need the gradient
of f and to apply the second derivative test of Theorem 2.9.16 in the CLP-3 text we will
need all second order partial derivatives. So we need all partial derivatives of f up to
order two. Here they are.

f=xy(x+y-3)

fx:ny—{—yz—?)y frx =2y fry =2x+2y—3
fy=x2+2xy—3x foy=2x  fyxr=2x+2y-3

(Of course, fxy and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The critical points are the solutions of
fr=y2x+y-3)=0 fy=x(x+2y-3)=0
The first equation is satisfied if at least one of y = 0, y = 3 — 2x are satisfied.

e If y = 0, the second equation reduces to x(x — 3) = 0, which is satisfied if either
x=0orx=23.

e If y = 3 — 2x, the second equation reduces to x(x + 6 —4x —3) = x(3—-3x) =0
which is satisfied if x = 0 or x = 1.

So there are four critical points: (0,0), (3,0), (0,3), (1,1).

The classification is
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itical
Cl?oiﬁi faxfyy = f J%y Jax type

(0,0) |0x0—(-3)2<0 saddle point
3,00 | 0x6—-(3)2<0 saddle point
(0,3) | 6x0—-(3)2<0 saddle point

(1,1) | 2x2—(1)>>0 | 2 | local min

(b) The absolute max and min can occur either in the interior of the triangle or on the
boundary of the triangle. The boundary of the triangle consists of the three line segments.

Li={(xy)|[x=0,0

e Any absolute max or min in the interior of the triangle must also be a local max or
min and, since there are no singular points, must also be a critical point of f. We
found all of the critical points of f in part (a). Only one of them, namely (1,1) is in
the interior of the triangle. (The other three critical points are all on the boundary of
the triangle.) We have f(1,1) = —1.

e Ateach point of L1 we have x = 0 and so f(x,y) = 0.
e Ateach point of L, we have y = 0 and so f(x,y) = 0.

e Ateach point of L3 we have f(x,y) = x(8 — x)(5) = 40x — 5x> = 5[8x — x?] with
0<x<8 As %(40x—5x2) = 40 — 10x, the max and min of 40x —5x2on0 < x < 8
must be one of 5[8x —x*] _ =0o0r5[8x—x?] _ =0or5[8x—x* _, =80.

So all together, we have the following candidates for max and min, with the max and
min indicated.

POint(S) (1/ 1) Ll L2 (O/ 8) (8/ 0) (4/ 4)
valueof f | -1 | 0 | O 0 0 80

min max

L2 (87 O) x

S-20: Thinking a little way ahead, to find the critical points we will need the gradient of
f, and to apply the second derivative test of Theorem 2.9.16 in the CLP-3 text we will
need all second order partial derivatives. So we need all partial derivatives of f up to
order two. Here they are.

f=3x*y+1y>—3x> - 3y* + 4
fy=32+3y" 6y  fyy=6y—6  fyx=6x
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(Of course, fy, and fyx have to be the same. It is still useful to compute both, as a way to
catch some mechanical errors.)

The critical points are the solutions of

fr=6x(y—1)=0  f,=3x"+3y>—6y =0
The first equation is satisfied if at least one of x = 0, y = 1 are satisfied.

e If x = 0, the second equation reduces to 3y> — 6y = 0, which is satisfied if either
y=0ory =2

e If y = 1, the second equation reduces to 3x> — 3 = 0 which is satisfied if x = +1.
So there are four critical points: (0,0), (0,2), (1,1), (-=1,1).

The classification is

it fexfyy — f3y fux type
(0,0) | (=6) x (=6) —(0)>>0| —6 | local max
(0,2) 6x6—(0)>2>0 6 local min
(1,1) 0x0—(6)2<0 saddle point
(-1,1) 0x0—(-6)2<0 saddle point

S-21: (a) Since

f=2x>—6xy+y>+4dy

fr = 6x% — 6y fex=12x  fy=—6
fy=—-6x+2y+4 Sy =2

the critical points are the solutions of

fx:O fy:0
— y=x2 y—3x+2=0
— y:x2 ¥ —3x+2=0
y=x

— x=1or?2

So, there are two critical points: (1,1), (2,4).

C;ic:iigil fexfyy = foy frx type
(1,1) | 12x2—(-6)?><0 saddle point
(2,4) | 24x2—(—6)>2>0]| 24 | local min

(b) There are no critical points in the interior of the allowed region, so both the maximum
and the minimum occur only on the boundary. The boundary consists of the line
segments () x =1,0<y<1,(i))y=1,0<x<land(lii)y=1-x0<x <L
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(0,1)

e First, we look at the part of the boundary with x = 1. There f = y* — 2y + 2. As
g_y(yz — 2y +2) = 2y — 2 vanishes only at y = 1, the max and min of y? — 2y + 2 for
0 <y < 1 must occur either at y = 0, where f =2, oraty = 1, where f = 1.

o Next, we look at the part of the boundary with y = 1. There f = 2x> — 6x + 5. As
4 (2x% — 6x +5) = 6x% — 6, the max and min of 2x> — 6x + 5 for 0 < x < 1 must
occur either at x = 0, where f =5, oratx =1, where f = 1.

e Next, we look at the part of the boundary with y = 1 — x. There
f=2x3—6x(1—x)+(1—x)>+4(1—-x) =2x3+7x> —12x + 5. As
4 (2x% +7x% —12x +5) = 6x% + 14x — 12 = 2(3x2 + 7x — 6) = 2(3x — 2)(x + 3), the
max and min of 2x3 + 7x2 — 12x + 5 for 0 < x < 1 must occur either at x = 0, where
f=5oratx =1, where f =2,0oratx = %,where
F=203)-sB)d)+h+4 = e g

So all together, we have the following candidates for max and min, with the max and
min indicated.

point (1,0) | (1,1) | (0,1) | (3,
valueof f | 2 1 5 5

max min

)

WIN
W=

S-22: We have

f(x’y) :x4+y4_4xy+2 fx(x/y) :4x3_4y fxx(x,y) :12x2
fytoy) =4y’ —4x fyy(x,y) = 12¢°
foy(xy) = —4
At a critical point
3

fx(x,y) :fy(x,y) =0 = y= x3 and x =y

— x=x"andy =°

— x(x®*-1)=0y=2
<~ (x,y) =(0,0)or (1,1) or (—1,-1)

Here is a table giving the classification of each of the three critical points.
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C;g;il frxxfyy — fy frx type

(0,0) 0x0—(—4)><0 saddle point

(1,1) |[12x12—(-4)>>0] 12 | local min
(-1,-1) | 12x12—(-4)>>0| 12 | local min

S-23: (a) We have

floy)=xy(x+2y—6) fulx,y) =2xy+2y> -6y fu(x,y) =2y
fy(xy) =x*+dxy—6x  fy,(x,y) = 4x
fxy(x,y) =2x+4y—6

At a critical point

fx(xy) = fy(x,y) =0 <= 2y(x+y—3) =0and x(x +4y —6) =0
<« {y=0orx+y=3}and {x =0o0rx + 4y = 6}
— {x=y=0}or{y =0, x+4y = 6}
or{x+y=3 x=0or{x+y =3 x+4y =6}
< (x,y) = (0,0) or (6,0) or (0,3) or (2,1)

Here is a table giving the classification of each of the four critical points.

C;;ﬁl Fexfyy = fay frx type
(0,0) |0x0—(—6)2<0 saddle point
(6,0) | 0x24—6%<0 saddle point
(0,3) | 6x0-62<0 saddle point
(2,1) | 2x8-22>0 2 | local min

(b) Observe that xy = 4 and x + 2y = 6 intersect when x = 6 — 2y and

(6-2)y=4 < 2y ~6y+4=0 < 2(y—1)(y-2)=0
= (x,y) =(4,1)o0r(2,2)

The shaded region in the sketch below is D.
y wy=4
r+2y==6

(2,2)
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None of the critical points are in D. So the max and min must occur at either (2,2) or
(4,1) oron xy = 4,2 < x < 4 (in which case F(x) = f(x, %) = 4(x+ & — 6) obeys

F(x) =4-3% =0 < x=42v2)oronx+2y =6,2 < x < 4 (in which case f(x,y) is
identically zero). So the min and max must occur at one of

(x,y) f(xy)

(2,2) |2x2(2+2x2-6)=0

(4,1) |4x1(4+2x1-6)=0
(2v2,v2) | 4(2v2+2v2-6) <0

The maximum value is 0 and the minimum value is 4(4v2 — 6) ~ —1.37.

S-24: We have

fle,y) =x*+v*—4xy  fulx,y) =4 -4y fur(x,y) = 1242
fy(x,y) = 4y° — 4x foy(x,y) = 12y

fry(x,y) = —4
At a critical point
fr(xvy)=f(x,y) =0 = y=x"andx=y*> — x=2"andy =°
— x(x®*-1)=0y=2°

< (x,y) =(0,0)or (1,1) or (—1,-1)

Here is a table giving the classification of each of the three critical points.

C;gi;il fexfyy — oy frx type
(0,0) 0x0—(—4)%><0 saddle point

(1,1) |[12x12—(-4)>>0] 12 | local min
(-1,-1) | 12x12—(-4)>>0| 12 | local min

S-25: The coldest point must be either on the boundary of the plate or in the interior of
the plate.

e On the semi—circular part of the boundary 0 < y < 2 and x? + y? = 4 so that
T =In (14 x*+y*) —y = In5 — y. The smallest value of In5 — y is taken when y is
as large as possible,i.e. wheny =2, and isIn5 — 2 ~ —0.391.

e On the flat part of the boundary, y = 0 and —2 < x < 2 so that
T=In(1+x*+y*) —y = In(1+ x?). The smallest value of In (1 + x?) is taken
when x is as small as possible, i.e. when x = 0, and is 0.

e If the coldest point is in the interior of the plate, it must be at a critical point of
T(x,y). Since

2x 2y

Tx(xy) = 14 x2 4 y2 Tylxy) = T+x2+y2
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Hzﬁ 1 = 0, which is the case if and only if
x =0and 2y — 1 —y? = 0. So the only critical point is x = 0, y = 1, where
T=In2-1~-0.307.

Since —0.391 < —0.307 < 0, the coldest temperture is —0.391 and the coldest point is
(0,2).

a critical point must have x = 0 and

S-26: We have

flx,y)=x>+x> —x  fu(x,y) =322 +y* -1 fex(x,y) = 6x
fy(x,y) = 2xy fyy(x,y) =2x

At a critical point

fe(x,y) = fy(x,y) =0 < xy=0and 3x* +y* = 1
«— {x=0o0ry=0}and3x* +y* =1

— (x,y) = (0,1) or (0,—1) or (%o) or (-%,o)

Here is a table giving the classification of each of the four critical points.

C}r)gﬁl fexfyy — 2y Jax type
(0,1) 0x0-22<0 saddle point
(0,-1) 0x0—(-2)?<0 saddle point
(%,0) 24/3 x l —0%2>0 24/3 local min
(- \%,O) —24/3 x ( — ) 02>0| —24/3| local max

-27: (a) We have

glxy)=x*—10y—y*  g«(x,y) =2x gxx(x,y) =2
gy(x,y) =-10-2y  gy(x,y) =2
8xy(xr}/) =0

At a critical point

gx(x,y) = gy(x,y) =0 < 2x=0and —10-2y =0 < (x,y) = (0,-5)
Since gxx(0, —5)8yy (0, —5) — gxy(0, =5)% = 2 x (—2) — 0? < 0, the critical point is a saddle
point.

(b) The extrema must be either on the boundary of the region or in the interior of the
region.

e On the semi-elliptical part of the boundary —2 < y < 0 and x? + 4y? = 16 so that
g =x?>—10y — y*> = 16 — 10y — 5y = 21 — 5(y + 1)?. This has a minimum value of
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16 (at y = 0, —2) and a maximum value of 21 (at y = —1). You could also come to
this conclusion by checking the critical point of 16 — 10y — 5y (i.e. solving
:ii_y (16 — 10y — 5y?) = 0) and checking the end points of the allowed interval

(namelyy =0and y = -2).

e On the flat part of the boundary y = 0 and —4 < x < 4 so that ¢ = x. The smallest
value is taken when x = 0 and is 0 and the largest value is taken when x = +4 and
is 16.

e If an extremum is in the interior of the plate, it must be at a critical point of g(x, ).
The only critical point is not in the prescribed region.

Here is a table giving all candidates for extrema:

(xy) | 8xy)
(0,-2) 16
(+4,0) 16

(+v12,-1) | 21

(0,0) 0

From the table the smallest value of g is 0 at (0,0) and the largest value is 21 at

(+£2+/3,-1).

S-28: We have

floy) =2 =3xy2 =32 =32 fulx,y) =322 —3y> —6x  fux(x,y) = 6x—6
fy(x,y) = —6xy — 6y fyy(x,y) = —6x—6
fay(x,y) = —6y

At a critical point

felx,y) = fy(x,y) =0 < 3(x* —y*—2x) =0and —6y(x+1) =0
«— {x=-lory=0}and x* — 1> —2x =0
— (x,y) = (-1,/3) or (—1,—+/3) or (0,0) or (2,0)

Here is a table giving the classification of each of the four critical points.

“Boint Fuxfyy = fy fa | type

(0,0) (—6) x (—=6) —0>>0 | —6 | local max

(2,0) 6x (—18) —0? <0 saddle point
(—1,4/3) | (—12) x0— (—6+/3)?> <0 saddle point
(=1, —/3) | (~12) x0—(6v/3)> <0 saddle point

S-29: The maximum must be either on the boundary of D or in the interior of D.
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¢ On the circular part of the boundary r = 2,0 < 6 < 7 (in polar coordinates) so that
f =12cosfsinfe /2 = 2sin(20)e~2. This has a maximum value of 2¢ 2 at 6 = a
orx =y =2

e On the two flat parts of the boundary x = 0 or y = 0 so that f = 0.

e If the maximum is in the interior of D, it must be at a critical point of f(x,y). Since

fr(x,y) = e~ (¥ +y)/2 [y — x%y] fy(x,y) = e~ (HHv?)/2 [x — xy?]
(x,v) is a critical point if and only if
y(1-x*)=0and x(1-y*) =0
«— {y=0orx=1lorx=—-1}and{x =0ory=1lory = —1}

There are two critical points with x, y > 0, namely (0,0) and (1,1). The first of these
is on the boundary of D and the second is in the interior of D.

Here is a table giving all candidates for the maximum:

(x,y) 8(x,y)
(V2,4/2) | 2e72 ~ 0.271
(x,0) 0
(0,) 0
(1,1) | e 1 ~0.368

Since e > 2, we have that 2¢72 = ¢7!2 < ¢~! and the largest value is e~ .

S-30: Suppose that the bends are made a distance x from the ends of the fence and that
the bends are through an angle 6. Here is a sketch of the enclosure.

\x\ % xsiTné’
0 o |

100 — 2«

It consists of a rectangle, with side lengths 100 — 2x and x sin 0, together with two
triangles, each of height x sin 8 and base length x cos 6. So the enclosure has area

A(x,0) = (100 — 2x)xsin® +2- 1 - xsin6 - x cos 0
= (100x — 2x?) sin 8 + x? sin(260)
The maximize the area, we need to solve
0= A, = (100 — 4x) sin 6 + x sin(26) = (100 — 4x) +2xcosf =0
0= Ag = (100x — 2x?) cos @ + x> cos(20) — (100 —2x) cos @ + x cos(26) = 0

Here we have used that the fence of maximum area cannot have sinf = Qor x = 0,
because in either of these two cases, the area enclosed will be zero. The first equation

289



forces cos = —1%0-4% and hence cos(26) = 2cos?f — 1 = (100407 _ Substituting

2x2
these into the second equation gives :
100 — 4x (100 — 4x)? B
—(100 - 2x) ——+ x[ T 1] =0
— —(100 — 2x)(100 — 4x) + (100 — 4x)? —2x> = 0
— 6x* —200x = 0
100 -100/3 1
= — = — = — 9 = °©
— X 3 cos 300/3 > 60

100— —2—5—
3 32

4 100 1007 \/§+11002£_2500
B 2 23 2 /3

S-31: Suppose that the box has side lengths x, y and z. Here is a sketch.

X

Because the box has to have volume V we need that V = xyz. We wish to minimize the
area A = xy + 2yz + 2xz of the four sides and bottom. Substituting in z = ¥

xy’

A:xy+2K+2K

X y
1%
Ax:y_zﬁ
\%
Ay:X—z—z
Y

To minimize, we want A, = A, =0, which is the case when yx2 =2V, xy2 = 2V. This

forces yx* = xy?. Since V = xyz is nonzero, neither x nor y may be zero. So
x=y=(2V)/8,z =272/3y1/3,

S-32: (a) The maximum and minimum can occur either in the interior of the disk or on
the boundary of the disk. The boundary of the disk is the circle x* + y* = 4.

e Any absolute max or min in the interior of the disk must also be a local max or min
and, since there are no singular points, must also be a critical point of k. Since
Ty = —8x and T, = —2y, the only critical point is (x,y) = (0,0), where T = 20.
Since 4x? + y? > 0, we have T(x,y) = 20 — 4x> — y* < 20. So the maximum value of
T (even in IR?) is 20.

e Ateach point of x* + 1> = 4 we have
T(x,y) =20 —4x> —y?> =20 — 4x> — (4 — x?) =16 - 3x> with -2 < x <2.So Tisa
minimum when x? is a maximum. Thus the minimum value of T on the disk is
16 —3(£2)? = 4.
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So all together, the maximum and minimum values of T(x,y) in x? 4+ y? < 4 are 20 (at
(0,0)) and 4 (at (0, +2)), respectively.

(b) To increase its temperature as quickly as possible, the ant should move in the

direction of the temperature gradient VT (1,1) = (—8x, —2y) ‘( ) (—8,—-2). A
x/]/ =1,
. . . . . 1
unit vector in that direction is —= (—4,-1).

(c) The ant’s rate f increase of temperature (per unit time) is

VT(1,1)(—2,—1) = (—8,—-2) - (—2,—1) = 18
(d) We are being asked to find the (x,y) = (x,2 — x?) which maximizes

T(x,2—x%) =204 — (2—x)° =16 —x*

The maximum of 16 — x* is obviously 16 at x = 0. So the ant should go to
(0,2—0%) = (0,2).

S-33: To find the critical points we will need the gradient of f and to apply the second
derivative test of Theorem 2.9.16 in the CLP-3 text we will need all second order partial
derivatives. So we need all partial derivatives of f up to order two. Here they are.

f=3kx’y +1° —3x> —3y* +4
fx = 6kxy — 6x fxx =6ky—6  fr, = 6kx
fy=3kx>+3y* —6y  fyy=6y—6 fyx = 6kx
(Of course, fy, and fyx have to be the same. It is still useful to compute both, as a way to

catch some mechanical errors.)
The critical points are the solutions of
fe=6x(ky—1)=0  f,=3kx*+3y*—6y =0
The first equation is satisfied if at least one of x = 0, y = 1/k are satisfied. (Recall that
k>0.)

e If x = 0, the second equation reduces to 3y(y — 2) = 0, which is satisfied if either
y=0ory=2.

e If y = 1/, the second equation reduces to 3kx? + k3_2 — & =3kx? + k%(l —2k) =0.
Casek < }: Ifk < 3, then k%(l — 2k) > 0 and the equation 3kx? + 15’—2(1 —2k) = 0 has no

real solutions. In this case there are two critical points: (0,0), (0,2) and the classification
is

C;ifiﬁil faxfyy — f y%y Jfax type
(0,0) | (—6) x (—6) —(0)>>0 | —6 | local max
(0,2) | (12k—6) x 6 — (0)2 <0 saddle point
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Casek = 3: Ifk = 3, then (1 — 2k) = 0 and the equation 3kx? + ,{3—2(1 — 2k) = 0 reduces
to 3kx?> = 0 which has as its only solution x = 0. We have already seen this third critical
point, x = 0, y = 1/k = 2. So there are again two critical points: (0,0), (0,2) and the
classification is

Cf)ﬁiffil faxfyy — 1 J%y Jfax type
(0,0) | (=6) x (=6) —(0)2>0 | —6 | local max
(0,2) | (12k—6) x6—(0)2=0 unknown

Case k > 3: Ifk > 3, then (1 —2k) < 0 and the equation 3kx? + % (1 — 2k) = 0 reduces
to 3kx? = %(21{ — 1) which has two solutions, namely x = +4/; L (2k —1). So there are

four critical points: (0,0), (0,2), < L(2k-1), ) and ( k1—3(2k 1), ) and the

classification is

C}ralcircil fexfyy = fy Jrx type
(0,0) (—6) x (— ) (0)? > —6 local max
(0,2) (12k — 6) x 6 — (0)? > 12k —6 >0 | local min
<\/l3(2k 1), %) (6—6) x ( ) (> ) saddle point
<—\/k—3(2k— ),%) (6-6)x (£—6)— (<0)? < saddle point
S-34: (a) For x,y > 0,
1 1
fe=2my =0 = V=22
1
b=t =0

Substituting y = from the first equation, into the second gives 4 — 4x% = 0 which

22’
forcesx=1,y=1 Atx=1,y =1,

f(Li)=2+242=6

(b) The second derivatives are

2 1 )
fex(x,y) = @ fxy(xz}/) = xz_yz fyy(X,y) — x_y?’
In particular

L) =4 fuLD) =4 fu(11) =16

Smcefxx( '2>fyy< ,2) fxy( ,2) =4x16—4%2 =148 > Oandfxx( ) =4 >0, the
point (1, ) is a local minimum.

(c) As x or y tends to infinity (with the other at least zero), 2x + 4y tends to +0. As (x, y)
tends to any point on the first quadrant part of the x- and y—-axes, xl—y tends to +o0. Hence
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as x or y tends to the boundary of the first quadrant (counting infinity as part of the
boundary), f(x,y) tends to +o0. As a result (1, %) is a global (and not just local)

minimum for f in the first quadrant. Hence f(x,y) > f(1,1) = 6 for all x,y > 0.

S-35: We w1sh to choose m and b so as to minimize the (square of the) rms error

E(m,b) = 3 (mx; +b— ;)2

i=1

251 lﬁ] 2(mx; +b—y;)x; = m [ i 2951'2] + b[iil 2xi] - [é 2xiyz}
(2]; il (mxi+b—y;) = m[ 2. sz} +b[1212] Liz.‘/i]

There are a lot of symbols in those two equations. But remember that only two of them,
namely m and b, are unknowns. All of the x;’s and y;’s are given data. We can make the
equations look a lot less imposing if we define S, = Y x;, Sy = D1 yi, Sp2 = D q X7
and Sy, = >,i_; x;y;. In terms of this notation, the two equations are (after dividing by
two)

Sx2m+5xb — Sxy (1)
Sym+nb=35, )

This is a system of two linear equations in two unknowns. One wayz to solve them, is to
use one of the two equations to solve for one of the two unknowns in terms of the other
unknown. For example, equation (2) gives that

1

If we now substitute this into equation (1) we get

2 5xS
szm—i_%(Sy_Sxm):Sxy > (SxZ_%)m—Sxy J;/ly

which is a single equation in the single unkown m. We can easily solve it for m. It tells us

that
nSxy - SxSy

nS,. —S2
Then substituting this back into b = 1 (S, — S, m) gives us

b= ﬁ — & nSxy — SxSy - SySy2 — S5xSxy
n n nS S% nS 532{

m =
x2

x2 x2

&> <&

Solutions to Exercises 2.10 — Jump to TABLE OF CONTENTS

2 This procedure is probably not the most efficient one. But it has the advantage that it always works, it
does not require any ingenuity on the part of the solver, and it generalizes easily to larger linear systems
of equations.
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S-1: (a) f(x,y) = x% + y? is the square of the distance from the point (x, y) to the origin.
There are points on the curve xy = 1 that have either x or y arbitrarily large and so
whose distance from the origin is arbitrarily large. So f has no maximum on the curve.
On the other hand f will have a minimum, achieved at the points of xy = 1 that are
closest to the origin.

(b) On the curve xy = 1 we havey:%and hence f :xz—l—%.As
d 1 2 2
=2x— = = Z(x*-1
dx(x+ ) X3 x3(x )

and as no point of the curve has x = 0, the minimum is achieved when x = +1. So the
minima are at +(1,1), where f takes the value 2.

S-2: We are to find the maximum and minimum of f(x,y,z) = x + y — z subject to the
constraint g(x,v,z) = x*> + y? +z?> — 1 = 0. According to the method of Lagrange
multipliers, we need to find all solutions to

fr=1=2Ax=Agy — x= 0 (E1)
1
1
fe=-1=2z=23. = z=-5 (E3)
2
Py =1 — 3(%) =1 = A:i\/; (E4)

Thus the critical points are ( — \%, —\/Lg, \%), where f = —+/3 and (T \%, —\/Lg), where

f = /3. So, the max is f = v/3 and the min is f = —+/3.

wn

-3 h ellipsoid xz +5 —|— Z; = 1 passes through the point (1,2,1) if and only if
+ 5 + 12 =1. We are to minimize f(a,b,c) = 37wbc subject to the constraint that
¢) =

NI—1

b 2 —|— 7+ Cl 1 = 0. According to the method of Lagrange multipliers, we
ed to find all solutions to

(

4 2A 3
fa = gnbc = _LZ_3 = /\ga and E)\ = —a bC (El)
fo = gnac = —EZ—? =Ag, = %)\ = ——ab3 (E2)
4 2
! — + :2 + = 1 =1 (E4)

The equations —%/\ = a3bc = Zabsc force b = 2a (since we want a, b, ¢ > 0). The
equations —%/\ = a®bc = abc? force a = c. Hence, by (E4),

1 4 1 3
=atpTa=p — 1=c=V3, =23
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S-4: So we are to minimize f(x,y) = x? + y? subject to the constraint
¢(x,y) = x*y — 1 = 0. According to the method of Lagrange multipliers, we need to find
all solutions to

fx=2x =2Axy = Agx (E1)
fy =2y =Ax* = Agy (E2)
xy? =1 (E3)

Equation (E1), 2x(1 — Ay) = 0, gives that either x = 0 or Ay = 1.

But substituting x = 0 in (E3) gives 0 = 1, which is impossible.

Also note that A = 0 is impossible, since substituting A = 0 in (E1) and (E2) gives
x =y = 0, which violates (E3).

Soy = 1.

Substituting y = mto (E2) gives A =Ax2orx?=2.Sox =

[ ]
>

H
19

Substituting y = % X = +\f into (E3) gives i\)g =1lor A3 = +12o0r A = +2V/6,

o A= +21/6givesx =226 =23 andy = +275.

y=
So the two critical points are (23, 275) and (25, —275). For both of these critical points,

5-5: Let r and & denote the radius and height, respectively, of the cylinder. We can always
choose our coordinate system so that the axis of the cylinder is parallel to the z—axis.

e If the axis of the cylinder does not lie exactly on the z—axis, we can enlarge the
cylinder sideways. (See the figure on the left below. It shows the y = 0 cross—section
of the cylinder.) So we can assume that the axis of the cylinder lies on the z—-axis

o If the top and/or the bottom of the cylinder does not touch the sphere
x? + y* 4 z% = 1, we can enlarge the cylinder vertically. (See the central figure
below.)

e So we may assume that the cylinder is
{(xy2)| ¥+ <r? —h/2<z<h/2}

with 72 + (h/2)? = 1. See the figure on the right below.
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(r,0,h/2)

iR (=
B C

So we are to maximize the volume, f(r,h) = 7tr2h, of the cylinder subject to the

0, () x
o\

constraint g(r, h) = r% + ,Z_z —1 = 0. According to the method of Lagrange multipliers,
we need to find all solutions to

fr =2mrh = 2Ar = Ag, (E1)
h
fn = e = AE = Agy (E2)
2 h?
re 4+ 1= 1 (E3)

Equation (E1), 2r(7th — A) = 0, gives that either r = 0 or A = 7th. Clearly r = 0 cannot
give the maximum volume, so A = 7th. Substituting A = 7th into (E2) gives

2
mr? = %nhz — rzz%

Substituting r* = hz—z into (E3) gives

W K? , 4
gl = =3

Clearly both r and h have to be positive, so h = \% andr = \/g .

S-6: For this problem the objective function is f(x,y) = xy and the constraint function is
¢(x,y) = x? + 2y% — 1. To apply the method of Lagrange multipliers we need V f and
Vg¢. So we start by computing the first order derivatives of these functions.

fx=1y fy:x gx = 2x gy =4y

So, according to the method of Lagrange multipliers, we need to find all solutions to

y = A(2x) (E1)
x = A(4y) (E2)
2422 —1=0 (E3)

First observe that none of x, y, A can be zero, because if at least one of them is zero, then
(E1) and (E2) force x = y = 0, which violates (E3). Dividing (E1) by (E2) gives % = % SO

that x? = 2y or x = ++/2y. Then (E3) gives

1
27+ 2 =1 = y:ii
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The method of Lagrange multipliers, Theorem 2.10.2 in the CLP-3 text, gives that the
only possible locations of the maximum and minimum of the function f are (i%ﬁ, J_r%) .

. .. 1 1 .
So the maximum and minimum values of f are NG and —>=> NeL respectively.

S-7: This is a constrained optimization problem with the objective function being
f(x,y) = x> + y* and the constraint function being g(x,y) = x* + y* — 1. By Theorem
2.10.2 in the CLP-3 text, any minimum or maximum (x, y) must obey the Lagrange
multiplier equations

fxr=2x= A\ = Agx (E1)
y =2y =40 = Agy (E2)
x* + y4 =1 (E3)

for some real number A. By equation (E1), 2x(1 — 2Ax?) = 0, which is obeyed if and only
if at least one of x = 0, 2Ax? = 1 is obeyed. Similarly, by equation (E2), 2y(1 — 2Ay?) = 0,
which is obeyed if and only if at least one of y = 0, 2Ay? = 1 is obeyed.

e If x =0, (E3) reduces to y* = 1 or y = +1. Atboth (0, £1) we have f(0,+1) = 1.
e If y =0, (E3) reduces to x* = 1 or x = +1. Atboth (+1,0) wehave f(+1,0) = 1.

e If both x and y are nonzero, we have x> = % = y2. Then (E3) reduces to
2x* =1
so that x? = y? = % and x = £27 /4,y = +271/4_ Atall four of these points, we
have f = /2.

So the minimum value of f on x* + y* = 1 is 1 and the maximum value of f on
x4yt =1is V2.

S-8: The function f(x,y,z) = (x —1)2 + (y + 2) + (z — 1)? gives the square of the
distance from the point (x,y,z) to the point (1, —2,1). So it suffices to find the (x,v,z)
which minimizes f(x,y,z) = (x —1)? + (y +2)? + (z — 1)? subject to the constraint
¢(x,y,z) = 22 + x> + y?> — 2y — 10 = 0. By Theorem 2.10.2 in the CLP-3 text, any local
minimum or maximum (x, y, z) must obey the Lagrange multiplier equations

fr=2(x—1) =2Ax = Agy (E1)
fy=2(y+2)=2\(y—-1)=Agy (E2)
fz=2(z=1) =2Az = Ag; (E3)
242 +yP -2y =10 (E4)
for some real number A. Now
1
24+ A
(E2) = y=—3—
1
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(Note that A cannot be 1, because if it were (E1) would reduce to —2 = 0.) Substituting
these into (E4), and using that

_2__2+)\_2—2)L__4—/\
STETTICA T T 1A

gives
1 1 2+A4-A

=10

+ +
(1-A)?% (1-A)P2 1-A1-4
=24+ (24+A)(4-A) =10(1 - A)?
— 1112 —220 =0
= A=00rA=2
When A = 0, we have (x,y,z) = (1,-2,1) (nasty!), which gives distance zero and so is

certainly the closest point. When A = 2, we have (x,y,z) = (—1,4, —1), which does not
give distance zero and so is certainly the farthest point.

S-9: We are to maximize and minimize f(x,y,z) = x> + y* — 552> subject to the
constraints ¢(x,y,z) = x + 2y +z — 10 = 0 and h(x,v,z) = x*> + y> — z = 0. By Theorem
2.10.8 in the CLP-3 text, any local minimum or maximum (X, y, z) must obey the double
Lagrange multiplier equations

fx=2x=A~+2ux = Agx + phy (E1)
fy =2y = 2A 4 2py = Agy + uhy (E2)
fzz—lz—oz)\—y:)»gz+yhz (E3)
X+2y+z=10 (E4)
x2+y2—z:0 (E5)

for some real numbers A and p.

Equation (E1) gives 2(1 — #)x = A and equation (E2) gives (1 — u)y = A. So
2l-mx=QA-py = (1-p)(2x-y) =0

So at least one of y = 1 and y = 2x must be true.

o If y =1, equations (E1) and (E2) both reduce to A = 0 and then the remaining
equations reduce to

b4

10 = -1 (E3)
x+2y+z=10 (E4)
x2+y2—z:0 (E5)

Then (E3) implies z = 10, and (E4) in turn implies x + 2y + 10 = 10 so that x = —2y.
Finally, substituting z = 10 and x = —2y into (E5) gives

4P+ -10=0 —= 52 =10 — y=+V2
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e If y = 2x, equations (E4) and (E5) reduce to

5 +z =10 (E4)
5x>—z =0 (E5)

Substituting z = 5x2, from (E5), into (E4) gives
582 4+5x—10=0 <= ¥*+x-2=0 «— (x+2)(x—-1) =0

So we have either x = —2,y =2x = —4,z =5x> =20orx =1,y = 2x = 2,
z = 5x? = 5. (In both cases, we could now solve (E1) and (E3) for A and 1, but we
don’t care what the values of A and y are.)

So we have the following candidates for the locations of the min and max
point | (=2v/2,v/2,10) | (2v2,—v/2,10) | (-2,-4,20) | (1,2,5)
valueof f |  8+2-5 8+2-5 4416-20 | 1+4-2

max maxX min

So the maximum is 5 and the minimum is O.

S-10: The function f(x,v,z) = x* + y? + z? gives the square of the distance from the point
(x,v,z) to the origin. So it suffices to find the (x,y, z) (in the first octant) which
minimizes f(x,y,z) = x> + y? + z> subject to the constraint ¢(x,vy,z) = ¥*y?z — 6+/3 = 0.
To start, we'll find the minimizers in all of R3. By Theorem 2.10.2 in the CLP-3 text, any
local minimum or maximum (x, v, z) must obey the Lagrange multiplier equations

fxr=2x= Sszyzz = Agx (E1)
fy =2y = 2Ax3yz = Agy (E2)
fr=2z= Ax3y2 = Ag; (E3)

x3yzz =6V3 (E4)

for some real number A.

Multiplying (E1) by 2x, (E2) by 3y, and (E3) by 6z gives

4x?* = 6/\x3yzz (E1")
6y> = 6Ax>y*z (E2)
1222 = 6Ax%y%z (E3")

The three right hand sides are all identical. So the three left hand sides must all be equal.
4x* = 6y* = 122> < x = +V3z, y = £V2z

Equation (E4) forces x and z to have the same sign. So we must have x = 1/3z and
y = ++/2 z. Substituting this into (E4) gives

\f323 i\/EZZZ:6\f3(=>z6:1 = z=+1
(v3z)™( )
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So our minimizer (in all of R?) must be one of (v3, ++v/2, 1) or (—+/3, £v2, —1). All
of these points give exactly the same value of f (namely 3 +2 + 1 = 6). That is all four
points are a distance v/6 from the origin and all other points on x%y?z = 6/3 have
distance from the origin strictly greater than v/6. So the first octant point on x>y%z = 6+/3
that is closest to the origin is (\/§ V2, 1).

S-11: This is a constrained optimization problem with the objective function being

fxy,2) = xyz
and the constraint function being
G(x,y,z) = > +xy +y*+322 -9

By Theorem 2.10.2 in the CLP-3 text, any local minimum or maximum (x, v, z) must obey
the Lagrange multiplier equations

fr=yz=A2x+y) = AGy (E1)
fy =xz = A2y + x) = AG, (E2)
fz=xy = 6Az = AG, (E3)
P txy+y?+322=9 (E4)

for some real number A.

o If A =0, then, by (E1), yz = 0 so that f(x,y,z) = xyz = 0. This cannot possibly be
the maximum value of f because there are points (x,y,z) on g(x,y,z) = 9 (for
example x = y = 1,z = 1/2) with f(x,y,z) > 0.

e If A # 0, then multiplying (E1) by x, (E2) by y, and (E3) by z gives
xyz = A(2x%2 4 xy) = A2y? + xy) = 6422 — 2x% + xy = 2y + xy = 62°

= X = iy, Zz = %(2x2+xy)
- Ifx =y, thenz? = "2—2 and, by (E4)

3
x2+x2+x2+§x2:9 — =2 = x:y:i\@,z:il

For these points

2 ifz=1
7 7 :2 —_
floy.z) - {—2 ifz=-1
- Ifx = —y, thenz? = %2 and, by (E4)
2
xz—x2+x2+%=9 — =6 — x:—y:i\/glzzil

For these points
—6 ifz=1

Y, :—6 =
f(xy.2) : {6 ifz=-1
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So the maximum is 6 and is achieved at (v/6, —v6, —1) and (— /6, /6, —1).

S-12: In order for a sphere of radius r centred on the origin to be enclosed in the ellipsoid,
every point of the ellipsoid must be at least a distance r from the origin. So the largest
allowed r is the distance from the origin to the nearest point on the ellipsoid.

We have to minimize f(x,y,z) = x> + y? + z? subject to the constraint
¢(x,y,z) = 2(x +1)2 + y?> +2(z — 1)? — 8. By Theorem 2.10.2 in the CLP-3 text, any local
minimum or maximum (¥, y, z) must obey the Lagrange multiplier equations

fr=2x=4A(x+1) = Agy (E1)
fy =2y =21y = Agy (E2)
fz=2z=4A(z—1) = Ag (E3)
20x+1) +y*+2(z—1)> =8 (E4)

for some real number A.

By equation (E2), 2y(1 — A) = 0, which is obeyed if and only if at least oneof y = 0, A =1
is obeyed.

e If y = 0, the remaining equations reduce to

x =2A(x+1) (E1)
z=2MA(z—-1) (E3)
(x+1)%+(z-1)2=4 (E4)
Note that 2A cannot be 1 — if it were, (E1) would reduce to 0 = 1. So equation (E1)
gives
22 o !
T Y T T
Equation (E3) gives
zZ= __A or z—1= o
1-2A 1-2A
Substituting x +1 = ﬁ andz—1= —ﬁ into (E4) gives
1 1 1
G202 T a—apr =% = a-ay
1
=+
=y = V2

So we now have two candidates for the location of the max and min, namely

(x,y,z) = (—14++v2,0,1—+v2) and (x,y,z) = (—1—+/2,0,14+2).

e If A = 1, the remaining equations reduce to

x=2(x+1) (E1)
z=2(z—-1) (E3)
2x+1)2 4+ +2(z-1)>=8 (E4)




Equation (E1) gives x = —2 and equation (E3) gives z = 2. Substituting these into
(E4) gives

2412 42=8 «— P =4 «— y=+2

So we have the following candidates for the locations of the min and max

point | (—1++2,0,1-v2) | (=1-v2,01++2) | (-2,2,2) | (-2,-2,2)
value of f 2(3-2v2) 2(3+2v2) 12 12

min max max

Recalling that f(x,y, z) is the square of the distance from (x, y, z) to the origin, the
maximum allowed radius for the enclosed sphere is /6 — 4+4/2 ~ 0.59.

S-13: (a) We are to maximize f(x,y,z) = z subject to the constraints

¢(x,y,z) =x+y+z—-2=0and h(x,y,z) = x> + y* + 2> — 2 = 0. By Theorem 2.10.8 in
the CLP-3 text, any local minimum or maximum (x, y, z) must obey the double Lagrange
multiplier equations

fx=0=A42ux = Agyx + phy (E1)

fy =0=A+2uy = Agy + phy (E2)
fo=1=A+2uz = Ag, + uh, (E3)
X+y+z=2 (E4)
x2+y2+zz =2 (E5)

for some real numbers A and u. Subtracting (E2) from (E1) gives 2u(x — y) = 0. So at
least one of ¥ = 0 and y = x must be true.

e If u = 0, equations (E1) and (E3) reduce to A = 0 and A = 1, which is impossible. So

u #0.
e If y = x, equations (E2) through (E5) reduce to
A+2ux =0 (E2)
A+2uz =1 (E3)
2x+z=2 (E4)
2x° 422 =2 (E5)

By (E4), x = 22;2 Substituting this into (E5) gives

2-2* > 2 2 2
4727 =2 = (2-2)"4+4z"=8 < 52" —4z-4=0
 4+V16+80 4+46

B 10 10

< Z

The maximum is given by the plus sign and so is 2(1 + v/6) ~ 1.38 (which, fortunately, is
smaller than v/2).
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(b) Presumably the “lowest point” is the point with the minimal z—coordinate. By our
work in part (a) we have that the minimal value of z on C is 2(1 — v/6). The
corresponding other coordinates are

x:yzz_zzl—l(l—\@):

5 = (4++6)

Q1| =

So the desired point is

@+4@,4+¢&2—2¢@

Q1| =

S-14: (a) This is a constrained optimization problem with the objective function being
f(x,y,z) = (x —2)>+ (y +2)? + (z — 4)? and the constraint function being
¢(x,y,z) = x> + y? + 2% — 6. By Theorem 2.10.2 in the CLP-3 text, any local minimum or

maximum (x, v, z) must obey the Lagrange multiplier equations

fxr=2(x—2) =2Ax = Agy (E1)
fy= 2(y+2) =21y = Agy (E2)
fz=2(z—4) =2Az=Ag; (E3)
4y 422 =6 (E4)
for some real number A. Simplifying
xX—2=Ax (E1)
y+2=Ay (E2)
z—4= Az (E2)
Py +22 =6 (E4)

Note that we cannot have A = 1, because then (E1) would reduce to —2 = 0. Substituting
X = %, from (E1), and y = %, from (E2), and z = %, from (E3), into (E4) gives

4 4 16
A—A2  aA-n2 T Toap

and hence

=6 — (1-A)2?=4 — 1-A=+2

= +(1,-1,2)

(x/y/z) — i@

So we have the following candidates for the locations of the min and max

point (1,-1,2) | —(1,-1,2)
value of f 6 54

min max

So the minimum is 6 and the maximum is 54.

(b) f(x,y,z) is the square of the distance from (x,y,z) to (2, —2,4). So the point on the
sphere x? + y? + z? = 6 that is farthest from the point (2, —2,4) is the point from part (a)
that maximizes f, which is (—1,1, -2).
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S-15: (a) This is a constrained optimization problem with the objective function being
f(x,y,z) = (x —2)> 4 (y — 1)? + 22 and the constraint function being

¢(x,y,z) = x* + y?> + z% — 1. By Theorem 2.10.2 in the CLP-3 text, any local minimum or
maximum (X, y, z) must obey the Lagrange multiplier equations

fr=2(x—2) =2Ax = Agx (E1)
fy=2(y—1) =21y = Ag, (E2)
fz=2z2=2)z=Ag, (E3)
Py =1 (E4)

for some real number A. By equation (E3), 2z(1 — A) = 0, which is obeyed if and only if at
least one of z = 0, A = 1 is obeyed.

e If z=0and A # 1, the remaining equations reduce to

xX—2=Ax (E1)
y—1=2Ay (E2)
ryP=1 (E4)

Substituting x = %, from (E1), and y = ﬁ, from (E2), into (E3) gives

4 1
A—r2 T a-ap

=1 e (1-1)2=5 < 1-A=+/5

and hence 1
x,v,z)=+—(2,1,0
(x,y,2) ¢§ )

To aid in the evaluation of f(x,y, z) at these points note that, at these points,

2A A
x—Z—Ax—m, y_l—)\y——
472 A? 5)2 ) =2

e If A =1, the remaining equations reduce to

X—2=x (E1)
y—-1l=y (E2)
2ty 42=1 (E4)

Since —2 # 0 and —1 # 0, neither (E1) nor (E2) has any solution.

So we have the following candidates for the locations of the min and max

point éﬂzlm) —éﬂzlm)
value of f (1—\@)2 (1+\@)2

min max

304



So the minimum is (\/5 - 1)2 =6—24/5.

(b) The function f(x,y,z) = (x —2)? + (y — 1) + 22 is the square of the distance from the
point (x,y,z) to the point (2,1,0). So the minimum of f subject to the constraint

x? + y? 4 z2 = 1 is the square of the distance from (2,1, 0) to the point on the sphere

x? 4+ y? + z? = 1 that is nearest (2,1,0).

S-16: For this problem the objective function is f(x,y,z) = (x + z)e¥ and the constraint
function is ¢(x,y,z) = x* + y* + z2 — 6. To apply the method of Lagrange multipliers we
need V f and Vg. So we start by computing the first order derivatives of these functions.

fo=¢ fy = (x+2z)e fo=¢ §x = 2X 8y =2y 8z =2z

So, according to the method of Lagrange multipliers, we need to find all solutions to

e¥ = A(2x) (E1)

(x +2z)e¥ = A(2y) (E2)

eV = A(2z) (E3)

PP+ -6=0 (E4)

First notice that, since ¢ # 0, equation (E1) guarantees that A # 0 and x # 0 and equation
(E3) guarantees that z # 0 too.

e So dividing (E1) by (E3) gives 7 = 1 and hence x = z.

e Then subbing x = z into (E2) gives 2ze¥ = A(2y). Dividing this equation by (E3)
gives 2z = g or y = 2z

e Then subbing x = z and y = 2z into (E4) gives

224474422 -6=0 «— 42 +222-6=0 — (222+3)(222-2) =0

e As2z2+3>0,wemusthave2z2—2 =0orz = +1.

Recalling that x = z and y = 222, the method of Lagrange multipliers, Theorem 2.10.2 in
the CLP-3 text, gives that the only possible locations of the maximum and minimum of
the function f are (1,2,1) and (—1,2, —1). To complete the problem, we only have to
compute f at those points.

point (1,2,1) | (-1,2,-1)
valueof f |  2¢? —2¢?

max min

Hence the maximum value of (x + z)e¥ on x> + y* + z% = 6 is 2¢? and the minimum value
is —2¢2.

S-17: Let (x,y) be a point on 2x? + 4xy + 5y = 30. We wish to maximize and minimize
x? + 2 subject to 2x? + 4xy + 5y* = 30. Define
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L(x,y,A) = x2 4 y* — A(2x% + 4xy + 54> — 30). Then

0= Ly = 2x — A(4x + 4y) — (1—2A)x —2Ay =0 (1)
0= Ly, =2y — A(4x + 10y) — —2Ax+ (1-5A)y =0 (2)
0= L) = 2x* + 4xy + 5y — 30

Note that A cannot be zero because if it is, (1) forces x = 0 and (2) forces y = 0, but (0,0)

is not on the ellipse. So equation (1) gives y = L= 2Ax Substituting this into equation (2)

(1— 5A)(1 21)

gives —2Ax + = 0. To get a nonzero (x,y) we need

(1-51)(1-2A)

—2A + N

=0 < 0=—4A2+(1-50)(1-21) =6A2—7A+1 = (6A—1)(A—1)

So A must be either 1 or %. Substituting these into either (1) or (2) gives

A=1 — —x-2y=0=— x= -2y — 8> —8y* +5/> =30 — y=+V6
1 2

1
)\:6 — gx—gy:0:> y=2x = 2x? 4+ 8x% +20x°=30 = x = +1

The farthest points are ++/6(—2,1). The nearest points are +(1,2).

S-18: Let (x,y) be a point on 3x? — 2xy + 3y? = 4. This point is at the end of a major axis
when it maximizes its distance from the centre, (0,0), of the ellipse. It is at the end of a
minor axis when it minimizes its distance from (0,0). So we wish to maximize and
minimize f(x,y) = x? + y? subject to the constraint ¢(x,y) = 3x> — 2xy + 3y> — 4 = 0.
According to the method of Lagrange multipliers, we need to find all solutions to

fr=2x=A6x-2y) =Agy = (1-3A)x+Ay=0 (E1)
fy=2y=A(-2x+6y) =Agy — Ax+(1-31)y=0 (E2)
3x% — 2xy + 3y* = 4 (E3)

To start, let’s concentrate on the first two equations. Pretend for a couple of minutes, that
we already know the value of A and are trying to find x and y. The system of equations
(1-3A)x+ Ay =0, Ax + (1 —3A)y = 0 has one obvious solution. Namely x = y = 0. But
this solution is not acceptable because it does not satisfy the equation of the ellipse. If
you have already taken a linear algebra course, you know that a system of two linear
homogeneous equations in two unknowns has a nonzero solution if and only if the
determinant of the matrix of coefficients is zero. (You use this when you find eigenvalues
and eigenvectors.) For the equations of interest, this is

1-30 A
det ¥ =(1-30)2-A2=(1-20)(1-40) =0 = A=
A 1-3A

I\JI'—‘
=

Even if you have not already taken a linear algebra course, you also come to this
conclusion directly when you try to solve the equations. Note that A cannot be zero
because if it is, (E1) forces x = 0 and (E2) forces y = 0. So equation (E1) gives
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1= (1-31)% 3/\)

y= 3)‘x Substituting this into equation (E2) gives Ax — -—=-x = 0. To get a
nonzero (x y) we need
. 2
A—@:o — A2-(1-3)0)%=0

By either of these two methods, we now know that A must be either 3 or ;. Substituting
these into either (E1) or (E2) and then using (E3) gives

1 1 1

)LZE =>—§x—|—§y:O=>x:y — 3x%2 2% +3x*=4— x=+1
1 1 1

A:Z: L—lx—|—4y—O:>x——y:>3x +2x% 4+ 3x°=4— x=+

1
\/7
The ends of the minor axes are + ( oL \fz) The ends of the major axes are +(1,1).

5-19: Let the box have dimensions x x y x z. Use units of money so that the sides and
bottom cost one unit per square meter and the top costs two units per square meter. Then
the top costs 2xy, the bottom costs xy and the four sides cost 2xz + 2yz. We are to find the
x, y and z that minimize the cost f(x,y,z) = 2xy + xy + 2xz + 2yz subject to the
constraint that g(x,y,z) = xyz — 96 = 0. By the method of Lagrange multipliers
(Theorem 2.10.2 in the CLP-3 text), the minimizing x, y, z must obey

fx=3y+2z = Ayz = Agx

fy=3x+2z = Axz = Agy

fz=2x4+2y = Axy = Ag;
xyz—96 =0

Multiplying the first equation by x, the second equation by y and the third equation by z
and then substituting in xyz = 96 gives

3xy + 2xz = 96A
3xy + 2yz = 96A
2xz 4+ 2yz = 96A

Subtracting the second equation from the first gives 2z(x — y) = 0. Since z = 0 is
impossible, we must have x = y. Substituting this in,

3x2 +2xz =961  4xz = 967

Subtracting,

3

3¢ —2xz=0 — z:gx — 96:xyz:;—)x — x° =64

= x =y =4, z = 6 meters
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S-20: We are to find the x, y and z that minimize the temperature T(x,v,z) = 40xy*z
subject to the constraint that ¢(x,y,z) = x* + y? + 22> — 1 = 0. By the method of Lagrange
multipliers (Theorem 2.10.2 in the CLP-3 text), the minimizing x, y, z must obey

Ty = 40y°z = A(2x) = Agx
T, = 80xyz = A(2y) = Agy
T, = 40xy* = A(2z2) = Ag;

Py +z2-1=0

Multiplying the first equation by x, the second equation by y/2 and the third equation by
z gives
40xy%z = 2x2A
40xy%z = y*A
40xy°z = 22\
Hence we must have
22020 = y?A = 272%A

e If A = 0, then 40y%z = 0, 80xyz = 0, 40xy> = 0 which is possible only if at least one
of x,v, z is zero so that T(x,y,z) = 0.

e If A # 0, then

2= x? 4227+ 1% = 4x?

2x2:y2:2z2 - 1:x2+y2+z
— x:i%,yzz%lzzi%
— T=40(£3)3(£3) =45

(The sign of x and z need not be the same.) So the hottest temperature is +5 and the
coldest temperature is —5.

S-21: The optimal box will have vertices (+x, +v,0), (+x, +y, z) with x,y,z > 0 and

z = 48 — 4x? — 3y. (If the lower vertices are not in the xy—plane, the volume of the box
can be increased by lowering the bottom of the box to the xy—plane. If any of the four
upper vertices are not on the hemisphere, the volume of the box can be increased by
moving the upper vertices outwards to the hemisphere.) The volume of this box will be
(2x)(2y)z. So we are to find the x, y and z that maximize the volume f(x,y,z) = 4xyz
subject to the constraint that g(x,y,z) = 48 — 4x* — 3y? — z = 0. By the method of
Lagrange multipliers (Theorem 2.10.2 in the CLP-3 text), the minimizing x, y, z must obey

fr =4yz = —8Ax = Agy
fy =4xz = —6Ay = Agy
fr=4xy=—-A =Ag;
48 —4x* —3y* —z =0
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Multiplying the first equation by x, the second equation by y and the third equation by z
gives

dxyz = —8Ax?
dxyz = —6Ay°
dxyz = —Az

This forces 8Ax? = 6Ay? = Az. Since A cannot be zero (because that would force
4xyz = 0), this in turn gives 8x?> = 6y? = z. Substituting in to the fourth equation gives

48 - - — 2 — 2=0 = 2z =48 — z =24, 8x* =24, 6y* =24
The dimensions of the box of biggest volume are 2x = 2v/3 by 2y = 4 by z = 24.

S-22: Use units of money for which cardboard costs one unit per square meter. Then, if
the bin has dimensions x x y x z, it costs 3xy + 2xz + 2yz. We are to find the x, y and z
that minimize the cost f(x,y,z) = 3xy + 2xz + 2yz subject to the constraint that
¢(x,y,2z) = xyz — 12 = 0. By the method of Lagrange multipliers (Theorem 2.10.2 in the
CLP-3 text), the minimizing x, y, z must obey

fx =3y +2z =Ayz = Agy

fy=3x+2z = Axz = Agy

fz=2x+2y = Axy = Ag;
xyz—12 =0

Multiplying the first equation by x, the second equation by y and the third equation by z
and then substituting in xyz = 12 gives

3xy +2xz = 12A
3xy +2yz = 12A
2xz +2yz = 127

Subtracting the second equation from the first gives 2z(x —y) = 0. Since z = 0 is
impossible, we must have x = y. Substituting this in

3x2+2xz =120 4xz = 127
Subtracting

3 3
3¢ —2xz=0 — z=5x = 12:xyz:§x3 — ¥ =38

= x =y =2, z= 3 meters
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5-23: If the box has dimensions x x y x z, it costs 24xy + 16xz + 16yz. We are to find the x,
y and z that minimize the cost f(x,y,z) = 24xy 4 16xz + 16yz subject to the constraint
that ¢(x,y,z) = xyz — 4 = 0. By the method of Lagrange multipliers (Theorem 2.10.2 in
the CLP-3 text), the minimizing x, y, z must obey

fxr =24y +16z = Ayz = Agy
fy = 24x + 16z = Axz = Agy
fz =16x + 16y = Axy = Ag;
xyz—4 =0
Multiplying the first equation by x, the second equation by y and the third equation by z
and then substituting in xyz = 4 gives
24xy + 16xz = 4A
24xy + 16yz = 4A
16xz 4+ 16yz = 4A

Subtracting the second equation from the first gives 16z(x — y) = 0. Since z = 0 is
impossible, we must have x = y. Subbing this in

2452 +16xz = 4A  32xz = 4A

Subtracting
24x* —16xz2 =0 = z:gx — 4:xyz:§x3 — 363:§
2
= X=Y=—-=,2= 32/3metres
y \3/3

S-24: The vertices of the pyramid are (0,0,0), (%, 0,0), (0, %,O) and (0,0, %) So the base
of the pyramid is a triangle of area 113 and the height of the pyramid is 1. So the volume
of the pyramid is £&. The plane passes through (1,2,3) if and only if a + 2b + 3¢ = 1.
Thus we are to find the 4, b and ¢ that maximize the volume f(a,b,c) = ﬁ subject to the
constraint that g(a,b,c) = a + 2b + 3c — 1 = 0. By the method of Lagrange multipliers

(Theorem 2.10.2 in the CLP-3 text), the maximizing a, b, c must obey
1

=———— = A =Ag, < 6Ad’bc=—1
6a2bc 8
1
fo= TG 2A=Ag, < 6Aab*c= —%
C:—L =3 =Ag. — 6Aabc? = —
6abc? 8 3
a+2b+3c=1

Dividing the first two equations gives 7 = 2 and dividing the first equation by the third

gives £ = 3. Substituting b = Ja and ¢ = 14 in to the final equation gives

1 1 1
a2 +3e=31=1 = a=3b=7c=3
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and the maximum volume is 3X2+X9 = 27.

S-25: We'll find the minimum distance? and then take the square root. That is, we’ll find
the minimum of f(x,y,z) = x? + y* + z? subject to the constraints

g(x,y,z) =x—z—4=0and h(x,y,z) = x+y+z —3 = 0. By Theorem 2.10.8 in the
CLP-3 text, any local minimum or maximum (x, y, z) must obey the double Lagrange
multiplier equations

fx=2x=A+pu=Agx+ phy (E1)
fy =2y = p=Agy+ uhy (E2)
f:=2z=—-A+u=A2Ag,+ uh; (E3)
x—z=4 (E4)
x+y+z=3 (E5)

for some real numbers A and y. Adding (E1)and (E3) and then subtracting 2 times (E2)
gives

2x —4y +2z =0 or x—2y+z=0 (E6)

Substituting x = 4 + z (from (E4)) into (E5) and (E6) gives
y+2z=-1 (E5")
—2y+2z= -4 (E6")

Substituing y = —1 — 2z (from (E5’)) into (E6’) gives

bz=—-6 —=z=-1—=y=-1-2(-1)=1 = x=4+(-1)=3

So the closest point is (3,1, —1) and the minimum distance is 4/32 + 12 + (-1)2 = V/11.

S-26: Solution 1: This is a constrained optimization problem with objective function
f(x,y,z) = 6x + y* + xz and constraint function g(x,y,z) = x> + y?> + z2 — 36. By
Theorem 2.10.2 in the CLP-3 text, any local minimum or maximum (x, y, z) must obey
the Lagrange multiplier equations

fx=6+z=2Ax = Agy (E1)
fy =2y =2Ay = Agy (E2)
fr=x=2Az=Ag; (E3)

X+ +22 =36 (E4)

for some real number A. By equation (E2), y(1 — A) = 0, which is obeyed if and only if at
least one of y = 0, A = 1 is obeyed.

e If y = 0, the remaining equations reduce to

6+z=2Ax (E1)
X =2Az (E3)
x? +22 =36 (E4)
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Substituting (E3) into (E1) gives 6 + z = 4A?z, which forces 4A? # 1 (since 6 # 0)
. Substituting this into (E4) gives

; —_ _6
and gives z = 57

and then x =

1442

12A
4021

36

(422 —1)?

4)\2

1

+
(412 —1)?

@217

— 36
(422 —1)?

40241 = (422 - 1)

Write i = 4A2. Then this last equation is

p+1l=py?>-2u+1 < > -3u=0
— u=20,3

When y = 0, we have z = - = —6 and x = 0 (by (E4)). When p = 3, we have

=
z = -9 =3 and then x = +1/27 = +3+/3 (by (E4)).

p—1

e If A = 1, the remaining equations reduce to

6+z=2x
x =2z

Py 422 =36

(E1)
(E3)
(E4)

Substituting (E3) into (E1) gives 6 + z = 4z and hence z = 2. Then (E3) gives x = 4

and (E4) gives 42 + y?> + 22 =36 or y> = 16 or y = +4.

So we have the following candidates for the locations of the min and max

point | (0,0,—6) | (3v/3,0,3) | (=3+v/3,0,3) | (4,4,2) | (4,—4,2)
value of f 0 27/3 —27/3 48 48
min max max

Solution 2: On the sphere we have y? = 36 — x> — z? and hence

f =36+ 6x+ xz—x%—z% and x? + z% < 36. So it suffices to find the max and min of

h(x,z) =36 + 6x + xz — x> —z% on the disk D = { (x,z) | x* + 22 < 36 }.

e If a max or min occurs at an interior point (x, z) of D, then (x,z) must be a critical
point of & and hence must obey

Substituting x = 2z into the first equation gives 6 — 3z = 0 and hence z = 2 and

x = 4.

hy=64+2z—-2x=0
h,=x-2z=0

e If a max or min occurs a point (x,z) on the boundary of D, we have x? + z> = 36
and hence x = +v/36 —zZ and h = 6x + zx = +(6 + z)V/36 — z? with —6 < z < 6. So
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the max or min can occur either when z = —6 or z = +6 or at a z obeying
0= i[(64—2)\/36—22} —1/36 —22 — M
dz /36 — 22
or equivalently
36 —2z> —z2(6+2) =0
2%+ 6236 =0
z24+3z-18=0
(z+6)(z=3)=0
So the max or min can occur either when z = +6 or z = 3.

So we have the following candidates for the locations of the min and max

point | (0,0,£6) | (3v/3,0,3) | (—3+v/3,0,3) | (4,4,2) | (4,—4,2)
value of f 0 27+/3 —27+/3 48 48

min max max

S-27: By way of preparation, we have

oT oT
Tl y) =2ved (ay) = ¥ (22 + 1P
o (oY) =2xel S (xy) = +y" 4 2y)

(a) (i) For this problem the objective function is T(x,y) = e/ (x? + y?) and the constraint
function is g(x,y) = x% + y? — 100. According to the method of Lagrange multipliers,
Theorem 2.10.2 in the CLP-3 text, we need to find all solutions to

T =2xeY = A(2x) = Agy (E1)
T, =¢eY (x2 + %+ 2y) = A(2y) = Agy (E2)
x* +y? = 100 (E3)

(a) (i1) According to equation (E1), 2x(e¥ — A) = 0. This condition is satisfied if and only if
at least one of x = 0, A = ¢¥ is obeyed.

e If x = 0, then equation (E3) reduces to y* = 100, which is obeyed if y = +10.
Equation (E2) then gives the corresponding values for A, which we don’t need.

o If A = ¢¥, then equation (E2) reduces to
e (2 + 12 +2y) = (2y)e¥ <= &¥(x*+y*) =0
which conflicts with (E3). So we can’t have A = €Y.

So the only possible locations of the maximum and minimum of the function T are (0, 10)
and (0, —10). To complete the problem, we only have to compute T at those points.
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point (0,10) | (0,-10)
value of T | 100¢!0 | 100e—10

max min

Hence the maximum value of T(x,y) = ¥ (x*> + y?) on x> + y* = 100 is 100¢'° at (0, 10)
and the minimum value is 100e~1 at (0, —10).

We remark that, on x? + y? = 100, the objective function T(x,y) = e¥ (x* + y?) = 100eV.
So of course the maximum value of T is achieved when y is a maximum, i.e. when
y = 10, and the minimum value of T is achieved when y is a minimum, i.e. when

y = —10.
(b) (i) By definition, the point (x,y) is a critical point of T(x, y) if ane only if

Ty =2xe¥ =0 (E1)
T,=e(x*+y*+2y) =0 (E2)

(b) (ii) Equation (E1) forces x = 0. When x = 0, equation (E2) reduces to
/(P +2y) =0 < y(y+2)=0 < y=00ry = -2

So there are two critical points, namely (0,0) and (0, —2).

(c) Note that T(x,y) = ¢/ (x> 4+ y*) > 0 on all of R%. As T(x,y) = 0 only at (0,0), it is
obvious that (0,0) is the coolest point.

In case you didn’t notice that, here is a more conventional solution.

The coolest point on the solid disc x? + y? < 100 must either be on the boundary,
x? 4+ y? = 100, of the disc or be in the interior, x> + y? < 100, of the disc.

In part (a) (ii) we found that the coolest point on the boundary is (0, —10), where
T = 100e~19.

If the coolest point is in the interior, it must be a critical point and so must be either (0, 0),
where T = 0, or (0, —2), where T = 4e~2.

So the coolest point is (0,0).
S-28: (a) A normal vector to F(x,v,z) = 4x? + 4y? + 22 = 96 at (xo, Yo, z0) is

VF(x0,Y0,20) = (8x0,8y0,220). (Note that this normal vector is never the zero vector
because (0,0, 0) is not on the surface.) So the tangent plane to 4x? + 4y? + z> = 96 at

(x0, Yo, 20) is
8xo(x — x0) +8yo(y — yo) +2z0(z —29) =0 or 8xox + 8yoy + 220z = 8x3 + 8y3 + 223

This plane is of the form x 4+ y + z = ¢ if and only if 8xyp = 8y = 2z¢. A point (xo, Yo, z0)
with 8xg = 8y = 2z is on the surface 4x? + 4y + z> = 96 if and only if

4x6+4y%—i—zg:4x%+4x%+(4x0)2:96 — 24x%:96 — x%:4 — x9= 12
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When xp = +2, we have yp = +2 and zp = +8 (upper signs go together and lower signs
go together) so that the tangent plane 8xox + 8yoy + 2zoz = 8x3 + 8y3 + 223 is

8(+2)x + 8(£2)y +2(+8)z = 8(£2)% +8(+2)? +2(£8)* or +xty+z=2+2+8
or x+y+z=7FI12
= ¢ = 112

(b) We are to find the x, y and z that minimize or maximize f(x,y,z) = x + y + z subject
to the constraint that g(x,v,z) = 4x? + 4y? + z2 — 96 = 0. By the method of Lagrange
multipliers (Theorem 2.10.2 in the CLP-3 text), the minimizing/maximizing x, y, z must
obey

fr=1=A(8x) = Agy
fy=1=A(8y) = Agy
fz=1=A(2z) = Ag;

4 +4y° +22 96 =
The first three equations give

1 1 1 .
X =g V=13 2= with A # 0

Substituting this into the fourth equation gives

1\? 1\? 1\? 1 1 1\ 1
4(87) +4(8_/\> +(ﬁ) 96 (E+E+Z>ﬁ‘%

PLI
896 8 x 32
1

A=+—

Hence x = +2, y = +2 and z = £8 so that the largest and smallest values of x + y 4z on
4x? 4+ 4y*> +z> — 96 are +2 + 2 + 8 or £12.

(c) The level surfaces of x 4 y 4 z are planes with equation of the form x 4y 4z = c. To
find the largest (smallest) value of x + v + z on 4x? + 4y? + z> = 96 we keep increasing
(decreasing) c until we get to the largest (smallest) value of c for which the plane

x + Yy + z = c intersects 4x? + 4y? + z? = 96. For this value of ¢, x + y + z = c is tangent to
4x% 4 4y* + 22 = 9.

&> <&

Solutions to Exercises 3.1 — Jump to TABLE OF CONTENTS

S-1: (a) {{ dx dy is the area of a rectangle with sides of lengths 4 and 5. So
Trdxdy =4 x5 =20.

(b) §§,, x dx dy = 0 because x is odd x — —x, i.e. under reflection about the y-axis, while
the domain of integration is symmetric about the y-axis. {{,, 3 dx dy is the three times the
area of a half disc of radius 2. So, {{,(x +3)dxdy = 3 x 1 x 722 = 67.
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(c) §§z x dxdy/ {§ dx dy is the average value of x in the rectangle R, namely 5. Similarly,

§§cy dxdy/ §. dxdy is the average value of y in the rectangle R, namely 3. {{, dxdy is
area of the rectangle R, namely ab. So,

o {§sxdxdy =4 {{dxdy = faband

o ffsydxdy =3 [fgdrdy = sab
and {§s(x + y)dxdy = Jab(a +b).

S-2: The following figures show the domains of integration for the integrals in this

problem.
Y Y Y
(a,b) 2
' (0,5) Nay + bz = ab e (1,1)
(a) (b) (©)
y =
7 (@.0) 7 7
Y Y ) (1,1)
y=x (171)
(e) (f)
y = 22 y=ux
T T
ffx +y*)dxdy = J de dy (x* +y?) f dx (x2b+%b3>
23 3
3( b+ ab’)

Jj(x—?)y) dxdy = ]
T

()

56
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1 1-x2 1
(d) ijcosydxdy:f dxf dyxcosyzj dx xsin(1 — x?)
0 0 0
D

_1 [cos(l — xz)]; = %

(e) fj —eVdxdy = def dx ;ey—f dy fdy (1-y

[ yey—i—Zey]; = %(3—2)

Xy xy 1, x(1-x%)
f = = — _—
(f) Jfl+x4dxdy deLdquLx‘l 2fodx T
T

J dt where t= x?

(1—cosl)

1
== {arctant — —ln(l + tz)l _1 (E — 1lr12)
4 . 2

ﬁ The following figures show the domains of integration for the integrals in this
problem.

Y y=e" Y
=1
/ reny 2+ 2% =4 V2
(2,€?)
(a) (b)
1 !
0 2 7 -2 0

J dy dx—J dy 2—Iny] = [Zy—ylny+y]f:eZ_3
0 Iny
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V22 V2 1 3/21V2 8
(b)f dyJ S dry =) dy2y@=—§[(4—2yz) ]0 =3
y J

2—? 2 x2 2 x2 3127 8

dxj dyy = dx {1——}:2J dx {1——}:2{ ——} = -

J_z SR 1 0 1 12), 3
1

3x+2 o 3.2
a2 N _?
(c) f dxf2+4x _2dx[ x x—i—Z}—[ 3 2—|—2x]_2—2
—2-1—\/‘? r5 4 y 4y y2 2 35
= = J |2 _7 L~ 3
[ e[ - vim] =[S duna]
_?
S 2

In part (c), we used that the equation y = x? + 4x is equivalent to y + 4 = (x +2)? and
hencetox = -2+ /vy +4.

S-4: In the given integrals
e yruns for 0 to 2, and
e for each fixed y between 0 and 1, x runs from 0 to y and
e for each fixed y between 1 and 2, x runs from 0 to 2 — y

The figure on the left below contains a sketch of that region together with the generic
horizontal slices that were used to set up the given integrals.

Y
02}

To reverse the order of integration, we switch to vertical, rather than horizontal, slices, as
in the figure on the right above. Looking at that figure, we see that

e xruns for 0to1, and

e for each fixed x in that range, y runs from x to 2 — x.
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So the desired integral is
y=2— x
J J f(x,y) dydx

5-5: (a) In the given integral
e x runs from 0 to 1 and
e for each fixed x between 0 and 1, y runs from x to 1

So the domain of integration is
D={(xry)|0<x<l,x<y<1}

It is sketched in the figure on the left below.
Y r=y y T=Y

1 y=1 1 y=1

T T T

1 17

(b) The given integral decomposed the domain of integration into vertical strips like the
blue strip in the figure on the right above. To reverse the order of integration, we instead
use horizontal strips. Looking at the pink strip in the figure on the right above, we see
that this entails

e having y run from 0 to 1 and
e for each fixed y between 0 and 1, having x run from 0 to y

This gives

1 y 1 y 1 1
f dyf dxex/yzf dy [yex/y} :f dyyle—1)==(e—1)
0 0 0 0 0 2

S-6: (a) On R

e yruns from 1 to 4 (from 1 to v/2 in the first integral and from /2 to 4 in the second).
e For each fixed y between 1 and /2, x runs from 5 to \/y and

e for each fixed y between v/2 and 4, x runs from  to /¥

The figure on the left below is a sketch of R, together with generic horizontal strips as
were used in setting up the integral.
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) )
_ (2:4)
r=1/y

x=1y/2

=

T =,y
(5 V2 - y =2
1,1)
T

(b) To reverse the order of integration we use vertical strips as in the figure on the right
above. Looking at that figure, we see that, on R,

e x runs from 1/4/2 to 2.

e For each fixed x between 1/+/2 and 1, y runs from % to 2x and

e for each fixed x between 1 and 2, y runs from x? to 2x.

So
1 2x
I:f f xydydx-l—JJ f(x,y)dydx
1/V2
(c) When f(x,y) = %,
V2
:J J —dxd +ff —dxd
1 Jiy V2Jdy2y
\/El 1 2
_ Yy_ 14 +f —[y—y—}d
L y[ }y V2 Yy 8] Y
2 1,1 1 1 1 1

—_— 4 =

S-7: (a) When f(x,y) = x,

Lx_:31 [Jy:2x+3 xdy] dx = szg) [x(Zx +3 - xz)] dx

y=x2 x=-—1
20 3 o ; _ e 81 2 3 1
13 2 4, 2 4 3 2 4
2 32
=184+12-20+ > = —
+ +3=3
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(b) On the region E
e x runs from —1 to 3 and
e for each x in that range, y runs from x? to 2x + 3

Here are two sketches of E, with the left one including a generic vertical strip as was
used in setting up the given integral.

Y
(3,9)
y=2x+3
||
(-1,1) / .1:2
T

(c) To reverse the order of integration we use horizontal strips as in the figure on the right
above. Looking at that figure, we see that, on the region E,

e yruns from 0 to 9 and
e for each y between 0 and 1, x runs from —, /y to /y
e for each y between 1 and 9, x runs from (y —3)/2to \/y

So
1 VY 9 VY
I:fdyf dxx+fdyj dx x
0 N 1 (y-3)/2

S-8: The antiderivative of the function sin(y?) cannot be expressed in terms of familiar
functions. So we do not want the inside integral to be over y. So we’ll use horizontal
slices as in the figure

r=-y y r=1y/2
(C2.9) oy Y =4
|
s
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On the domain of integration
e y runs from 0 to 4, and
e for each fixed y in that range, x runs from —y to /2
The given integral
r4 y/2
ff sin(y?) dA = dyf dx sin(y?)
JO -y
D
r4 3

= | dy Sy sin(y?)
0 2

J

5-9: (a) On the domain of integration
e y runs from 0 to 1 and
e for each fixed y in that range, x runs from ,/y to 1.

The figure on the left below is a sketch of that domain, together with a generic horizontal
strip as was used in setting up the integral.

y P /.
(1,1) (1,1)

T =4/y x7=1 ny/
- Pl

sin(7rx?)
X
exchanging the order of integration. Looking at the figure on the right above, we see that,

on the domain of integration,

(b) The inside integral, Si/?

dx, in the given form of I looks really nasty. So let’s try

e x runs from 0 to 1 and

e for each fixed x in that range, y runs from 0 to x2.
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So

1 2 . 2
0 0 X

r1

= | dx xsin(7x?)

JO

_ 211

_|_ M} (Looks pretty rigged!)
0

27T

1
s

S-10: (a) Let’s call the triangle 7. Here are two sketches of 7, one including a generic
vertical strip and one including a generic horizontal strip. Notice that the equation of the
line through (0,0) and (1,1) isy = x.

01l e (1,1)

First, we'll set up the integral using vertical strips. Looking at the figure on the left
above, we see that,on 7,

e x runs from 0 to 1 and
e for each x in that range, y runs from x to 1.

So the integral
1 1
I = J dxj dy y? sin xy
0 X

Next, we’ll set up the integral using horizontal strips. Looking at the figure on the right
above, we see that, on 7,

e yruns from 0 to 1 and
e for each y in that range, x runs from 0 to y.

So the integral

1 Y
I =J dyj dx y? sin xy
0 0
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(b) To evaluate the inside integral, S}C dy y? sin xy, of the vertical strip version, will require
two integration by parts to get rid of the y?. So we’ll use the horizontal strip version.

rl Y
I = dyf dx y? sin xy
0 0
rl y
= | dy | —ycosx
J Y [ y 3/}0
rl

= | dy[y- ycosyz]
Jo

2 gin2]t
y? su;y ]0 (Look’s pretty rigged!)

B 1_—sin1
2

S-11: If we call the triangular base region 7, then the volume is

V= fJf(x,y) dA = Jjexz dxdy
T T

If we set up the integral using horizontal slices, so that the inside integral is the

x—integral, there will be a big problem — the integrand ¢=** does not have an obvious
anti—derivative. (In fact its antiderivative cannot be expressed in terms of familiar
functions.) So let’s try vertical slices as in the sketch

Y

Looking at that sketch we see that
e x runs from 0 to 1, and

e for each x in that range, y runs from 0 to x.
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So the integral is

S-12: (a) On the domain of integration

e yruns from 0 to 1 and

e for each y in that range x runs from y to 2 — y. So the left hand side of the domain is
the line x = y and the right hand side of the domainis x =2 —y.

The figure on the left below is a sketch of that domain, together with a generic horizontal
strip as was used in setting up the integral.

Y Yy
(1,1)
T =y rT=2—y y=2-x
|
\ o o
(2,0) T Tz =1 2,0) ¥

(b) To reverse the order of integration we use vertical, rather than horizontal, strips.
Looking at the figure on the right above, we see that, in the domain of integration

e x runs from 0 to 2 and
e for each x between 0 and 1, y runs from 0 to x, while
e for each x between 1 and 2, y runs from 0 to 2 — x.

So the integral

1 X 2 2—x
I:deJ dyz—l—f dxj dyz
0 0 X 1 0 X
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(c) Using the answer to part (b)

1 x 2 2—x
I:JO deO dy%—i—fl olxj0 dy%
:%lexer%fdx(z_Tx)z
:}L—i—éffdx (%—44—36)
:14_% {41n2—4+%}

4
=2In2-1

S-13: (a) On the domain of integration,

e x runs from 0 to 1, and

e for each fixed x in that range, y runs from +/x to 1. We may rewrite y = \/x as
x = y?, which is a rightward opening parabola.

Here are two sketches of the domain of integration, which we call D. The left hand
sketch also shows a vertical slice, as was used in setting up the integral.

Y Y

T T

(b) The inside integral, Si/f v/14 13 dy, of the given integral looks pretty nasty. So let’s
reverse the order of integration, by using horizontal, rather than vertical, slices. Looking
at the figure on the right above, we see that

e yruns from 0 to 1, and

e for each fixed y in that range x runs from 0 to .
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So

rl a

[ = df dx /1413
0 yO 4
1

X
= | dyy*y1+9°
0

2
_ % Vi withu =1+ y° du = 3y>dy. Looks pretty rigged!
J1

1|ud/? ’
T332,

2(2v2-1)

9

S-14: (a) Observe that the parabola y? = x and the line y = x — 2 meet when x = y + 2
and

Y =y+2 = y¥-y-2=0 = (y-2)(y+1)=0

So the points of intersection of x = y> and y = x — 2 are (1, —1) and (4,2). Here is a
sketch of D.

(1’_1)

To evaluate ], we’ll use horizontal slices as in the figure above. (If we were to use vertical
slices we would have to split the integral in two, with 0 < x < 1 in one part and
1 < x < 41in the other.) From the figure, we see that, on D,

e y runs from —1 to 2 and

e for each fixed y in that range, x runs from y? to y + 2.
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Hence

2 y+2
]:H@mAzfd”"cuw
-1 Y2
D
o

2
=3J1dyﬂy+2—yﬁ

T3 472
_aly 2 ¥
—3[% 4y 4}_1

8 1 1
=32 44—44+-—1+-
37 3 +;

(b) On the domain of integration,
e x runs from 0 to 4 and
e for each fixed x in that range, y runs from J/x to 1.

The figure on the left below is a sketch of that domain, together with a generic vertical
strip as was used in setting up the integral.

Y Y

The inside integral, over y, looks pretty nasty because ¢/’ does not have an obvious
antiderivative. So let’s reverse the order of integration. That is, let’s use horizontal,
rather than vertical, strips. From the figure on the right above, we see that, on the
domain of integration

e y runs from 0 to 1 and

e for each fixed y in that range, x runs from 0 to 4y>.

So
1 412 s
I = f dyf dx ¥
0 0
1 3
= f dy 4y%e¥
0

1

= % J du e with u = y3, du = 3y2 dy (Looks rigged!)
0

=3l-1
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S-15: (a) On the domain of integration

e y runs from —4 to 0 and

e for each y in that range, x runs from ,/~y (when y = —x?) to 2.

The figure on the left below provides a sketch of the domain of integration. It also shows
the generic horizontal slice that was used to set up the given iterated integral.

Yy (2,0) Yy (2,0)
xr xr
B | |
(2,—4) (2,—4)
\ P \ y=—22

(b) The inside integral, Sf/_—y cos(x%) dx looks nasty. So let’s reverse the order of
integration and use vertical, rather than horizontal, slices. From the figure on the right
above, on the domain of integration,

e x runs from 0 to 2 and

e for each x in that range, y runs from —x2 to 0.

So the integral
0 2 2 0
f f cos(x®) dx dy :J dx dy cos(x°)
—4Jy=y 0 —x2

2 (3172

:J dx x? cos(x®) = {sm(x )}
0 3 Jo

_ sin(8)

-3

S-16: (a) On the domain of integration
e y runs from 0 to 4 and
e for each y in the range 0 < y < 1, x runs from —, /y to ./ and

e for each y in therange 1 <y < 4, x runs fromy — 2 to /.

Both figures below provide sketches of the domain of integration.
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(-1,1) (-1,1)

To reverse the order of integration observe, from the figure on the right above that, on the
domain of integration,

e x runs from —1 to 2 and
e for each x in that range, y runs from x? to x + 2.

So the integral

2 x+2
I:J f f(x,y) dydx
-1 xZ

(b) We'll use the integral with the order of integration reversed that we found in part (a).
When f(x,y) = %

2 rx+42 eX
I:J_lLZ x_zdydx
2 X
:J (x+2—x?)
-1
2
=—J (x+1)e* dx
-1
2
_ x
= —|xet| "

1
o)
e

e 2 e’
2dx: —f_l(x—Z)(x—kl)x_z dx

S-17: On the domain of integration
e y runs from 0 to 4. In inequalities, 0 < y < 4.

e For each fixed y in that range, x runs from ,/y to 4/8 — y. In inequalities, that is
VI<x<,B-yory<x*<8-y.

Here are two sketchs of the domain of integration.
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(b) To reverse the order we observe, from the figure on the right above, that, on the
domain of integration,

e x runs from 0 to /8. In inequalities, 0 < x < V8.

e For each fixed x between 0 and 2, y runs from 0 to x2. In inequalities, that is

0<y<x%

e For each fixed x between 2 and /8, y runs from 0 to 8 — x2. In inequalities, that is
0<y<8—x2

So the integral is

foz fo i f(x,y)dydx + ff fxz f(x,y)dydx

(c) We'll use the form of part (b).

J:szﬁdyd”f f 1+y 7y dx
R H |,
:Lz{l—l_: ]dx+ {1 ]

2
1 1
=z d
, 6 {3+x+3—x} g
V8
:\/g—arctanZ—%[ln(3—|—x)—ln(3—x)}2

— V8- arctan2 — = {1 3:?—1115]

= \f — arctan x

S-18: The antiderivative of the function =¥ cannot be expressed in terms of elementary

functions. So the inside integral S 5 eV’ dy cannot be evaluated using standard calculus 2
techniques. The trick for dealing with this integral is to reverse the order of integration.
On the domain of integration

e x runs from —1 to 0. In inequalities, —1 < x < 0.
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e For each fixed x in that range, y runs from —2 to 2x. In inequalities, —2 < y < 2x.

The domain of integration, namely
{(xvy)| -1<x<0, 2<y<2x}

is sketched in the figure on the left below.

(—1,-2) i (—1,-2) =
Yy = —2\;7 Yy = 2\)'/

y =2z r=1y/2

Looking at the figure on the right above, we see that we can also express the domain of
integration as

{(xy)| —2<y<0,y/2<x<0}

So the integral

0 2x 0 0
f f e’ dydx:J J e/ dxdy
~1J-2 —2Jy/2

0 2

|
—_ N -

S-19: We first have to get a picture of the domain of integration. The first integral has
domain of integration

{(xy)|0<x<2,0<y<ux}
and the second integral has domain of integration
{(x,y)|2<x<6,0<y<v6-—x}
Here is a sketch. The domain of integration for the first integral is the shaded triangular

region to the left of x = 2 and the domain of integration for the second integral is the
shaded region to the right of x = 2.
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(6,0)

To exchange the order of integration, we use horizontal slices as in the figure below.

(6,0)

The bottom slice has y = 0 and the top slice has y = 2. On the slice at height y, x runs
from y to 6 — 2. So

I= f: E_yzf (x,y) dxdy

S-20: (a), (b) Looking at the figure on the left below, we see that we can write the domain

D:{(xz}/)\0<y<1, —m<x§M}

[[rmpan=[ar]" " assom= [ [ s aray
D

0 J—y/1-y

So

Yy
(0,1)
T = —\/%.\z +/1—y y=1—2z
u
(—1,% \(1,0) (—1,0)

Looking at the figure on the right above, we see that we can write the domain

D={(xy)| -1<x<10<y<l-x*}
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So
[[reman=[ a[ “avsen=[ [ repayas
D

(c) Using the second form from part (b),

3 rl 1—x2 3
[[eremaa=| ax|  ayer e
-1 0
D

rl

— J (1- xz)ex_(x3/3) dx

-1

r2/3 3

= e"du  withu=x—", du=(1-x%)dx
~2/3 3

_ 23 ,2/3

S-21: (a) On the domain of integration,
e x runs from 0 to 1 and
e for each fixed x in that range, y runs from x? to 1.

The figure on the left below is a sketch of that domain, together with a generic vertical
strip as was used in setting up the integral.

(b) As it stands, the inside integral, over y, looks pretty nasty because sin(y®) does not
have an obvious antiderivative. So let’s reverse the order of integration. The given
integral was set up using vertical strips. So, to reverse the order of integration, we use
horizontal strips as in the figure on the right above. Looking at that figure we see that, on

the domain of integration,

e yruns from 0 to 1 and

e for each fixed y in that range, x runs from 0 to ,/y.
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So

1 VI

I= J dyf dx x% sin(y®)
0 0
1 x4} VY

:dsin3[—
o ¥ sinG) | 7]

|
:ZJ dy y”sin(y”)
0

[,
_ 1—cos(1)
12

S-22: (a) The solid is the set of all (x,y,z) obeying 0 < x < 3,0 <y < 3 and

0 < z < 6 — xy. The base of this region is the set of all (x, y) for which there is a z such
that (x, y, z) is in the solid. So the base is the set of all (x,y) obeying 0 < x <3,0<y <3
and 6 — xy > 0, i.e. xy < 6. This region is sketched in the figure on the left below.

Yy r =3 Yy r =3

(b) We'll deompose the base region into vertical strips as in the figure on the right above.
Observe that the line y = 3 intersects the curve xy = 6 at the point (2,3) and that on the
base

e x runs from 0 to 3 and that
e for each fixed x between 0 and 2, y runs from 0 to 3, while

e for each fixed x between 2 and 3, y runs from 0 to 6/ x
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and that, for each (x, y) in the base, z runs from 0 to 6 — xy. So the

2 3 3 6/x
Volume = [ dx | dy (6 —xy)+ f dx dy (6 — xy)
0 2 0

2 1 3 3 1 6/x
= | dx |6y — sxy?| + f dx [6y — —xyz}
Jo 27 ]y )b 27 ]y
2 3
= dx {18—296] +J dx {%—E}
JO 2 2 X X
— 2 3
— |18x — gxz] + [181nx] — 274 181n > ~ 34.30
i 4 |, 2 2

S-23: In the given integral
e x runs from —2 to 2 and
e for each fixed x between —2 and 2, y runs from x? to 4

So the domain of integration is

D={(xy)| —2<x<2, x¥*<y<4}
This is sketched below.
y ) o
y=4
T
r=—-2 T =2

The inside integral, Siz cos (y*/2) dy, in the given integral looks really nasty. So let’s try
exchanging the order of integration. The given integral was formed by decomposing the
domain of integration D into horizontal strips, like the blue strip in the figure above. To
exchange the order of integration we instead decompose the domain of integration D
into vertical strips, like the pink strip in the figure above. To do so, we observe that, on D,

e y runs from 0 to 4 and
e for each fixed y between 0 and 4, x runs from —,/y to ,/y.

That is, we reexpress the domain of integration as
D={(xy)|0<y<4 —\y<x< vy}
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and the given integral as

2 4 4 N
J f cos (y*/?) dydx = f dyj dx cos (*/?)
—2 Jx2 0 Vil

4
- f dy 2,/ cos (y*/?)
0

4 (8
:§J dt cost where t = y*/2, dt:g\/]?dy
0
4 8 4
_ gsint‘o = sin8 ~ 1319

S-24: (a) We may rewrite the equation x? + y? = 2y of the cylinder as x> + (y — 1)? = 1.
We are (in part (c)) to find the volume of the set

V={(xy2)|x+@y-1)%*<1,0<z<8+2xy}

When we look at this solid from far above (so that we can’t see z) we see the set of points
(x,y) that obey x> + (y — 1)? < 1 and 8 + 2xy > 0 (so that there is at least one allowed z
for that (x,v)). All points in x? + (y — 1)2 < 1 have —1 < x < 1 and 0 < y < 2 and hence
—2 < xy < 2and 8 + 2xy > 0. So the domain of integration consists of the full disk

D:{(x,y)\x2+(y—1)2<1}

The volume is

I= JJ(8 + 2xy) dxdy
D

(b) We can express the double integral over D as iterated integrals by decomposing D
into horizontal strips, like the pink strip in the figure below, and also by decomposing D
into blue strips, like the blue strip in the figure below.

Y

e

For horizontal strips, we use that, on D

e y runs from 0 to 2 and,

e for each fixed y between 0 and 2, x runs from —/2y — y2 to /2y — 2
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so that

D={(xy)|0<y<2 _mgmm}

For vertical strips, we use that, on D
e x runs from —1to 1 and,

e for each fixed x between —1 and 1, y runs from 1 — 1 — x2 to 1 + v/1 — x2

so that
D={(ry)| -1<x<1L,1-VI-x2<x<1+V1-x2}

V2y—2
J f (8 +2xy)
V2y—y2

= Ll dx Jlj\/\/l; dy (8 + 2xy)

Thus

(c) Since {{, 8 dxdy is just 8 times the area of D, which is 7,

V-2 V-2
Volume—87t+f dyf dx2xy-87r+2f dyyf dx x
V2y-y? Vi
=8n
because S_"\Z/y% dx x = 0 for all y, because the integrand is odd and the domain of

integration is even.

5-25: In the given integral

e yruns from 0 to 9 and

e for each fixed y between 0 and 9, x runs from ,/y to 3
So the domain of integration is

D={(xy)|0<y<9 y<x<3}
This is sketched below.




The inside integral, Sf/y sin (77x°) dx, in the given integral looks really nasty. So let’s try

exchanging the order of integration. The given integral was formed by decomposing the
domain of integration D into horizontal strips, like the blue strip in the figure above. To
exchange the order of integration we instead decompose the domain of integration D
into vertical strips, like the pink strip in the figure above. To do so, we observe that, on D,

e x runs from 0 to 3 and
e for each fixed x between 0 and 3, y runs from 0 to x2.
That is, we reexpress the domain of integration as

D={(xy)|0<x<3,0<y<x’}

N

and the given integral as

9 3 3 x?
f J sin(7rx®) dxdy = J dxf dy sin(mx?)
0 Jyy 0 0

3
= j dx x? sin(71x?)
0
1 277
= — dt sint where t = x>, dt = 3% dx
3 0
2771 1 7T 2
_ L t‘ _ t‘ — 2 10212
3 €08 0 37 cos 0 3T

S-26: (a) In the given integral
e x runs from 0 to 1, and
e for each fixed x between 0 and 1, y runs from —y/x to /x.

So the region
R={(vy)|0<x<1, —vx<y<+x}
It is sketched below.
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(b) The given integral was formed by decomposing the domain of integration R into
vertical strips, like the pink strip in the figure above. To exchange the order of integration
we instead decompose the domain of integration R into horizontal strips, like the blue
strip in the figure above. To do so, we observe that, on R,

e y runs from —1 to 1, and
e for each fixed y between —1 and 1, x runs from y? to 1.

So

17l
I:J {f sin (y° —3y) dx| dy
1 2

y

(c) The easy way to evaluate I is to observe that, since sin (> — 3y) is odd under y — —y,
the integral

NE:
J sin (y°> —3y)dy =0
—Vx

for all x. Hence I = 0. The hard way is

I= J_ll {fz sin (y° — 3y) dx} dy

y

1
= L (1-y?)sin (y° —3y) dy

-2
:J sintd—; where t = y® — 3y, dt = 3(y* —1)dy
) —
1

)
= gcost‘z =0

again, since cos is even.

S-27: The parabola y> = 2x + 6 and the line y = x — 1 meet when x = y + 1 with
YV =2y+1)+60ry>—2y—8=(y—4)(y+2) = 0. So they meet at (—1,—2) and (5, 4).
The domain of integration is sketched below.

Yy
A
v x
(_17_2)
\y2 =2rx+6

On this domain

e y runs from —2 to 4, and

e for each fixed y between —2 and 4, x runs from y; —3toy+1.
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So the integral is

y+1 4 1 y+1
J J dx xy = J dy —x2y
y2/2-3 y2/2-3

1
f [ +2y2+y—1y5+3y3—9y}

{ 8y-|—2y —|—4y 4y5]

E
[ Zy +3y + ]

1 1 1
=-2(16—-4)+ 3(64+8) + =(256 — 16) — —— (4096 — 64)

48
=-24+24+120—-84 =36

I\J

S-28: The parabola y? = 2x + 6 and the line y = x — 1 meet when x = y + 1 with
¥ =2(y+1)+60ry>—2y—8 = (y—4)(y+2) = 0. So they meet at (—1, —2) and (5, 4).
The domain of integration is sketched below.

—z—1
A

&
(_17_2)
\ y? =21 +6

On this domain

e y runs from —2 to 4, and

e for each fixed y between —2 and 4, x runs from y; —3toy+1.
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So the integral is

y+1 4 1
J J dx xy = f dy —xzy
y2/2-3

1
[y3 + 2% +y— ZyS +3y° — 94

y+1

y2/2-3
= —f 8y + 212 + 4 — 117
2 K
_oy?
1 1,
:—2(16—4)+3(64+8) 1
— 24424412084 = 36

1
(256 —16) — 75(4096 — 64)

S-29: Looking down from the top, we see the cylinder x? + 2y? < 8. That gives the base
region. The top of the solid, above any fixed (x,y) in the base region, is at z = 8 — x (this
is always positive because x never gets bigger than 1/8) . The bottom of the solid, below
any fixed (x, y) in the base region, is at z = y — 4 (this is always negative because y is
always smaller than 2). So the height of the solid at any (x, y) is

Ztop — Zbottom — (S*x)*(yfll) =12-x-y

8 2y
J J (12—x—y)
8— 2y
Recall, from Theorem 1.2.11 in the CLP-2 text, that if f(x) is an odd function (meaning
that f(—x) = —f(x) for all x), then {* | f(x) dx = 0 (because the two integrals {; f(x) dx

and S(i . f(x) dx have the same magnitude but opposite signs). Applying this twice gives

£/ 8—2y2 2 £/8—2y2 2
f dxxzoandf dyf dxy:f dy 2y, /8 —2y?> =0
N AN T =

The volume is

since x and y+/8 — 2y? are both odd. Thus

8 Zy 8 Zy
f J dx (—x—y) =0 = Volume—f J dx 12
— /822 —/8-2y2

so that the volume is just 12 times the area of the ellipse x> + 2y? = 8, which is

12(m+/82) =48v2 7

&> <&

Solutions to Exercises 3.2 — Jump to TABLE OF CONTENTS
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S-1: (a) Recall that the polar coordinates r, 6 are related to the cartesian coordinates x, ,
by x = rcosf,y =rsinf. Sor = 4/x + y? and tan 6 = £ (assuming that x + 0) and

(x1,11) = (3,0) = r1 =3, tanf; = 0 = 6; = 0as (x1,y1) is on the positive x-axis

(x0,12) = (1,1) = 1= V2, tanf, =1 = 6, = g as (x2,y2) is in the first octant
(x3,y3) = (0,1) = r3=1, cost3 =0= 03 = %T as (x3,y3) is on the positive y-axis

(x4,y4) = (=1,1) = r4 =2, tanfy = —1 — 60, = ?’Zn as (x4,y4) is in the third octant

(x5,y5) = (=2,0) = r5s =2, tanfs = 0 = 05 = 7 as (x5,y5) is on the negative x-axis

(b) The lengths are

18,(8)] = Vcos20 +sin0 = 1
18g(0)| = \/(— sinf)2 + cos?26 =1

As
é,(0)-e9(0) = (cosB)(—sinf) + (sinf)(cosh) =0

the two vectors are perpendicular and the angle between them is 7. The cross product is

i i k
é,(0) x &3(0) =det | cosf sind 0| =k
—sinf cosf 0

(c) Note that for 6 determined by x = rcos6, y = rsin¥,

e the vector &,(6) is a unit vector in the same direction as the vector from (0,0) to
(x,y) and

e the vector &y(0) is a unit vector that is perpendicular to &.(6).

e The y-component of &y(0) has the same sign as the x-component of &,(6). The
x-component of &(0) has opposite sign to that of the y-component of &.(6).

Here is a sketch of (x;,y;), &(6;), &(0;) for i = 1,3,5 (the points on the axes)
Y

e (m)  (=2,0) e-(0)
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and here is a sketch (to a different scale) of (x;,y;), &-(6;), &(6;) for i = 2,4 (the points off
the axes).

er(°F) Y| eo(§) er(§)
(=1,1) ¥(1,1)
eo(%) e

S-2: Here is a sketch of (a,b) and (A, B).
Y

(A, B)
T <CL, b>
o L
0
z
(a) From the sketch,

a=rcosb
b=rsinf

(b) The length of the vector (A, B) is again r and the angle between (A, B) and the x-axis
is 0 + ¢. So

A =rcos(f+ ¢) =rcosbcos¢p —rsinfsing =acosp —bsing

B =rsin(0+ ¢) =rsinflcosp +rcosfsing = bcos ¢ + asing

S-3: (a) The region
R={(xy)|0<®+y> <4 0<y<x}
In polar coordinates,

e the circle x?> + y? = 4 becomes > = 4 or r = 2 and

e the line y = x becomes rsinf) = rcosf or tanf = 1 or 0 =

w3

Thus the domain of integration is

R ={(rcosf,rsinf) |[0<r<2 0<0<

w1

}

On this domain,

e O runs from 0 to %.
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e For each fixed 6 in that range, r runs from 0 to 2, as in the figure on the left below.

In polar coordinates dx dy = r dr df, so that

/4 2
fff(x,y)dxdyzj dGJ drr f(rcos6,rsin®)
0 0

R

0 =

U
4

Alternatively, on R,
e 7 runs from 0 to 2.
e For each fixed r in that range, 0 runs from 0 to 7, as in the figure on the right above.

So
2 /4
fff(x,y) dxdy = J drj df r f(rcos6,rsinf)
0 0
R

(b) The region
R={(xy)|[1<2®+y* <4, x>0,y>0}

In polar coordinates,
e the circle x*> + y> = 1 becomes r> = 1 or r = 1 and
e the circle x?> + y> = 4 becomes r> = 4 or r = 2 and
e the positive x-axis, x > 0, y = 0, becomes § = 0 and
e the positive y-axis, x = 0, y > 0, becomes 6 = 7.

Thus the domain of integration is

R ={(rcosf,rsinf) |1<r<2,0<0<

}

R

On this domain,
e 6 runs from 0 to 7.
e For each fixed 6 in that range, 7 runs from 1 to 2, as in the figure on the left below.

In polar coordinates dx dy = rdr d#f, so that

/2 2
Jff(x,y)dxdy:f dGJ drr f(rcos6,rsinf)
0 1

R
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Alternatively, on R,
e 7 runs from 1 to 2.

e For each fixed r in that range, 0 runs from 0 to 7, as in the figure on the right above.

So
2 /2
Jff(x,y) dxdy = J drf df r f(rcos6,rsinf)
1 0
R

(c) The region
R={(xy)|(x-12+y’<1L,y>0}

In polar coordinates, the circle (x —1)?> +y? = 1, 0r x> = 2x + y> = 0,is > — 2rcos 6§ = 0
orr = 2cos 6. Note that, on r = 2 cos 0,

e when6 =0,r =2and

e as 0 increases from 0 towards 77/2, r decreases but remains strictly bigger than 0
(look at the figure below), until

e whent = 7,7 = 0.

r=2cosf

Thus the domain of integration is
R ={(rcosf,rsinf) |0<O<%, 0<r<2cosf }

On this domain,
e O runs from 0 to %

e For each fixed 6 in that range, r runs from 0 to 2 cos 6, as in the figure on the left
below.

In polar coordinates dx dy = r dr df, so that

/2 2 cos 0
fff(x,y)dxdy:f dGJ drr f(rcos6,rsinf)
0 0
R
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r=2cosf r=2cosf

z
Alternatively, on R,

e 7 runs from 0 (at the point (0,0)) to 2 (at the point (2,0)).

e For each fixed r in that range, 6 runs from 0 to arccos 5 (which was gotten by
solving r = 2 cos 6 for 0 as a function of r), as in the figure on the right above.

2 arccos
Jff(x,y)dxdy:f drf 2d()rf(rcos(),rsim@)
0 0
R

So

(d) The region

R={(0y)|0<y<20<x<y}

In polar coordinates,
e the line y = 2 becomes rsin® = 2 and

e the positive y-axis, x = 0, y > 0, becomes 6 = 7 and

e theline y = x becomes rsin = rcosf or tant) = 1or 6 = 7.
Thus the domain of integration is

R ={(rcosf,rsinf) | Z <6<%, 0<rsinf <2}
On this domain,

e O runs from % to %

e For each fixed 6 in that range, r runs from 0 to

<23, as in the figure on the left below.
In polar coordinates dx dy = rdr d#f, so that

7T/2 2/5in9
fff(x,y)dxdyzf dGJ drr f(rcos6,rsinf)
/4 0
R

y o=

7 Sin

I
0 =2

Y

(2,2)

y=2

Y

(2,2)

7 Sin

r=2

I
0 =2
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Alternatively, on R,
e 7 runs from 0 (at the point (0,0)) to 2v/2 (at the point (2,2)).
e For each fixed r between 0 and 2, 6 runs from % to %, as in the central figure above.

e For each fixed r between 2 and 2v/2, 6 runs from ¥ to arcsin 2 (which was gotten by
solving rsin @ = 2 for 0 as a function of ), as in the figure on the right above.

So

2 /2 2/2 arcsin%
fjf(x,y)dxdy:f drf d9rf(rcos9,rsin9)+f drf dfr f(rcos@,rsin@)
0 /4 2 /4
R

/4

2
S-4: (a) Let D denote the domain of integration. The symbols J dr dé say that, on
1 —mt/4
D,

e 7 runs from 1 to 2 and

e for each r in that range, 6 runs from —7 to 7.
In Cartesian coordinates

e r = 1is the circle x*> + y> = 1 and

e r = 2is the circle x* + y> = 4 and

o = Tistherayy = x, x > 0 and

o 0 =—Tistherayy = —x,x > 0.

So
D={(ry)|l1<x’+y <4 —x<y<x x>0}

Here are two sketches. D is the shaded region in the sketch on the right.

y 0 = /s y y=uz
r=2 22+’ =4
\ 22 +y? =14 Y
T T
0= —7/a y=-

2
(b) Let D denote the domain of integration. The symbols Sg/ *do {77 dr say that, on D,

e O runs from 0 to 7/4 and

2

e for each 6 in that range, r runs from 0 to 5755
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In Cartesian coordinates
e 0 = 0 is the positive x-axis and
o 0 = /sistherayy = x, x > 0 and
e =

m, or equivalently r cos 0 + rsin @ = 2, is the line x +y = 2.

Looking at the sketch on the left below, we see that, since the linesy = x and x +y = 2
cross at (1,1),

D={(xvy)|0<y<ly<x<2-y}

D is the shaded region in the sketch on the right.
0 = /s

(1,1)
x y=2-—=x Y

<
I

x y=2—=x

i T

3
(c) Let D denote the domain of integration. The symbols &2)" de §y cos20+95in%0 say that,
onD,

e O runs all the way from 0 to 27t and

3

\/cos? 0+9sin? 0

e for each 0, r runs from 0 to

In Cartesian coordinates

e r=-—2___ orequivalently r* cos? 8 + 972 sin?§ = 9, is the ellipse
cos2 0+9sin? 0
x% 4+ 9y = 9.
So D is the interior of the ellipse x? + 9y?> = 9 and D is the shaded region in the sketch on
the right.
Y
22+9y2=9 z2+9y%2=9

— e

5-5: (a) In polar coordinates, the domain of integration, x> +y? <a?,0<y <3,
becomes

r<a, 0<rsinf < /3rcosf or r<a, 0<6 <arctanV3 =




The integral is

ff(x +y)dxdy = J drf3 df r (rcosf + rsin0)
0 0
S

s 3
Jdrr sm@—cos@}; a3 {?—% } %[\f—i—l]

(b) In polar coordinates, the domain of integration, x2 4+ y2 <2,x=>1,

y (1,1)
\\\Xb———— r= \/EE
A
r=1
becomes 1
r<+?2, rcosf =1 or <r<v2

cos 6

For ﬁ < r < V2 to be nonempty, we need cos 6 < \/2 or || < . By symmetry under

y — —y, the integral is

ffxdxdy:Z 4d9f dr r (rcos0)

cos 0

3

:2( de cos@r—
JO 3

2 n
= gf4 de [23/2c050—
1 3

cosf

el

cos? 9}

_2_3/2, %_2 3/21 _2
—3_2 sin 6 tanG}O—S[Z 7 1}—3

(c) In polar coordmates the triangle with vertices (0,0), (1,0) and (1,1) has sides 8 = 0,
0= 7Fandr = _ OS = (Which is the polar coordinates version of x = 1). The integral is

1 7T 7T
s 1 (% 1 1 (2
=1 d8 —— == | dO sec*6
4 fo costf 4 J Sec

1 (% 1
= ZJ4 de sec29(1—|—tan29) — A_LJ dt (1—|—t2) where t = tan 6
0 0
_1t+ﬁl_14_1
4 3]p 43 3




(d) In polar coordinates, the domain of integration, x2 4+ yz < 1,becomesr <1,
0<6<2m So

2l 1 1
J In(x? +y?)dxdy = J dGJ drrlnr? = 27rf drrlnr® = nf ds Ins where s = 7
0 0 0 0

x2+y2<1

= n[slns—s]; = -7

To be picky, In s tends to —o0 as s tends to 0. So Sg ds Ins is an improper integral. The
careful way to evaluate it is

1

ds Ins = lim ds Ins = lim [slns—s] = lim [—1—slns+s = -1
e—0t e—0t I3 e—0t

That lim eIlne = 0 was shown in Example 3.7.15 of the CLP-1 text.

e—0T"

S-6: The top surface x? + y2 + z2 = 2 meets the bottom surface z = x> + y* when z obeys

x24y? =z =2—z% Thatis, when 0 = z> +z -2 = (z —1)(z +2). The root z = —2 is

inconsistent with z = x? + y? > 0. So the top and bottom surfaces meet at the circle z = 1,
2.4 .2

x+y =1

In polar coordinates, the top surface is z2 = 2 — 72, or equivalently z = v/2 — 12, and the
bottom surface is z = 2. So the height of the volume above the point with polar
coordinates (r,6) is v2 — 2 — r? and

1 27T 1

Volume:f dr dGr[\/Z—rZ—rZ] =2 | drr[v2—1r2— rz}

0 0 0

1 ok 1 1 1
S o I B G P e
3 i,

4 7
= — ——| ~2.26

In Cartesian coordinates

1- x2
Volume = 4 fdxf 2— xz—y —x* —

The y integral can be done using the substitution y = v2 — x? cos t, but it is easier to use
polar coordinates.

S-7: For this region x and y run over the interior of the cylinder x> + (y —a)? = a%. For
each (x,v) inside the cylinder, z runs from —/x2 + y2 to \/x2 + y2. As x> + (y — a)? = a°
if and only if x? + y* — 2ay = 0, the cylinder has equation 7> = 2ar sin §, or equivalently,

r = 2asin 6, in polar coordinates. Thus (r,0) runs over 0 < 6 < 71, 0 < r < 2asin 6 and for
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Y
r = 2asinf
€T

each (r,0) in this region z runs from —r to r. By symmetry under x — —x, the volume is

24 sin 6 24 sin 6 z
Vdmne—ZJ‘dQJ drr[r—(-r) _4J‘d9J dr 12 ‘fdGQaﬁnm3

0

J dé sin6(1 — cos®6) J dt ( 2) where t = cos 6

S-8: The figure below shows the top view of the specified solid. (x, y) runs over the
interior of the circle x?> + y? = 2ax. For each fixed (x,y) in this disk, z runs from —+/2ax
to ++/2ax. In polar coordinates, the circle is > = 2ar cos 6 or r = 2a cos 6. The solid is

Yy r = 2acost

|
symmetric under x — —x and z — —z, so we can restrict to x > 0, z > 0 and multiply by
4. The volume is

% 24 cos 0
Volume = 4f de J dr rv2ar cos 6
0 0

2acos 6

3 2
:4[2 d@ v2acos 0 = /2
0

0
= ng dé (2a cos@)3 = 65—4a3 J2 dé cos6(1 — sin? 0)
0

64 f dt (1 ) where t = sin 6
S5 b

3
_ 6] P _us3
5 3], 15

-9: (a)

e The equation x? + y? < 2y is equivalent to the equation x> + (y — 1)2 = 1, which is
the equation of the cylinder whose z = zg cross—section is the horizontal circle of
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radius 1, centred on x = 0, y = 1, z = zg. The part of this cylinder in the first octant
is sketched in the figure on the left below.

o z < 4/x2+ yz is the equation of the cone with vertex (0,0,0), and axis the positive
z—axis, whose radius at height z = 2 is 2. The part of this cone in the first octant is
sketched in the figure on the right below.

0,0,2)]  (0,1,2) 0,0,2)]
. . (0,2,2) . (0,2,2)
(2,0,2)

X T

The region E is the part of the cylinder that is above the xy—plane (since z > 0) outside
the cone (since z < 4/x? 4 y2). The part of E that is in the first octant is outlined in red in

the figure below. Both x? + 1> < 2y and 0 < z < 4/x2 + y2 are invariant under x — —x.
So E is also invariant under x — —x. That is, E is symmetric about the yz—plane and
contains, in the octant x < 0, ¥ > 0, z > 0, a mirror image of the first octant part of E.

 (0,2,2)

(0,2,0)

(1,1,0)
x

(b) In polar coordinates, x> + y? < 2y becomes

2 < 2rsin@ < r <2sinb

Let us denote by D the base region of the part of E in the first octant (i.e. the shaded
region in the figure above). Think of D as being part of the xy—plane. In polar
coordinates, on D
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e 6 runs from 0 to 7. (Recall that D is contained in the first quadrant.)
e For each 0 in that range, r runs from 0 to 2 sin 6.

Because
e in polar coordinates dA = rdrd6, and

e the height of E above each point (x,y) in D is 4/x2 4+ y?, or, in polar coordinates, 7,
and

e the volume of E is twice the volume of the part of E in the first octant,

we have
Z 2 sin 0
Volume(E) = ZJ déf dr 12
0 0
- EJZ d6 sin®6 = EJZ d6 sin6 (1 — cos? )
3 Jo 3 Jo

1 0
?6] du (1—u2) with u = cosf, du = —sin6 d6
1

16 1
- |1-=
5]

_32
9

S-10: On the domain of integration
e x runs for 0 to 2, and

e for each fixed x in that range, y runs from 0 to v4 — x2. The equation y = V4 — x2 is
equivalent to x> + y> =4,y > 0.

This domain is sketched in the figure on the left below.
Y

Considering that

3
e the integrand, (x* + y?)?, is invariant under rotations about the origin and
e the outer curve, x% + y2 = 4, is invariant under rotations about the origin

we’ll use polar coordinates. In polar coordinates,
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e the outer curve, x% 4+ y2 =4,isr =2,and

3
e the integrand, (x> + y?)? is r%, and

o dA =rdrdf
Looking at the figure on the right above, we see that the given integral is, in polar
coordinates,
/2 2 T 20 1671
do | drr(P) =5 % =—+
fo Jo rr(r’) 7 =

S-11: (a) The region L is sketched in the figure on the leflt below.

Y y=x Yy

?+y?=4 r=2

L

x2+y2]:2 . r=1/2
(b) In polar coordinates

e the circle x> + y> = 2is > = 2 or r = /2, and

e the circle x> + y> = 4isr> =4 orr = 2, and

e theliney = xisrsin® = rcosf, or tan 6 = 1, or (for the part in the first quadrant)
6 = 7, and

e the positive x—axis (y =0, x > 0)is§ =0
Looking at the figure on the right above, we see that, in £,
e 6 runs from 0 to 7, and

e for each fixed 6 in that range, r runs from V2 to 2.

e dAisrdrdf

So
/4 2
M:J dQJ drrp(rcos@, rsinf)
0 V2
(c) When
2xy 2r2 cos 6 sinf .
P= " = 2 = sin(26)
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we have

(‘7'(/4 2
M = dGJ dr r sin(20)
0 V2

J

= Lﬂﬂl sin(20) d9] [ﬁ; r dr]
;

t/4 {72 2

_ —% cos(ze)]

1

0 2}\5

S-12: We'll use polar coordinates. The domain of integration is

R* = { (rcosf, rsinf) |[0<r<w, 0<O<2m}

The given integral is improper, so we'll start by integrating r from 0 to an arbitrary R > 0,
and then we’ll take the limit R — co. In polar coordinates, the integrand

1 _ 1 .
rerp? ey 2 dA =rdrdd,so

1 . 27T R r
Jf > dA = lim dGJ dr————
oo (1+x2+y?) R= Jo 0o (1+47?)
27T 1 R
= jim [, <0 [z,
: 1 1

= jim 27 {5 21 +R2)}
=7

S-13: Let’s switch to polar coordinates. In polar coordinates, the circle x? + y? = 2 is
r=+/2and theliney = xis = 7.

Y y=zx




In polar coordinates dA = rdr df, so the integral

v e
/4 V2
A/X2+y2dA = ( dHJ drr rsinf ~ r
»£y y JO 0
/4 7’4 V2
= ( df sin6 [—}
JO 4 0
/4
= —cosG]
0
o 1
W2

S-14: (a) On the domain of integration

e y runs from 0 to 1. In inequalities, 0 <y < 1.

e For each fixed y in that range, x runs from /3y to 4/4 — 2. In inequalities, that is

V3y < x < 4/4 — 2. Note that the inequalities x < /4 — y2, x > 0 are equivalent to
X+y?<4,x=0.

Note that the line x = +/3y and the circle x> + y? < 4 intersect when 3y + y? = 4, i.e.
y = *1. Here is a sketch.

> +y? =4

(b) In polar coordinates, the circle x* + y? = 4is r = 2 and the line x = /3y, i.e. £ =
istan = \% or § = Z. Asdxdy = rdr df, the domain of integration is

{ (rcosf,rsinf) |0<6<7/6, 0<r<2}
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/6
Jﬁf n(1+x*+y?) dxdy = Jdrf dé r In(1 +?) fdrrln(1+r)

J dulIn(u w1thu—1-|—r du = 2rdr
12 [u In(u) — u] )
=5 [5 In(5) — 4]
S-15: Here is a sketch of D.
Yy
r =2
—
2 +y* =16
4
D
/3
5 T
._/

We'll use polar coordinates. In polar coordinates the circle x? + y*> = 16 is r = 4 and the
line x = 2isrcos® = 2. So
/ : <r<4}

W[

T
D = 0, rsinf) | —— <60 <
{(rcos rsin ) ‘ 3 p—

and, as dA = r dr df, the specified integral is

~r7T/3 4
ﬂ (2 +12) 2 dA = do drrt
—7t/3 2/ cosf r

~r7T/3 1 4
do [_-}
—rt/3 T'12/cos0

r‘7'[/3 1
40 {cos@ ]

I

_-J—n/3 2 4
B 'sine_e]”“

L 2 4 /3
V3 o7
2 6
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S-16: (a) The inequality x* + y? < 2x is equivalent to (x — 1) + y? < 1 and says that (x, )
is to be inside the disk of radius 1 centred on (1,0). Here is a sketch.

y y==z

(x—1)2+y?=1
(1,0)

T
DJ

In polar coordinates, x = rcos ), y = rsin6 so that the line y = x is 0 = 7 and the circle
X2 +y? =2xis

2 = 2rcos@ or r = 2cos0

Consequently

D ={(rcosf, rsinf)| —7/2<60<7/s,0<r<2cosb }

(b) The solid has height z = r above the point in D with polar coordinates r, 6. So the

/4 2 cos 0
Volume:JJVdA:erzdrdG:J def dr 2
o o —7t/2 0

8 ~7T/4 8 /4
= — dO cos®0 = —J df cosf[1— sin? 0]
3.1—71/2 3 —7t/2
B /4
—§ sinO—Sin?’e]n
3
L —7t/2
=3[(aa) - (43)]
3 \WV2 62 3
40 +E
18v2 9

5-17: We'll use polar coordinates. In D

e 6 runs from 0 to 7 and

e for each fixed § between 0 and 7, r runs from 1 to 1 + cos(0).
So the area of D is

/2 1+4cos® /2 1
area:A:f def drr:f do =2
0 1 2

1+cos6 /2 1
= f dé [E cos? 0 + cos 6}
0

1 0
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We are interested in the average value of r on D, which is

1 (/2 1+cos 6 1 (/2 1
avedist:ZJO d()f1 drrZZZL d9§r3

/2 1 3 2
:Zf de [gcos 0 + cos 9+C089:|

14cos

1

Now we evaluate the integrals of the various powers of cosine.

/2 /2
J cos9 df = sin6 =1
0 0
/2 . /2 /2
J coszedﬂz—cosesme +1J ="
0 2 0 2 Jo 4
/2 20 /2 /2
J cos39d9:w +gf c059d9:g
0 3 0 3 Jo 3
SoA=Z+1and
. 8 2 7w T+44/9
dist=—— |-+ —4+1| =2———— ~ 1442
avedist= 718 [9+4+ } 18

S-18: (a) Observe that

e the condition x? + y? < 1 restricts G to the interior of the circle of radius 1 centred
on the origin, and

e the conditions 0 < x < 2y restricts Gtox > 0, y > 0, i.e. to the first quadrant, and

e the conditions x < 2y and y < 2x restrict 5 < y < 2x. So G lies below the (steep) line
y = 2x and lies above the (not steep) line y = 5.

Here is a sketch of G

224yt =1— (

360



(b) Observe that the line y = 2x crosses the circle x> + y> = 1 at a point (x, y) obeying
20 =x+y =1 = 5x2=1

and that the line x = 2y crosses the circle x> + y?> = 1 at a point (x,y) obeying
Qy)P+yr=x+yP=1 = 57 =1

So the intersection point of y = 2x and x? + y?> = 1 in the first octant is \% , %) and the

a1

5

. . . _ 2 2 1 . o (2. 1
intersection point of x = 2y and x“ + y~ = 1 in the first octant is ( 75 ﬁ)

We'll set up the iterated integral using horizontal strips as in the sketch

_ _ 2
PV (Ge)
|
oo | )
|

Looking at that sketch, we see that, on G,

e y runs from 0 to \%, and
e for each fixed y between 0 and L5’ x runs from % to 2y, and

e for each fixed y between \/ig and \% x runs from § to /1 — 2.

So

Lff(x,]/) dA = JO\}E dy 2y dx f(x,vy) +ff dyL\//szxf(x'y)

y/2

(b) In polar coordinates
o the equation x? + y?> = 1 becomes r = 1, and
e the equation y = x/2 becomes rsinf) = 7 cost or tan§ = %, and
e the equation y = 2x becomes rsinf = 2rcos 0 or tan 0 = 2.

Looking at the sketch
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y 0 = arctan 2

0= arctan%

we see that, on G,
e O runs from arctan % to arctan 2, and

e for each fixed 0 in that range, 7 runs from 0 to 1.

AsdA =rdrdf,and x =rcosf,y = rsinb,

1
arctan 2

arctan 2 1
Jff(x,y) dA:J dGJ drr f(rcosf,rsinf)
) 0
5-19: (a) On the domain of integration

e y runs from 0 to V2 and

e for each y in that range, x runs from y to 4/4 — y2. We can rewrite x = /4 — y? in
the more familiar form x? + y> =4, x > 0.

The figure on the left below provides a sketch of the domain of integration. It also shows
the generic horizontal slice that was used to set up the given iterated integral.

Y (V2,12)

y:

X
ey -
Il |
(2.0) i (2.0)
- '

T €T

(b) To reverse the order of integration observe, we use vertical, rather than horizontal
slices. From the figure on the right above that, on the domain of integration,

e x runs from 0 to 2 and

e for each x in the range 0 < x < +/2, y runs from 0 to x.

X
e for each x in the range v/2 < x < 2, y runs from 0 to v/4 — x2.
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So the integral

V2 rx 2 ra/4—x2
] = f J %e"zﬂz dy dx + Jf f %e"zf‘/z dy dx
0 0 2J0

(c) In polar coordinates, the line y = x is 6 = %, the circle x> + y*> = 4isr = 2, and
dxdy = rdrd#. So

% [e4 } Jl/\f du % with u = cosf, du = —sin6df
- L[] [
:%[4 1} In2

S-20: The paraboloid hits the xy—plane at ;‘—; + gz =1

a by[1-25 2 2
Volume:f dxf ” dy (1—x——%)
—bf dxf“ = (1———vz> where y = bv

Think of this integral as being of the form

R ()

a
bf dx g(x) with g(x
0

Then, substituting x = au,

1 1—u?
Volume = abf duf do (1-— u? — vz)
0 0

=ab Jf dudo (1 - u? - v?)

u2 402 <1
u,v=0
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Now switch to polar coordinates using u = rcos6, v = rsin .

1 s 4 1
Volume:abf drf2 dHr(l—rZ) S AL L
0 0 2 o 8

S-21: Let r(z) be the radius of the urn at height z above its middle. Because the bounding
surface of the urn is parabolic, r(z) must be a quadratic function of z that varies between
3atz =0and 2 at z = +6. The function r(z) = 3 — (%)2 does the job. Slice the urn into
horzontal slices, with the slice at height z a disk of radius r(z) and thickness dz and
hence of volume 7t7(z)?dz. The volume to height z is

Zp

20 Z3 ZS
= d d 3-2| =m|9z2— =
J—e z 1r(z J zn{ ] n[ 18+5x362}6
We wish to choose z( so that

3 5 20 3 5 6 3 5
{92—2——1— z } 25[9 . } 2{9 c6- 4 6 }
-6

18 5x36%] , 4 18 = 5 x 362 18 = 5 x 362
or
3 -5 1 63 65

9zg — -2 0 =~ 19x6—-— = -21.

20 18+5><362 2[ 18 T 5x362 362} 60
Since |9 — 216land [9z— 2 4 38 — 2157, there i
ince |9zp — 8 —|— 6480] 22495 = —21.61 an [ 20— 13 + m]zo——2.490 = —21.57, there 1s
a solution zgp = —2.49 (to two decimal places). The mark should be about 3.5” above the

bottom.

S-22: (a) In polar coordinates, the base region x? +y*> < 9isr < 3,0 < 6 < 27t. So the

24,2 3 27 2 3 2 2 3
Volume = ff etV dxdy = f drf df re” = 27rf dr re"” = me’ .
o Jo 0
x24+y2<9

= (e’ — 1) ~ 25,453

(b) The two integrals have domains

{(xy)|0<sy<lo0<x<y} {(xy|l<y<20<x<2-y}

The union of those two domains (as well as horizontal strips that were used in setting up
the two given integrals) is sketched in the figure on the left below.
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To reverse the order of integration, we decompose the domain using vertical strips as in
the figure on the right above. As

e xruns from 0 to 1 and
e for each fixed x between 0 and 1, y runs from x to 2 — x.
we have that the
1 2—x s o
Volume = J dxf dy e* Y
0 x

L o &

Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-1: Here is a sketch of D.

-

T

By definition, the centre of mass is (%, 77), with ¥ and i being the weighted averages of the
x and y—coordinates, respectively, over D. That is,

$Spxp(xy)dA 7= Spype(xy) dA
Spp(xy) dA §i,0(x,y) dA

By symmetry under reflection in the y—axis, we have ¥ = 0. So we just have to determine
7. We'll evaluate the integrals using vertical strips as in the figure above. Looking at that
tigure, we see that

X =

e xruns from —1to 1, and
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e for each fixed x in that range, y runs from x? to 1.

So the denominator is

1 1 p(x,y)
pr(x,y) dA = J 1dszdy y
- x
D

:%fldx (1—x% :de (1-x%)
4

5
and the numerator of 7 is
1 1 p(xy)
J‘yPQJUdA==f1dXJ2dyy y
D — X
1 1 1
= —J dx (1—x6) =—| dx (1—x6)
3J4 0
_26_+4
37 7
All together, ¥ = 0 and
i
: 7
S-2: (a) Here is a sketch of R.
Y r=1
S
2+’ =4
T
R
_._/

(b) Considering that
e o(x,y) is invariant under rotations about the origin and
e the outer curve x> + y? = 4 is invariant under rotations about the origin and
e the given hint involves a 0 integral

we’ll use polar coordinates.
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Observe that the line x = 1 and the circle x> + y? = 4 intersect when
1+ yz =4 = y= +4/3

and that the polar coordinates of the point (x,y) = (1,1/3) are r = /x2 + 2 = 2 and
0 = arctan% = arctan /3 = % Looking at the sketch

y
T

+—Trcosf =1

we see that, on R,

e 0 runs from —% to 5 and

L — gsechto?2.

e for each fixed 6 in that range, r runs from 5 =

e In polar coordinates, dA = rdr df, and
1 1

e the density p = Ve T

So the mass is

/3 2 r /3
M:fjp(x,y)dA:J déf dr—:J dé [2 —sec]
3 —/3 secf ¥ —/3

/3
= ZJ dé [2 —sec]
0

/3
= 2[29—ln(sec9—|—tan9)}0

:2[¥—ln(2+\/§)+ln(1+0)]

:g—n—Zln(Z—i—\@)

(c) By definition, the centre of mass is (%, 77), with X and i/ being the weighted averages of
the x and y—coordinates, respectively, over R. That is,

Srxp(x,y)dA 7= Sryp(x,y)dA
SSro(x,y) dA f{0(x,y) dA

By symmetry under reflection in the x—axis, we have 7 = 0. So we just have to determine

X =
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%. The numerator is

X

/3 2 r——
fop(x,y) dA:f dé dr - rcos@
] —nt/3 sec 6 r

1 /3 /3
:—J de [4—sec26] cosﬂzf df [4cos b — sect]
2 ) 7/ 0

/3

4sm6 ln(seCQ—l—tanG)]o

[4——ln 2—|—\f)+ln(1+0)1
11'1(2—1—\/»)

All together, 7 = 0 and

2yv3—1In (2 3

—2In (24 v3)

=i

S-3: Let’s call the plate P. By definition, the x—coordinate of its centre of mass is

s §pxdA

$§pdA

Here is a sketch of the plate.

r=1+sind

The cardiod is given to us in polar coordinates, so let’s evaluate the integrals in polar
coordinates. Looking at the sketch above, we see that, on P,

e 0 runs from 0 to 77/2 and
e for each fixed 6 in that range, 7 runs from 0 to 1 + sin 6.

e In polar coordinates dA = rdrdo
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So the two integrals of interest are

/2 1+sin6

ff dA = J déf drr
0 0

P

1 /2
:Ef do (1+ 2sin0 + sin0)
0
1 m/2 1 (72 1—cos(26)
—EEJr[—cosG}O +§L def
o 1 sin(26) /2
_Z+1+Z{9_ > ]0
3
2T
3 +
and
/2 1+sin6 ,_/x\_\
fodA:J dGJ dr r (rcosb)
s 0 0
1 (72 3
:_J dé (1+sinf)” cos
3Jo
1 (2
:§J du u? withu =1 +sinf, du = cos6do
1
1
_ L[4 _q4
512 1]
_>
4
All together
5
7 10
fEp— ~ 0.57

31 T 37+8

For an efficient, sneaky, way to evaluate %T /2 6in2 9 do, see Remark 3.3.5 in the CLP-3 text.

S-4: Call the plate P. By definition, the centre of mass is (¥, 77), with X and § being the
weighted averages of the x and y—coordinates, respectively, over P. That is,

Spxp(x,y) dA 7= Spyp(x,y)dA
SSpp(x,y) dA §{,0(x,y) dA

X =

with p(x,y) = k. Here is a sketch of P.
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By symmetry under reflection in the line y = x, we have i = ¥. So we just have to
determine

§pxdA
§fpdA

X =

The denominator is just one quarter of the area of circular disk of radius 1. That is,
§§p dA = . We'll evaluate the numerator using polar coordinates as in the figure above.
Looking at that figure, we see that

e 6 runs from 0 to 7, and

e for each fixed 6 in that range, r runs from 0 to 1.

AsdA = rdrd6, and x = r cos 6, the numerator

A2 M /2 1
fodA:J dGJ drrrcosf = J d@ cos@ J dr r?
s 0 0 0 0

[smd[2],
1

3

All together

1/3 4
/4 37

=i
Il

<
Il
|

S-5: Here is a sketch of R.
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o\

(1,0) 2,00%

Note that

e the equation of the straight line through (2,0) and (0,2)isy =2 —x,orx =2 —y.
(As a check note that both points (2,0) and (0,2) areon x =2 —y.

e The equation of the straight line through (1,0) and (0,2) isy =2 —2x, or x = 2%]/
(As a check note that both points (0,2) and (1,0) are on x = 2%3/

By definition, the y—coordinate of the center of mass of R is the weighted average of y
over R, which is

7= Sryplx,y)dA _ ffry°dA
Srolx,y)dA — (fry2dA

On R,
e y runs from 0 to 2. Thatis, 0 <y < 2.

e For each fixed y in that range, x runs from 2 =4 to 2 —y. In inequalities, that is

2—
o <x<2-y

Thus
R:{(x,y) ‘0<y<2,2%y<x<2—y}

For both n = 2 and n = 3, we have

Jroa-Lnf s

n+1 n+2
2n+1
C (n+1)(n+2)




So

- ry’dA _ @pE
T WedA T 2

S-6: By the definition given in the statement with (a,b) = (0,0), the average is
1
S OW .
A(D) Jf x% +y* dxdy
D

The denominator A(D) = 7t. We'll use polar coordinates to evaluate the numerator.

27 1

ff«/xz—i—yzdxdy:f dGJ dr rV/r2 cos? 6 + 2 sin® 0
0 0

D

27T 1 27T 1
:f d@f dr? = de =
0 0 0 3

_271
3

So the average is

N

7T

3 _2
7T 3

2
S-7: Note that x2 + y? = x is equivalent to (x - %) +y? = }1, which is the circle of radius

% centred on (%, O) . Let’s call the crescent C and write

D={(xy)|x¥*+y* <1}
H={(xy)| (x—%>2+y2<}1}

so that
C =D\H

meaning that C is the disk D with the “hole” H removed. Here is a sketch.
Yy

PN
N
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(a) As D is a disk of radius 1, it has area 7t. As H is a disk of radius 1/2, it has area 7/4. As

C has density 1,
Mass(C) = deA = Jf dA — JJ dA
c D H
s

_3m
4

(b) Recall that, by definition, the x—coordinate of the centre of mass of C is the average
value of x over C, which is

o xdA
§lcdA

We have already found that SSC dA = %T”. So we have to determine the numerator

gdi:gdi_gdi

As x is an odd function and D is invariant under x — —x, SSD xdA = 0. So we just have
to determine {§,; x dA. To do so we'll work in polar coordinates, so that dA = rdr df. In
polar coordinates x? + y? = x is 1> = r cos § or r = cos 0. So, looking at the figure above
(just before the solution to part (a)), on the domain of integration,

X =

e O runs from —% to %

e For each fixed 0 in that range, r runs from 0 to cos 0.

So the integral is
/2 cos 6 ,_JL
ffdi:J de dr r(rcos@)
H —m/2 0
/2 4
_ J 4o 08 0
_n/2 3
_
-8
So all together
- §§oxdA _ §pxdA—(§,xdA _ 0-3% 1
ficda $cdA T

S-8: The domain is pictured below.
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4+ (y—-1)2%=1

2?2 +y? =2

The two circles intersect when x? + y?> = 2 and
P+ y-12=2-y’+(y—-1>% =1 «— —2y4+3=1 < y=Tlandx = +1

In polar coordinates x?> + y> = 2isr = +v2and x> + (y — 1)> = x> +y> —2y + 1 = 1 1is
r2 —2rsinf = 0 or r = 2sin 0. The two curves intersect when » = 1/2 andv/2 = 2sin 6 so
that 0 = % or %71. So

D ={(rcosf,rsinf) | 1w <0 < 3m vV2<r<2sind }

and, as the density is %,

37t/4 2sin 6 2 37t/4 /2

mass:f dGJ drr—:2f de [2811’19—\/5] :4f de [ZSiDQ—\/E]
/4 V2 r /4 /4

t/

2
:4[—2c059—\@9] 4:4{2—\/571% 1.214

t/

S-9: (a) The side of the triangle from (—a,0) to (0, ¢) is straight line that passes through
those two points. As y = 0 when x = —a, the line must have an equation of the form

y = K(x + a) for some constant K. Since y = ¢ when x = 0, the constant K = £. So that
the equationis y = £(x + a). has equation cx — ay = —ac. Similarly the side of the
triangle from (b,0) to (0, c) has equation y = {(x — b). The triangle has area

A = J(a+b)c. It has centre of mass (¥, 7) with

o1 1
x—foxdxdy 7= Affydxdy
T T

To evaluate the integrals we’ll decompose the triangle into vertical strips as in the figure
Y

(0,¢)

y=c(l+z/a) y =c(1l—xz/b)
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fz%ffxdxdy
T
1 c——x
Z(J dxf dyx+f dxj dyx)
() frarr(=32))
= — dyxx(c+-x)+ | dyxx(c——x
a([are(er i) o [fave(e- )
_112130 12_1317
_A(ch +3ax] ﬁ[zcx 3 |,
_prP )k s@ o) 1,
(a+Db)c
1
§=—||ydxdy

(b) The midpoint of the side opposite (—a,0) is 3[(b,0) + (0,c)] = %(b,¢). The vector
from (—a,0) to 1(b,c) is 3 (b,c) — (—a,0) = <a +3, §> So the line joining these two
points has vector parametric equation

r(t) = (—a,0) +t<a+ %b, %c>

(—a,0) (b,0)

The point (X, 7) lies on this line since

; (%) _ (%(ba), g) = (%,9)

Similarly, the midpoint of the side opposite (b,0) is 5(—a,c). The line joining these two
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points has vector parametric equation
1 1
r(t) = (b,0) +t <—b L §c>
The point (%, 7) lies on this line too, since

r(;) _ @(b_a),g) — (£,7)

It is not really necessary to check that (%, 7) lies on the third median, but let’s do it
anyway. The midpoint of the side opposite (0, c) is 4(b — a,0). The line joining these two
points has vector parametric equation

r(t) = (O,c>+t<g—g,—c>

The point (%, 7) lies on this median too, since

r(;) _ @(b_a),g) — (£7)

L o &

Solutions to Exercises 3.4 — Jump to TABLE OF CONTENTS

S-1: For the surface z = f(x,y) = >/

=4/14+ f2+ f2dxdy—q/1-|— dxdy—q/l-l— ydxdy

by Theorem 3.4.2.a in the CLP-3 text, So the area is
1 1 1 1
9 8 9 \3/271 8 r/1313/2
e [ ego= el 57, = [l ()
— 27|\ 4

S-2: First observe that any point (x,y, z) on the paraboliod lies above the xy-plane if and
only if

2 2 2 2 2 2

O<z=a"—-x"—-y < x"+y <a

That is, if and only if (x,y) lies in the circular disk of radius a centred on the origin. The
equation of the paraboloid is of the form z = f(x,y) with f(x,y) = a®> — x> — 4. So, by
Theorem 3.4.2.a in the CLP-3 text,

Surface area = ff \/1 + fx(x,y)? + fy(x,y)? dx dy

2 ri2<a?
ff A/1+ 4x2 + 4y2 dx dy
x2—|—y2<a2
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Switching to polar coordinates,

a 27T

Surface area = J dr do rv/1 4+ 4r2

0 0

a
:Zﬂf dr rv/1+4r2
0

1+4a2 ds
:Zﬂf g\/g withs = 1+ 4r%, ds = 8rdr
1

S-3: First observe that any point (x,y, z) on the cone lies between the planes z = 2 and
z = 3if and only if 4 < x? + y? < 9. The equation of the cone can be rewritten in the form

z = f(x,y) with f(x,y) = 1/x% + y?. Note that

B = flun = s

So, by Theorem 3.4.2.a in the CLP-3 text,

Cr
Surface area = \/1 + fx(x,y)? + fy(x,y)? dx dy
J
4<x2—:y2<9
rr X2 yZ
= 1 dxd
JJ Ty g Y
4<x2+y?<9
=12 ff dxdy
4<x24y2<9

Now the domain of integration is a circular washer with outside radius 3 and inside
radius 2 and hence of area 71(3% — 2%) = 57. So the surface area is 5v/27.

S-4: The equation of the surface is of the form z = f(x,y) with f(x,y) = 5(x3/2 4+13/2).
Note that

frloy) =vVx  fylxy) =y
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So, by Theorem 3.4.2.a in the CLP-3 text,

1 dy \/1 + fx (0, y)? + fy(x,y)?

f dx 5 dy+/1+x+y

f d
>
5

5
2
3

1
Surface area = J dx
0

y
A+x+y)>?|
y=

X
dx [(2+x)32 — (1+x)%?]
@+ - +277]

25/2 . 25/2 4+ 15/2}

i[S/z
15
%[ —8v2+1]

S-5: (a) By Theorem 3.4.2.a in the CLP-3 text, F(x,y) \/1+fx x,¥)?+ fy(x,y)2

(b) (i) The “dimple” to be painted is part of the upper sphere x> + y* + (z — 2\@) =4It
is on the bottom half of the sphere and so has equation z = f(x,y) = 2¢/3 — 1/4 — x2 — 2.
Note that

foloy) = ———e  fy(ry) = —2

4—x2—y? 4—x?—y?

The point on the dimple with the largest value of x is (1,0,4/3). (It is marked by a dot in
the figure above.) The dimple is invariant under rotations around the z—axis and so has
(x,y) running over x> + y? < 1. So, by Theorem 3.4.2.a in the CLP-3 text,

Surface area = JJ \/1 + fx(x,y)? + fy(x,y)? dx dy

x2+y2<1
B x2 32
_ ” \/1+4x2y2 e
x24+12<1
ff dx dy
x2+y2<1

Switching to polar coordinates,

2r

Vi r

27T
Surface area = f dGJ dr

(b) (ii) Observe that if we flip the dimple up by reflecting it in the plane z = 1/3, as in the
figure below, the “Death Star” becomes a perfect ball of radius 2.
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z = \/g--‘:}:K """ ::<1707\/§)

The area of the pink dimple in the figure above is identical to the area of the blue cap in
that figure. So the total surface area of the Death Star is exactly the surface area of a

sphere of radius 2 and so is %7123 = 327”

S-6: On the upper half of the cone

= flen =R Alen = s Ay = L

so that

2 2
— 2 2 _ _
ds = \/1 + fx(x,y)? + fy(x,y)?>dxdy = \/1+ PR + 2 dxdy = v2dxdy

and

Area = JJ V2dxdy

1<x2+y2<162
=2 [area of { (x,y) | x* +y* <16* } —areaof { (x,y) [ ¥ +1y* <1 }}
= V2 [r16* — m1%] = 255v27 ~ 1132.9

S-7: We are to find the surface area of part of a hemisphere. On the hemisphere

2= floy) =R —x2 -2 filny) = - fyoy) =~

2 —x2— 2 2 —x2— 2

so that

ds = \/1 + fe(x,y)* + fy(x,y)? dxdy = \/1 Tz

a2
=\m 2 Y, dxdy

—x2—y2+a2—x2—y2

379



In polar coordinates, this is dS = \/ﬁ rdrdf. We are to find the surface area of the

part of the hemisphere that is inside the cylinder, x> — ax + y?> = 0, which is polar
coordinates is becomes 1> — arcos@ = 0 or r = a cos 6. The top half of the domain of
integration is sketched below.

Yy
r = acosf
/ x
(a/2,0)
So the
/2 a.cos 0 a /2 2c0os 0
Surface Area = ZJ dQJ dr r—— =24 do | — /a2 — 12
0 0 V a2z —r2 0 [ ]0
/2
= 2af df [a —asin6]
0
/2
= 24° [9 + cos 6} = a*[m - 2]
0
-

Solutions to Exercises 3.5 — Jump to TABLE OF CONTENTS

S-1: {fg A/b? — y?> dx dy = ff,, dx dy dz, where

V={(xyz2)|0< V—y?, 0<x<a, 0<y<b}
={(vyz) |y +22 <P’ 0<x

N

a,y>0,z>0}
Now y2 + z2 < b? is a cylinder of radius b centered on the x—axis and the part of

y + 2% < b?, with y > 0, z > 0 is one quarter of this cylinder. It has cross—sectional area
i 17tb?. V is the part of this quarter—cyhnder with 0 < x < a. It has length a and

cross—sectional area 17tb%. So, {§ /b? — y2dx dy = 1mab.

S-2: The mass is

1 2 3 1
J dxf dyj dzx:6f dxx =3
0 0 0 0

5-3: The domain of integration is

V={(vy2)|xyz=20 s+{+i<1}
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eInV,2<1-2—Jandx,y >0, so the biggest value of z in V is achieved when
X=y= Oandlsc Thus, in V, z runs from 0 to c.

e For each fixed 0 < z < ¢, (x,y) takes all values in
DZ:{(x/y)\X,y>0, §+%<1_§}

The biggest value of y on D; is achieved when x = 0 and is b (1 — Z). Thus, on D, y
runs from 0 to b (1 — ).

e Foreachfixed0 <z<cand0<y <b(1- %), xrunsover

Dy.={x|0<x<a(l1-%{-%)}

This is pictured in the figure on the right below.

Z Y

(0,0,¢) 2 =2 (O’ b(1 — %))

(a,0,0)

So the specified integral is

fjfde J dzjfdxdyx—f dzJ dy dx x
Dy,
(1-2) -1-2) c b(1-2) a2 >
C . c a _g_z
fdzf dyf dx x = J()dZL dy2 <1 2 c>
2b y oz 3 b(1-%) c azb 7\ 3
—Ldz{ o —5‘2)}0 =], 4= (1-7)
2 47°¢ 2
:[_“_bc<1_§>] _ abe
24 c/ |, 24

S-4: The domain of integration is

R={(xvyz2)|0<xyz<lz>21-y,z<2-x-y}

In the figure on the below, the more darkly shaded region is part of z = 1 — y and the
more lightly shaded region is partofz =2 —x —v.
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7

xXr
e In R, z runs from 0 (for example (0,1,0) is in R) to 1 (for example (0,0,1) is in R).
e For each fixed 0 < z < 1, (x, y) runs over
D:={(xy)|0<xy<lLy>1l-z x+y<2-z}

Here is a sketch of a top view of D,.

Y
D, T+y=2-2
=1
r=1 Y
~——y=1—2z

On D,, y runs from1—zto 1.
e Foreachfixed0<z<landl-z<y <1 xrunsfromOto2—-y—z.

So the specified integral is

1 1 1 2—y—z 1 1
ijde:J dszdxdyyzf dzf dyJ dxy:J dz dyy(2—y—2z)
J o 0 1z~ Jo 0 1-z

1 0
:—J dzJ du (1—u)(1+u—z) whereu =1-y
0 z

1 Z 1 Z3 Z3
:f dzf du (1—u2—z—|—uz):f dz (z— % -2+ %)
o Jo 0 3 2
1 1 1 1 5

S-5: (a) The domain of integration is

V={(xyz)|0<z
(o) |y

AR/
-
= O




This is sketched in the figure below. The front face is x 4+ z = 1 and the lightly shaded
right faceisy +z = 1.

zZ =20

T (17170)

InV,
e x takes all values between 0 and 1.

e For each fixed 0 < x < 1, (y, z) takes all values in
Di={(2)|yz20z<1-x y+z<1}

Here is a sketch of D,.

e Looking at the sketch above, we see that, on Dy, y runs from 0 to 1 and
— for each fixed y between 0 and x, z runs from 0 to 1 — x and
— for each fixed y between x and 1, z runs fromOto 1 — y

So the integral is, in the new order,
1
ijf(x,y,z) dV = f dxf dydz f(x,y,z)
0
Vv Dy

1 x 1-x 1 1 1-y
:f dxf dyJ dzf(x,y,z)—l—f de dyf dz f(x,y,2)
0 0 0 0 x 0

(b) The domain of integration is




In this region, x takes all values between 0 and 1. For each fixed x between 0 and 1, (v, z)
takes all values in

D:={(y,2)|0<z<y’, x<y<l}

Here is a sketch of D,.

In the new order, the integral is

1 1 1 e
J dxf dydz f(x,y,z) :f dxf dyJ dz f(x,y,z)
0 0 x 0
Dy

5-6: (a) In the domain of integration for the given integral
e yruns from —1to1, and
e for each fixed y in that range z runs from 0 to 1 — y2, and
e for each fixed y and z as above, x runs from 0 to 2 —y — z.

That is,

E={(xvyz)| -1<y<l0<z<l-y

,0<x<2-y-z}

e Each constant x cross-section of the surface z = 1 — 32 is an upside down parabola.
So the surface z = 1 — y? consists of a bunch of copies of the parabola z = 1 — 2
stacked front to back. The figure of the left below provides a sketch of z = 1 — 2.

e The surface x = 2 — y — z, or equivalenty, x +y + z = 2 is a plane. It passes through
the points (2,0,0), (0,2,0) and (0,0, 2). It is sketched in the figure on the right
below. We know that our domain of integration extends to y = —1, so we have
chosen to include in the sketch the part of the planeinx >0,y > -1,z > 0.
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0-13)

X

(3,1,0) T

The domain E is constructed by using the plane x 4 y 4+ z = 2 to chop the front off of the
“tunnel” 0 < z < 1 — y?. It is outlined in red in the figure below.

z

(3,—1,0)

(b) We are to change the order of integration so that the outside integral is over y (the
same as the given integral), the middle integral is over x, and the inside integral is over
over z.

e We still have y running from —1 to 1.

e For each fixed y in that range, (x,z) runs over

Ey:{(x,z)\O<z<1—y2,0<x+z<2—y}

e The biggest value of x in E, is 2 — y. It is achieved when z = 0. You can also see this
in the figure below. The shaded region in that figure is E,.

e For each fixed x and y as above, z runs over

2

Exy={z]0<z<1-1%0<z<2-x—y}

That is, z runs from 0 to the smaller of 1 — y? and 2 — x — y. Note that
1-y*<2-x—yifandonlyifx <1+y*—y.
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e Soif0<x<1+y?>—y,zrunsfromOtol —y?>andif 1 +y> -~y < x <2—y,zruns
from0to2 —x —y.

So the integral is

2

x=1+y*—y 1-y
J f f f(x,y,z) dzdxdy
=1

x=2—y z=2—x—Y
f J f f(x,y,z) dzdx dy
=—1Jx=1+y2—y Jz=0

S-7: (a) In the given integral ],
e xruns from0tol,
e for each fixed x in that range, z runs from 0 to 1 — %, and

e for each fixed x and z as above, y runs from 0 to 4 — 2x — 4z.

So

E={(xy2)|0<x<1,0<z<1-30<y<4-2x—4z}

Nl=

Notice that the condition y 4 —2x — 4z can be rewrittenasz <1— 3 — 4. Wheny > 0
this implies that z < 1 — 3, so that we can drop the condition z < 1 — 5 from our
description of E:

E={(xyz)|0<x<1,0<y<4-2x—4z,2z>0}

First, we figure out what E looks like. The plane 2x + y + 4z = 4 intersects the x—, y— and
z—axes at (2,0,0), (0,4,0) and (0,0,1), respectively That plane is shown in the sketch on
the left below. The set of points { (x,y,z) | x,y,z > 0, y <4 —2x — 4z } is outlined with
heavy lines.
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(0,4,0)

So it only remains to impose the condtion x < 1, which chops off the front bit of the
tetrahedron. This is done in the sketch on the right above. Here is a cleaned up sketch of
E.

2r+y+4z=4

x o=1 (1,2,0)

(b) We are to reorder the integration so that the outside integral is over y, the middle
integral is over x, and the inside integral is over z. Looking at the figure below,

(0,4,0)

we see that
e y runs from 0 to 4, and

e for each fixed y in that range, (x, z) runs over

{(6,z)|0<x<1,2x+4z<4-y,2>0}

e for each fixed y between 0 and 2 (as in the left hand shaded bit in the figure above)
— x runs from 0 to 1, and then
— for each fixed x in that range, z runs from 0 to ‘#.

e for each fixed y between 2 and 4 (as in the right hand shaded bit in the figure above)

— x runs from 0 to A%y (the line of intersection of the plane 2x + y + 4z = 4 and
the xy—planeis z = 0, 2x + y = 4), and then

— for each fixed x in that range, z runs from 0 to 4_24x —.
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So the integral

S-8: Let’s use V to denote the domain of integration for the given integral. On V

42xy

y=4 x——
f(x,y,z dzdxdy#—f J f f(x,y,z) dzdxdy

e xruns from 0 to 1, and

e for each fixed x in that range y runs from /x to 1. In particular 0 < y < 1. We can
rewrite y = 1/x as x = y? (withy > 0).

e For each fixed x and y as above, z runs from O to 1 — y.

So
V={(xvyz2)|0<x<1 Vx<y< <l-y}
:{(x,y,z)‘x,z>O,x<1,y>fy Lz<l-y}

Outside integral is with respect to x: We have already seen that 0 < x < 1 and that, for each
fixed x in that range, (i, z) runs over

Vi={(y,2)|vx<y<1,0<z<l-y}

Here are two sketches of V. The sketch on the left shows a vertical strip as was used in
setting up the integral given in the statement of this problem. To reverse the order of the

s Y=+ y=1 s Y=+ y=1

z=1-y y=1-—=z2

) Y

y—and z—-integrals we use horizontal strips as in the figure on the right above. Looking at
that figure, we see that, on Vy,

e zruns from 0 to 1 —4/x, and
e for each fixed z in that range, y runs from y/x to 1 — z.
So

1 1—+/x 1-z 1 pl—y/x pl—z
I:f dxj dzj dyf(x,y,z):f J f(x,y,z) dydzdx
0 0 Vx 0 Jo Vx
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Outside integral is with respect to y: Looking at the figures above we see that, for each

0 < x <1,y runs from /x to 1 on V. As x runs from 0 to 1 in V, we have that y/x also
runs from 0 to 1 on V, so that y runs from 0 to 1 on V. Reviewing the definition of V, we
see that, for each fixed 0 < y < 1, (x, z) runs over

Vy={(xz)|0<x<y’ 0<z<l-y}

Here are two sketches of V). Looking at the figure on the left (with the vertical strip), we
z

x =1y
2 _ .2
i1y 4‘ r=y l T =

z=1—y z=1-y

see that, on V},
e x runs from 0 to y?, and

e for each fixed x in that range, z runs from 0 to 1 — y.

1 la 1-y 1 ry? ply
I:f dyf de dzf(x,y,z)zf f f f(x,y,z) dzdxdy
0 0 0 0oJo Jo

Looking at the figure on the right above (with the horizontal strip), we see that, on Vy,

So

e zruns fromOto1—y.

e for each fixed z in that range, x runs from 0 to y>.

1 1-y v 1 rl-y
I:f dyf dzf dxf(x,y,z):f f f f(x,y,z) dxdzdy
0 0 0 oJo Jo

So

Outside integral is with respect to z: Looking at the sketches of Vy above we see that, for
each0<x<1,zrunsfromOto1l—+/xon Vy. Asxruns from0Oto1inV,1—/x also
runs between 0 to 1 on V, so that z runs from 0 to 1 on V. Reviewing the definition of V,
we see that, for each fixed 0 < z < 1, (x, y) runs over

Vo={(vy)]|0<x<y’ Va<y<l-z}

Here are two sketches of V.. Looking at the figure on the left (with the vertical strip), we
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see that, on V,

e x runs from 0 to (1 — z)?, and

e for each fixed x in that range, y runs from /x to 1 — z.

So

(1-z)2 1-z
I—szf dx dy f(x,y,z)
VX

Jfl S Zf(xy, ) dydxdz

Looking at the figure on the right above (with the horizontal strip), we see that, on V.,

e yrunsfromOto1l—z.

e for each fixed y in that range, x runs from 0 to .

1 pl—z py?
J f J f(x,y,z) dxdydz
0Jo Jo

So

1 1-z e
T N
0 0 0

Summary: We have found that

rl I-y
1= J f(x,y,z)dzdydx =
V5 Jo

JO

[l 1y
= J J f(x,y,z)dzdxdy =
0o Jo

JO
(‘1 1-z 1-z

= J f(x,y,z) dydxdz =
Jo Jo VX

J

J

rl

0 J

0 J
rl

1—-v/x pl—z
( f f(x,y,z) dydzdx

f(x,y,z) dxdzdy

f(x,y,z) dxdydz

5-9: First we have to get some idea as to what E looks like. Here is a sketch.
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z Y

We are going to need the equation of the plane that contains the points (—1,0,0),
(0,—2,0) and (0,0, 3). This plane does not contain the origin and so has an equation of

the form ax + by +cz = 1.
e (—1,0,0) lies on the plane ax + by + cz = 1 if and only if a(—1) + b(0) + c(0) = 1.

Soa=-1.
e (0,—2,0) lies on the plane ax + by + cz = 1 if and only if a(0) + b(—2) +c(0) = 1.
Sob=—3.

e (0,0,3) lies on the plane ax + by 4 cz = 1 if and only if 2(0) + b(0) 4+ ¢(3) = 1. So
c=1.
So the plane that contains the points (—1,0,0), (0,—2,0) and (0,0,3)is —x — § + § = 1.
We can now get a detailed mathematical description of E. A point (x,y,z) is in E if and
only if
° lies above the xy—plane, i.e. z > 0, and

X, y/

z)
e (x,y,z) lies to the left of the xz—plane, i.e. y < 0, and
z)

(
(

e (x,y,z) lies behind the yz—plane, i.e. x < 0, and

e (x,y,z) lies on the same side of the plane —x — § + 5 = 1 as the origin. That is
—x — % + £ < 1. (Go ahead and check that (0,0,0) obeys this inequality.)

So
E={(xyz)|x<0,y<0,z>0 -x—5+5<1}

(a) Note that we want the outside integral to be the x—integral. On E

e x runs from —1 to 0 and

e for each fixed x in that range (v, z) runs over

Ex={(v,2)|y<0,z>0, -5 +5<1+x}

Here is a sketch of E,.
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y=0, z=3(1+x)

y=—2(1+z)
2=0

e On E,, y runs from —2(1 4 x) to 0 and
e for each fixed such y, z runs from 0 to 3(1 + x + y/2)
So

3(1+x+y/2)
I—J J J f(x,y,z) dzdy dx
=—1Jy=-2(1+x)

(b) This time we want the outside integral to be the z—integral. Looking back at the
sketch of E, we see that, on E,

e z runs from 0 to 3 and

e for each fixed z in that range (x, y) runs over
Ez:{(x,y)|x<0,y<(), —x—%<1_§}

Here is a sketch of E,.

=0, y=—2(1—2/3)

e On E;, x runs from —(1 —z/3) to 0 and
e for each fixed such x, y runs from —2(1+x —2z/3) to 0
So

z=3 = y=0
I:f f J f(x,y,z) dydxdz
z=0 Jx=—(1-z/3) Jy=—2(1+x—2/3)
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S-10: The plane x 4y + z = 1 intersects the coordinate plane z = 0 along the line
x+y=1,z=0.S0

and

1 1—x 1-x—y 1
= d d d
fo xfo yfo Z(1+x+y+z>4
1—x z=1-x—y
=[] 5 .
1+x+y+@ 0
1— x 1
dej {1—|—x+y) 2_3]
y=1—x
de - ! ~ Y ]
| 2(1+x+y)2 2(4)],_
_1J%x 11 1-x _1fdx 1 1.x
C6Jo L1+ x)?2 22 4 | 6 (1+x)2 2 4

R IS WU S ) e U PR NS W
6| 14+4x 2 8],., 6 2 2 8

_ 1

48

S-11: Note that the planes z = x 4+ y and z = 2 intersect along the line x +y = 2,z = 2.
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So

and the mass of E is

JEJ p(x,y,z)dV = Lz

[

1 [

+y<2 x+y<z<2}
y<2-x, x+y<z<2}

2—x 2

dx J dy f dz z
0 x+y

r2 2—x

. deo dy [4 - (x +v)?]

S-12: First, we need to develop an understanding of what E looks like. Here are sketches

of the parabolic cylinder y = x2, on the left, and the plane y + z = 1, on the right.

z

N NI~ NI~ N

Pzdx [4(2—36) - (x + (2—x))3 —x3]
. 3
4
4(2)(2) - 2(2) — g(z) + f—z] _ % [8— 13—6

z
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E is constructed by using the plane y 4- z = 1 to chop the top off of the parabolic cylinder
y = x2. Here is a sketch.

So

and the integral

1 1 1y
fffde:J dxj dyJ dz x
. 0 x2 0

1 1
:J de dy x(1—y)
0 x?2
1 211
¥y
J dxx{y 2} .

:de {——x3+ ]
1_1 1

4 4 12

_1

12

S-13: First, we need to develop an understanding of what E looks like. Here are sketches
of the plane x + y = 1, on the left, and of the “tower” bounded by the coordinate planes
x =0,y =0,z = 0and the plane x + y = 1, on the right.
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r+y=1

Now here is the parabolic cylinder z = 32 on the left. E is constructed by using the
parabolic cylinder z = y? to chop the top off of the tower x > 0,y >0,z >0, x +y < 1.
The figure on the right is a sketch.

(0,1,1)

So

E:{(x,y,z)‘0<x<1,0<y<1—x,0<z<y2}

396



and the integral

1 1—x Y
JfdeV: (‘ dxf dy | dzz
. JO 0 0

S-14: The integral

r3
ijyzze_"yz dV = dzJ dyJ dx yz2e V=
R

S-15: (a) Each constant y cross section of z = 1 — x? is an upside down parabola. So the
surface is a bunch of upside down parabolas stacked side by side. The figure on the left
below is a sketch of the part of the surface with y > 0 and z > 0 (both of which conditions
will be required in part (b)).

=Y

,? z

T T

(b) The figure on the right above is a sketch of the plane y = z. It intersects the surface
z = 1 — x? in the solid blue sloped parabolic curve in the figure below.
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2

Observe that, on thecurvez =1—x°,z =y, wehavey =1 — x2. So that when one looks
at the solid E from high on the z—axis, one sees

{(x,y)\Oéyélfxz}

The y = 1 — x? boundary of that region is the dashed blue line in the xy—plane in the
tigure above. So

E={(xyz)| ~1<x<1,0<y<1—4?

Hf fy,z)dv = Jll dx f:_xz dy L 4 Fy)
E

S-16: In the integral |,

,y<z<l-x*}

and the integral

e x runs from O to 1. In inequalities, 0 < x < 1.
e Then, for each fixed x in that range, y runs from 0 to x. In inequalities, 0 < y < x.

e Then, for each fixed x and y in those ranges, z runs from 0 to y. In inequalities,
0<z<uy.

These inequalties can be combined into
O<zsys<x<l ()

We wish to reverse the order of integration so that the z—integral is on the outside, the
y—integral is in the middle and the x—integral is on the inside.

e The smallest z compatible with (=) is z = 0 and the largest z compatible with (») is
z=1wWhenx=y=2z=1).50<z<1

e Then, for each fixed z in that range, (x,y) run over z < y < x < 1. In particular, the
smallest allowed v is y = z and the largest allowed yisy = 1 (when x = y = 1). So
z<sy<1l

e Then, for each fixed y and z in those ranges, x runs over y < x < 1.

S0 1 01l
]:L L Lf(x,y,z) dxdydz
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S-17: The hard part of this problem is figuring out what E looks like. First here are
separate sketches of the plane x = 3 and the plane z = 2x followed by a sketch of the two
planes together.

z z z

IR

z =2z
ST s —y y
| ]
r=3 =3
x

Next for the parabolic cylinder z = 2. It is a bunch of parabolas z = 3 stacked side by
side along the x—axis. Here is a sketch of the part of z = y? in the first octant.

Finally, here is a sketch of the part of E in the first octant. E does have a second half
gotten from the sketch by reflecting it in the xz—plane, i.e. by replacing y — —y.
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So2

E={(xvyz)|x<3 —V6<y<+v6 y*<z<2x}

Order dz dx dy OnE,y runs from —+/6 to /6. For each fixed y in this range (x, z) runs
over E, = { (x,z) | x <3, y* <z < 2x }. Here is a sketch of E,.

(¥?/2,9%)

From the sketch
E,={(xz)|y*/2<x<3,y

y:\/g x=3 z=2X
x,vy,z) dzdxd
J__%L_WJZ_yZ f(x,y,2) y

Order dxdzdy: Also from the sketch of E, above

and the integral is

E,={(x,2)|y*<z<6,z/2<x<3}

y=6
J f J f(x,y,z) dxdzdy
=— x=z/2

Order dydx dz: From the sketch of the part of E in the first octant, we see that, on E, z
runs from 0 to 6. For each fixed z in this range (x,y) runs over

and the integral is

E.={(xy)|x<3 —Ve<y<v6 y*<z<2x}
={(xy)|z/2<x<3,y* <z}
={(0y)|z/2<x<3, —Vz<y<+z}
So the integral is
z=6 rx=3 Y=z
f J f f(x,y,z) dydxdz
z=0 Jx=z/2 Jy=—v/z
° °

3  The question doesn’t specify on which side of the three surfaces E lies. When in doubt take the finite
region bounded by the given surfaces. That’s what we have done.
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S-18: (a) The region E is

E={(xyz) |+ <

Here is are sketches, one without axes and one with axes, of the front half of E, outlined

in red.

The integral

Sl
[T

-1<z<y}

Hff (x,y,2) dV = J;qu dxdy f_yl dz f(x,y,2)
7 <

dxf dz f(x,y,2)

f(x,y,z) dzdx dy

(b) Here is a sketch of (the front half of) a constant z slice of E.

0,2z, z2)
(V1 —22,2,2)
(0, -1, —1)

Note that

e in E, z runs from —1 to 1.

(0,1,1)

®(0,1,2)

?+yt=1

e Once z has been fixed, x and y must obey x> + > <1,z <y <1

So

E={(xyz)|-1<z<lz<y<l, -

(0,1,1)




and

mf(x'%'z) dv = J_ll dz Ll dy J_\;\/T;dx f(x,y,2)
E

= J_ll Ll L\;\/Ef(x,y,z) dxdydz

(c) Here is a sketch of a constant x slice of E.

(0,1,1)
(2,41 — 22,4/1 — 22)
(0,-1,-1) vyl
(@ —vi=a%-1) (x,v1—22 —1)

Note that
e in E, x runs from —1 to 1.

e Once x has been fixed, y and z must obey x* + y? < 1, —1 < z < y. In particular the
biggest value of y, and hence also the biggest value of z is V1 — x2.

So
E={(xyz)| -1<x<1, -1<z<V1-x%,z<y<V1-x% }

and

Jfff(x, y,z)dV = f_ll dx le/ﬁ dz Lﬂ dy f(x,v,2)
E

_ E1 J_\l/ﬁj;mf(x,y,z) dy dz dx

S-19: First, we need to develop an understanding of what E looks like. Note that all of
the equations y = 0,y = 2, y +z = 3 and z = x? are invariant under x — —x. So E is
invariant under x — —x, i.e. is symmetric about the yz—plane. We'll sketch the first octant
(i.e. x,y,z > 0) part of E. Thereisalsoax <0,y > 0,z > 0 part.

Here are sketches of the plane y = 2, on the left, the plane y 4 z = 3 in the centre and of
the “tunnel” bounded by the coordinate planes x = 0, y = 0, z = 0 and the planes y = 2,
y +z = 3, on the right.

402



Now here is the parabohc cylinder z = x? on the left. E is constructed by using the
parabolic cylinder z = x? to chop the front off of the tunnel x > 0,0 <y <2,z >0,
x + z < 3. The figure on the right is a sketch.

z

So

(a)On E
e y runs from 0 to 2.
e For each fixed y in that range, (x,z) runs over { (x,z) | x> <z <3-y }.

e In particular, the largest x? is 3 — y (when z = 3 — y). So x runs from —/3 — y to
3—v.

e For fixed y and x as above, z runs from x> to 3 — y.

I—fffxy, )dV = JJ f f(x,y,z) dzdx dy

so that

(b) On E

403



e z runs from 0 to 3.

e For each fixed z in that range, (x,y) runs over
{(xy)|0<y<2 2*<z<3-y}={(vy)|0<y<2 y<3-z«x
In particular, y runs from 0 to the minimum of 2 and 3 — z.

e Soif 0 <z<1(sothat3—z>2),(x,y) runsover{ (x,y) |0 <y <2, x> <z}, while

o
N
N

-

y
e if1 <z<3 (sothat3—z<2), (x,y)runsover { (x,y) |0<y<3-z x

1 (2 vz 3 (32 ;vVE
I:f J f f(x,y,2) dxdydz—l—J f f f(x,y,z)dxdydz
0Jo J-yz 1Jo Joyz

so that

(c)On E
e z runs from 0 to 3.
e For each fixed z in that range, (x, y) runs over
{(xy)|0<y<2 x*<z<3-y}
In particular, y runs from 0 to the minimum of 2 and 3 — z.
<2, x* <z}, while

e Soif 0 <z <1(sothat3—z>2),(x,y)runsover { (x,y) |0 <

y
e if1 <z<3 (sothat3—2z<2),(x,y) runsover{ (x,y) |0<y<3-z x*<z},

Lz 2 3 vz 3—z
I:f J f f(x,y,2) dydxdz—l—J f J f(x,y,z) dydxdz
0 J—+zJo 1 J-vzho

so that

S-20: The cylinder y? + z2 = 1 is centred on the x axis. The part of the cylinder in the first
octant intersects the plane z = 0 in the line y = 1, intersects to plane y = 0 in the line

z = 1 and intersects the plane x = 0 in the quarter circle y> +z%> = 1, x = 0,y,z = 0. Here
is a sketch of E.

Tty =2

DL

x Y2+ 22 =1
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Viewed from above, the region E is bounded by the lines x =0,y = 0, x +y = 2 and
y = 1. This base region is pictured below.

Y

y=1
x
T+y=2

To set up the domain of integration, let’s decompose the base region into horizontal
strips as in the figure above. On the base region

e y runs from 0 to 1 and
e for each fixed y between 0 and 1, x runs from 0 to 2 — y.

e For each fixed (x,y) in the base region z runs from 0 to 4/1 — y?

So
E={(xyz)|0<y<1l,0<x<2-y 0<z<4/1-y?}

and

rl r2—y 1—y2
Jffde: J dy dxf dz z
7 0 JO 0

:J dy dx -z

= dy dx E(l—yz)

0 JO
rl 1 ) 1 1 ) 3
=) w30-)@-y) =7 dy@2-y-2"+y)
1 1 2 1 13
—5{2—5 §+A_J ﬂ~05417

S-21: Theplanesx =1,y =1,z =1, and x + y 4+ z = 2 and the region D are sketched
below.
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T+y+z=2

T y=1

And here is a sketch of D without the planes cluttering up the figure.

z

_—
AN y

On D
e z runs from 0 to 1 and

e for each fixed z, between 0 and 1, (x,y) runs over the triangle T, bounded by x = 1,
y = land x +y = 2 — z. Observe that when z = 0, this triangle is just a point (the
bottom vertex of the tetrahedron). As z increases, the triangle grows, reaching its
maximum size when z = 1.

Here is a sketch of T.

y—l (1—2,‘,1) |

r+y=2-=z2
T

In setting up the domain of integration, we’ll decompose, for each 0 < z < 1, T, into
vertical strips as in the figure above. On T,
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e xrunsfrom1l—zto1land
e for each fixed x between1 —zand 1, y runs from2 —x —z to1

so that

1 1 1 1
JJdeVz ( dszdxdyx:f dzJ dxf dy x
J0 0 1—z 2—x—z
D T,
1

1
=| dz dxx(x+z-1)

JO 1-z
! [ 3 12 !
= | dz x+—x(z—1)}
JO _3 2 1-z
L.
B 1 1 1 ;1 5
=, dz _§+§(z 1) 5(1 z) 5(1 z)7(z—1)
L | 1
— S+ Z(z=1)=2(z—1)°
d[)dz 5 +3E-D 46 )}
! » 1 J 1 1.1 3
=37t 5 1>L—5 1TuT
1
= - =0.125
8

S-22: (a) Here is a 3d sketch of the region. The coordinates of the labelled corners are

a=(0,0,1) b=(0,0,0) c=(1,0,00 d=(0,1,1) f=(0,20) g=(1,1,0)

rty+z=2

(b) Here is a sketch of the side view of T, looking down the y axis.
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We'll set up the limits of integration by using it as the base region. We decompose the
base region into vertical strips as in the figure above. On the base region

e x runs from 0 to 1 and
e for each fixed x between 0 and 1, z runs from 0 to 1 — x2.

e In T, for each fixed (x, y) in the base region, y runs from 0 to 2 — x — z.

So
1 1—x2 2—x—2 1 1—x2
fffde:J dxf dzf dyx:f dxf dz (2—x—2z)x
0 0 0 0 0
T
! [ 2 1 2,2
= | dx x(2—x)(1—x)—§x(1—x)}
0 L
Lo ) s 1 1
= dx [2x —x%2 — 223 +x ——x—l—x3——x51
0 I 2 2
1 [ 1
= de ;x—xz x4+ x? 2x5]
3, 14 1,4 15 1
- {4’6 3V T T T,
_3_1_1+1_1 17
4 3 4 5 12 60
DS

Solutions to Exercises 3.6 — Jump to TABLE OF CONTENTS

S-1: (a), (b) Since the cylindrical coordinate r(x,y, z) of a point (x,y, z) is the distance,

x% 4+ y2, from (x,y,z) to the z-axis, the sets

{(x,y,2) |r(xyz) =0} ={(xyz2) |*+y*=0}={ (x,y,2) [x=y=0}

= the z-axis

{(xyz)|r(xyz)=1}={(xy2)| Pyt =1 }
= the cylinder of radius 1 centred on the z-axis
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X

(), (d) Since the cylindrical coordinate 6(x, y, z) of a point (x, y, z) is the angle between
the positive x-axis and the line from (0,0,0) to (x,y,0), the sets

{ (x,y,2) | 0(x,y,2) = 0 } = the half of the xz-plane with x > 0
{ (x,y,2) | 8(x,y,z) = 7/4 } = the half of the plane y = x with x > 0

z z

9:
Z x

5-2: The sketch is below. To help build up this sketch, it is useful to recall the following
facts.

e The cylindrical coordinate 7 is the distance of the point from the z-axis. In particular
all points with r = 0 lie on the z-axis (for all values of 0).

e The cylindrical coordinate z is the distance of the point from the xy-plane. In
particular all points with z = 0 lie on the xy-plane.

z
r=0, =7, z=1——>¢

r=1, §=0, z=0

& (a) When 6 = 0, sinf) = 0 and cos 8 = 1, so that the polar coordinatesr = 1,0 = 0,
z = 0 correspond to the Cartesian coordinates

(x,y,2z) = (rcosf,rsinb,z) = (1 x cos0, 1 x sin0, 0) = (1,0,0)
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(b) When 6 = %, sinf = cos 0 = \[,
correspond to the Cartesian coordinates

so that the polar coordinatesr = 1,60 = 7,z =0

1 1
(x,y,z) = (rcosf,rsinf,z) = (1 X COS %, 1 x sin g, 0) = (_\/E' —ﬁ,O)
7T

(c) When 8 = 7,sin = 1 and cos = 0, so that the polar coordinatesr = 1,0 = 7,z =0
correspond to the Cartesian coordinates

(x,y,z) = (rcosf,rsinf,z) = (1 X COS %T, 1 x sin g, 0) = (0,1,0)

(d) When 0 = 71, sinf = 0 and cos# = —1, so that the polar coordinatesr = 0,0 = 7
z = 1 correspond to the Cartesian coordinates

(x,y,z) = (rcosf,rsinf,z) = (0 x cosr, 0 xsinr, 1) = (0,0,1)

(e) When 6 = 7, sinf) = cost = \%, so that the polar coordinatesr = 1,6 = 7,z = 1
correspond to the Cartesian coordinates

1 1
(x,y,z) = (rcosf,rsinf,z) = (1 X COS %, 1x sing, 1) = <\_ﬁ' 75,1)

S-4: (a) The cylindrical coordinates must obey

1=x=rcos@ 1=y =rsin6 2=z

Soz=2r=+124+12=+2and tanf = £ = % = 1. Recall that tan (§ + k7t) = 1 for all
integers k. As (x,y) = (1,1) lies in the first quadrant, 0 < 0 < 7. So 6 = T (plus possibly
any integer multiple of 277).

(b) The cylindrical coordinates must obey
—1=x=rcos0 —1=y=rsinb 2=z

Soz=2,r=4/(-1)2+(-1)2=+v2and tanf = £ = =} = 1. Recall that
tan (§ + krt) = 1 for all integers k. As (x,y) = (— 1 —1) lies in the third quadrant,
7T <60 < 3. So 0 = T (plus possibly any integer multiple of 27).

(c) The cylindrical coordinates must obey

—1=x=rcosf V3 =y =rsinf 0=z

Soz=0,r= \/(—1)2 + (\@)2 =2and tanf = % = \_/—? = —+/3. Recall that
tan (2 + krr) = —+/3 for all integers k. As (x,y) = (—1,/3) lies in the second quadrant,
Z <0< 7. So080 = 2 (plus possibly any integer multiple of 27).

(d) The cylindrical coordinates must obey
0=x=rcost 0=y =rsind 1=z

Soz =0,r=+02+ 02 =0and 6 is completely arbitrary.
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5-5: (a) Asx =rcosf and y = rsin®,

z=2xy < z =2r*cosfsinf = r*sin(26)

(b) As x = rcosf and y = rsin®,

(c)Asx =rcosfand y = rsin6,
(x—1)*+y*=1 < (rcosf—1)*4 (rsinf)> =1
— r?cos?>0 —2rcosf+1+r*sin?6 =1
— r? =2rcosf < r=2cosforr=0

= 7 =2cos0

Note that the solution r = 0 is included in = 2 cos  — just choose 6 = %

S-6: (a) In cylindrical coordinates, the cone z = 2a — \/x? + y? is z = 2a — r and the

cylinder x? + y? = 2ay is r> = 2arsin 6 or r = 2asin 6. The figures below show the parts
of the cone, the cylinder and the intersection, respectively, that are in the first octant.

z z z

r=2a—z r=2a—=z

_ : r = 2asinf
T T 2 - r = 2asinf T T 2

The specified region is
V ={(rcosf,rsinf,z) |0<6< <2asinf, 0<z<2a—r}
By symmetry under x — —x, the full volume is twice the volume in the first octant.

So the

2asin 0 2a—r
Volume = ZJ dé f dr rj dz
0

24 sin 6
= J dGJ drr(2a—r)

3
% sin’ 9}

z B 0
3 JZ d@M—F%J dt (1—t2) where t = cos 6
0 2 3h
T 2

= 84° h—g (1—%)] =a3(2n—%)

ZJ do {451 sin?6 —
0




For an efficient, sneaky, way to evaluate So% df sin? 6, see Remark 3.3.5 in the CLP-3 text.

(b) The domain of integration is
V={(vyz)| —x<y<Vv3x, 0<z<l-x*-y*}

Recall that in polar coordinates £ = tan 6. So the boundaries of the wedge —x < y <
or equivalently —1 < £ <+/3, correspond, in polar coordinates, to § = tan~!(— ) =
and 6 = tan~! /3 = Z. In cylindrical coordinates, the paraboloid z=1-x%>—?

becomes z = 1 — r2. There are z’s that obey 0 < z < 1 —r? if and only if r < 1. So, in

cylindrical coordinates,

|
i

V ={(rcosf,rsinb,z) | —%<9<%,0<7’<1/0<Z<1_”2}

and

1 1-12 1
- _(Z4T T (L7
Volume = széfodrrfo d2—<3+4>f0drr(1 r) = — 57 (2 4) 18"

(c) The region is
V={(vyz) |+ <z<2y}

There are z’s that obey x? + y* < z < 2y if and only if
PP <2y — ¥4+ -2y<0 — ¥+ (y-1)*<1

This disk is sketched in the figure

In cylindrical coordinates,
e the bottom, z = x> + 12, is z = 1,
e the top, z = 2y,is z = 2rsin 6, and
e the disk x2 + y2 < 2yis r2 < 2rsin6, or equivalently r < 2sin#,

so that, looking at the figure above,

V ={(rcosf,rsinf,z) [0 <6 <7, 0 <r<2sinb, P <z< 2rsin® }
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By symmetry under x — —x, the full volume is twice the volume in the first octant so that

z 2 sin 6 2r sin 0 z 2 sin 0
Volume = ZJ dQJ drrf dz = ZJ dGJ dr r(2rsin 6 — 1?)
0 0

r2
2t 2t
=2JO do <§_Z) sin* 0
To integrate? sin §, we use the double angle formulae sin® x = Fc%ﬂ and
2. _ 1+4cos(2x) .
Cos” x = ——— to write
sindg — {1 — cos(ZG)]
2
1 1 1
= - _ 2 = cos?
1 2cos( 6) + 4 cos (20)
1 1 1
=7 5 0s(20) + 3 (1+ cos(49))
3 1 1
=-—= 20) + <
g 3¢ 0s(20) + 5 cos(40)
So
2413 1 1 P23 n
Vol =2 —|50——-sin(20) + = =2 ==
olume A 4sm( )+ » sin(40) ; =2 316" = 3

S-7: Note that the paraboloids z = x* + y? and z = 2 — x? — i/ intersect when
z=x%+4 y2 = 1. We'll use cylindrical coordinates. Then X2+ yz =72,dV =rdrdfdz,
and

E={(rcosf,rsinf, z)) |0<r<1,r<z<2-1%,0<0<2m}

so that
f
1 2—y2 27T —_—
Jf f(x,y,z) dV:J drf dz| dor
0 2 0
E
1
= 27'(] dr 74(2—1’2 — 72)
0
1° 17
s
35
° °

4 For a general discussion of trigonometric integrals see §1.8 in the CLP-2 text. In particular the integral
{cos* x dx is evaluated in Example 1.8.8 in the CLP-2 text.
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S-8: Observe that both the sphere x? + y? 4 z2 = 2 and the paraboloid z = x? + 1 are
invariant under rotations around the z—axis. So E is invariant under rotations around the
z—axis and the centroid (centre of mass) of E will lie on the z—axis. Thus ¥ = § = 0 and
we just have to find

gz dv

e dv

The surfaces z = x% + y? and x? + y? + z2 = 2 intersect when z = x? 4 y? and

Z =

z24+22=2 «— 2242-2=0 «— (z24+2)(z—=1)=0

Since z = x% + y? > 0, the surfaces intersect on the circle z = 1, x> + y*> = 2. So

E:{(x/ylz)‘x2+y2<1, xz—i—yzgzg\/z_xTyZ}

Here is a sketch of the y = 0 cross section of E.

Let’s use cylindrical coordinates to do the two integrals. In cylindrical coordinates
e E={(rcosf,rsinf,z)|r<1,0<6<2m r*<z<+v2-r?} and
e dVisrdrdfdz

so, for n = 0,1 (we'll try to do both integrals at the same time)

1 27T \/2—1?
JJJZ” dV:f drf dGJ dz r z"
0 0 72
E
1 ifn=0

21212
:27'(f drr<, r2 r4 )
0 s2-r—r") ifn=1

Since

we have




§edv - 2v2-7 16v2-14

5-9: Note that both surfaces are invariant under rotations about the z—axis. Here is a
sketch of the y = 0 cross section of E.

z =22 + 9>

The surfaces z = x> + y? and x? + y? + z? = 6 intersect when z = x? + y? and
2422 =6 «— 22 +2z-6=0 < (z+3)(z—-2)=0

Since z = x% + y? = 0, the surfaces intersect on the circle z = 2, x> + y*> = 2. So

E:{(x/ylz)‘x2+y2<2, x2+y2<z<\/6_xTy2}

Let’s use cylindrical coordinates to do the integral. In cylindrical coordinates
o E={(rcost,rsinf,z) |r<v2,0<0<2m r*<z<+v6—12},and

o dVisrdrdfdz
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SO

V2 271 A/ 6—12
Jff(szryz) dv :f drf d@f dz r r?
0 0 2
E

N
—27‘(J drr —rz—r —271[ drr2\/6 —7’2—27TJ dr r°
0

:27'(] dLZl( —u)f—Zn— withu = 6 — 1, du = —2rdr
-
ud/2 u5/24 871
=T8535 " 5m| T3
2 87
=-n [4(8—6[6) — 5(32—36\/3)} -3
64 8 72
—n[€—32—§+(24—€>\/6]
48 328
_n{S\F—E}Nl.@n

S-10: We'll use cylindrical coordinates. In cylindrical coordinates

e the sphere x? + y? + z? = a® becomes 1> + z> = a® and

e the circular cylinder x? + y? = ax (or equivalently (x —a/2)? + y* = a?/4) becomes
2 = arcosf or r = acos?.

Here is a sketch of the top view of the solid.

Y

(a/2,0)

The solid is

{ (rcosf,rsinf,z) | —7/2<0<7/2,0<r<acosf, —Va>—r2<z<~a?—r?}

By symmetry, the volume of the specified solid is four times the volume of the solid

{ (rcosf, rsinf,z) |[0<0<7/2,0<r<acosf,0<z<+a>-7r2}
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Since dV = rdr df dz, the volume of the solid is

/2 a.cos 0 az—rz /2 acosG
f dGJ er dzr—4j dﬁf rrv az — r?

/2 acos@
21\3/2
= —— dé
3 0 ( ) 0
4 /2
- _J de [a3— (zzz—azcos2 9)3/2]
3Jo
4ﬂ3 ~r7T/2
= de [1—sin®6
3, [ ]
437 1 /2
:% Q—ECOS(?)@)-I-ZCOSQ}
L 0
_ 4’ 13
3 |2 12 4
@ fr 2
312 3

S-11: Note that the surfaces meet when z = y?> = 4 — x? and then (x, y) runs over the
circle x? + y? = 4. So the domain of integration is

E={(xy2) |+ <4y <z<4-x*}
Let’s switch to cylindrical coordinates. Then
E={(rcosf,rsinf,z) |0 <r<2, 0<6<2m, r?sin®0 < z <4 —r*cos? 0 }
and, since dV = rdrdf dz,

]/2

27T 4—1r2 cos? 6
fffy dV = J drf d@f dzr r251n 0
r2sin®

27T
J dr do 3 sin 0[4 2 cos? § — r sin 6}
0

0
2 27T o
:J dr [4r° — 7] dé 1= cos(26)
0 0 2
1 ? s s sin(260) 1"
=3 Odr [4r° — 1] {G—TL
6 2
:ﬂ{r‘l—r—]
6o
16
3

For an efficient, sneaky, way to evaluate S(z)n sin? 6 d6, see Remark 3.3.5 in the CLP-3 text.
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S-12: By symmetry, ¥ = § = Z, so it suffices to compute, for example, zZ. The mass of the
body is the density, p, times its volume, which is one eighth of the volume of a sphere. So

4
M = g 57‘(&1
In cylindrical coordinates, the equation of the spherical surface of the body is
12 + z2 = 42, The part of the body at height z above the xy—plane is one quarter of a disk
of radius va? — z2. The numerator of Z is

/2 Va2—z2 /2 2
ijzpdv pjdzf dﬂf drrz—pj dzj d@z—

a2—z2

5-13: (a) In cylmdr1ca1 coordinates the equation of a sphere of radius 2 centred on the
origin is 2 + z2 = 22. Since dV = rdrdf dz and dm = f(z + 1)r drdf dz and the hole
has radius 1/2, the integral is

4— 7’2 5 )
mass = drj dz d9—z +1)r
fl/z 4— r2 \@( )

(b) By part (a)
4— 1’2 5 ) 5 r2 A/ 4—12 )
mass = drf dz dG—z +1)r =4n— drr dz (z-+1
L/z Va2 \f3( ) V3 Ji/2 Jo ( )
5 (2 z° Vit
=4m— drr|—+ z}
V32 |3 0
5 (2 [1 3/2 ’ 1/2}
=4n— drr|=(4— +4-r
N _3( ) (4—717)
Make the change of variables s = 4 — 12, ds = —2rdr. This gives
5 (0 ds {1 3/2 1/2} 5 [2 52, 2 3/2]
mass = 47— — +s = 21— + =s
\f 15/4 -2 |3 \f3 15 3 15/4
05 |2 15%/2 N 215%/2
V3|15 32 3 8
5 1 1 525
=2 | =+ = |15%2 = ~ 153.7k
ﬂ\@{16+12] 5 \fn 53.7kg
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S-14: (a) The solid consists of all (x, y,z) with

e (x,y) running over the disk x> + y*> < 4 and
e for each fixed (x,y) obeying x? + y? < 4, z running from 0 to o~ X212
On the disk x? + y? < 4,

e x runs from —2 to 2 and

e for each fixed x obeying —2 < x < 2, y runs from —v/4 — x2 to V4 — x2
So

2 V/4—x2 e
Volume = J dx f dyJ dz
-2 —4/4—x2 0

(b) Switching to cylindrical coordinates

2 o o 2 27 , 2 ,
Volume = f drf déf dzr = J dr dore™" = J dr2mre™”
0 0 0 0 0 0

22
0

—r

= —7e =7[l- e’ﬂ ~ 3.084

S-15: The solid consists of the set of all points (x, y,z) such that x> + y?> < 4 and
0 < z < 4. In particular y > 0. When we look at the solid from above, we see all (x, )
with x? + y? < 4 and y > 0. This is sketched in the figure on the left below.

z

2?2+t =4

4+ y? =4 2z =y

T

We'll use cylindrical coordinates. In the base region (the shaded region in the figure on
the left above)

e O runs from 0 to 7t and
e for each fixed 0 between 0 and 7, r runs from 0 to 2.

e For each fixed point (x,y) = (¥ cos 6, rsin ) in the base region, z runs from 0) to

Y __ rsinf
2 2 -
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So the volume is

T 2 rsin6/2 T 2 1 T /3 2
Jd@f drf dzr:J d@f dr—rzsin(?:J d6 —sinf| =
0 0 0 0 o 2 0 6 0

7T

4 7T
gfo df sin6

= —3 cos 6

8
3

0

S-16: (a) The direction of maximum rate of increase is Vp (1,0, —1). As

6p 4 2x(z+24%) op 4 2(-1+42) 3
a—p(x,y,z):— 2y(z+2x) P 1,0,-1)=0

oy (1422 412) oy

ap 1 op 1

P R &0 =3

So Vp(1,0,—1) = 1(3,0,1). The unit vector in this direction is f (3,0,1).

(b) The region swept by the space craft is, in cylindrical coordinates,
V={(rcosf,rsinf,z) [ 0<0<2m,0<r<1,0<z<2}

and the amount of hydrogen collected is

ijp dVv = JJZ+12:_CCZ)S rdr df dz
v

pz 27 2 0\,3
:J dZJ dGJ dr zr + (2cos” 0)r

0 0 0

2

1412
27T 1
& 2
= dzJ dGJ dr |z 4 20 — cos20 !
Jo ) 0 1+72 1+72
. r3 r+r—r r
since = —

1412 14712 TT1ye
2 27 . 1
= dzJ dé [E In(1 4 7%) + r* cos? § — In(1 + %) cos? 6]0

r2 27T
= | dz J de {mTzz+c0529—ln(2) cosze}

= | dz [(mIn2)z + 7 — mIn2]
0

=2ntln2+2m7—-2wln2
=27
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S-17: We may choose our coordinate axes so that the torus is constructed by rotating the
circle (x — b)? + z2 = a? (viewed as lying in the xz—plane) about the z—axis. On this circle,
x runs from b — a to b + a. In cylindrical coordinates, the torus has equation

z

(r —b)? + z? = a%. (Recall that the cylindrical coordinate 7 of a point is its distance from
the z—axis.) On this torus,

e rruns fromb—atob+a.
e For each fixed 7, z runs from —+/a%2 — (r — b)2 to 1/a% — (r — b)2.

As the torus is symmetric about the xy—plane, its volume is twice that of the volume of
the part with z > 0.

27 b+a a2—(r—b)2
Volume = ZJ dGJ dr rJ dz

27T b+a
= J dGJ drr a2 (r—b)2

=4 | ds(s+b)Va2—s? wheres =r—b

—a

As sva? —s?is odd under s — —s, {* ds sva2 —s2 = 0. Also, {*  ds va? — s? is precisely

the area of the top half of a circle of radius a. So

a
Volume = 4b7tJ ds /a2 —s2 = 277%4%b
—a

So the mass density of the torus is % and dm = WN;% dV = 5~ M -, rdrdfdz and
27t b+a a?2—(r—b)? M
moment of inertia = 2 f do J drr f dz m r?
27T b+a
— _ 2
nzazb J d@f (r b)
= 2b ds(s—l—b) a? — g2 wheres =r—b
= ;TA;IZ? ds (5% + 3s%b + 3sb + b>)\/a2 — 52
—a
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Again, by oddness, the s®> and 3sb integrals are zero. For the others, substitute in
s =asint, ds = acost.

T _t
2

2

moment = ij (acostdt) (3a*bsin? t+b3)acost— — dt (322 sin? t + b?) cos? t

— J dt (3a% cos? t — 3a® cos* t + b2 cos* t) since sin® t = 1 — cos? t
0

NIR

To integrate® cos? t and cos* t, we use the double angle formulae sin” x = 1_C°2s 2%) and
cos? x = 120 15 yyrite
2
ol f — 1+ cos(2t)
2
and
[1 + cos 2t)}
cos? — =
11 1,
=115 cos(2t) + 7 €08 (2t)
1 1 1
=+ 2t) + - (1 4t
3 T 08 os( )+8(+cos( )
3 1 1
=c-+5 2t) + - 4t
g 5 cos(2t) + g cos(4)
So
moment = — {341 (5 + > 3a ( —sm (2t) + 3—251n(4t)> +0b (E + 1 0
4M T 37 T 3
— 1328 32 Pl = M 2 2
o [3g - g (4+
< -

Solutions to Exercises 3.7 — Jump to TABLE OF CONTENTS

S-1: Since the spherical coordinate ¢(x,y, z) of a point (x, y, z) is the angle between the
positive z-axis and the radius vector from (0,0,0) to (x,y,z), the sets

{ (x,y,2) | ¢(x,y,2z) = 0 } = the positive z-axis
{(x,y,z | ¢(x,y,z) = 7/2 } = the xy-plane
{ (x,y,2) | ¢(x,y,z) = m } = the negative z-axis

Alternatively, tan ¢(x,y,z) = \/xZ—Tyz' so that, forany 0 < ® < 7,

{(xy2) | 9(xy,2) <I>}={(x,y,z)\z:tand>\m}

= the cone that makes the angle ® with the positive z-axis

5 For a general discussion of trigonometric integrals see §1.8 in the CLP-2 text. In particular the integral
{cos* x dx is evaluated in Example 1.8.8 in the CLP-2 text. For an efficient, sneaky, way to evaluate

SO% cos? t dt see Remark 3.3.5 in the CLP-3 text.
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zZ
Y =73
-------- y
T
ya
]
Q0=7T

5-2: The sketch is below. To help build up this sketch, it is useful to recall the following
facts.

e The spherical coordinate p is the distance of the point from the origin (0,0,0). In
particular if p = 0, then the point is the origin (regardless of the values of 6§ and ¢).
If p = 1 then the point lies on the sphere of radius 1 centred on the origin.

e The spherical coordinate ¢ is the angle between the positive z-axis and the radial
line segment from the origin to (x, y, z). In particular, all points with ¢ = 0 lie on
the positive z—axis (regardless of the value of §). All points with ¢ = 7 lie in the
xy-plane.

p=1, 6=0.37, p=0

p=0, 0=0.1m, =0.7T7

p=1, 6=0, @:%

S-3: (a) The point (—2,0,0)

e lies in the xy-plane (i.e. has z = pcos ¢ = 0) and so has ¢ = 7 and
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e lies on the negative x-axis and so has 6 = 77 and
e is a distance 2 from the origin and so has p = 2.
(b) The point (0,3,0)
e lies in the xy-plane (i.e. has z = pcos ¢ = 0) and so has ¢ = 7 and
e lies on the positive y-axis and so has § = 7 and
e is a distance 3 from the origin and so has p = 3.
(c) The point (0,0, —4)
e lies on the negative z-axis and so has ¢ = 7 and 6 arbitrary and

e is a distance 4 from the origin and so has p = 4.

(d) The point ( T f’ ﬁ)

ohasp:\/m:\/<—%>z+ f) (\/3) = +/4 =2and
e has+/3 =z = pcos @ = 2cos ¢ so that cos ¢ = % nd ¢ = ¢ and
e has —% = x = psingcos® = 2(3) cosf so that cos § = —%. As ( \% %) is in
the second quadrant, we have 7 < 0 < mand so 6 = ‘%.
S-4: (a) The Cartesian coordinates correspondingtop =1,0 = 3, ¢ = ¢ are

x = psin cosG—sinEcosz— 1 1 —1
—psingeosg=sinpcosz =15 113) 1

= psin sinG—sinEsinz— 1 ﬁ —ﬁ
y=psingsmb=singsinz =13\ 72 )~ 1
V3

s
Z=pCOSP =cos o = —-

(b) The Cartesian coordinates corresponding top = 2,60 = 7, ¢ = 7 are

. LT T
x = psingcos® = 2sin —cos ~ =0

2 2
y = psin¢@sinf :ZSingsing =2

z:pcosgozzcos%T:O

Alternatively, we could just observe that
e as ¢ = 7 the point lies in the xy-plane and so has z = 0 and

e asp = 2,6 = 7 the point lies on the positive y-axis and is a distance 2 from the
origin and so is (0,2,0).
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S-5: (a) In spherical coordinates

22 = 3x2 4 3y* < % cos® ¢ = 3p*sin® ¢ cos? B + 3p? sin® ¢ sin? f = 3p? sin? ¢
1
— tan2¢:§ < tangp = +—

V3

7T 57
< qo:—OI‘—

6 6

The surface z? = 3x% + 3y? is a cone. The upper half of the cone, i.e. the part withz > 0,

is ¢ = 7. The lower half of the cone, i.e. the part withz < 0,isp =7~ 7 = 57”

(b) In spherical coordinates
PP+ (z-1)2=1 «— p?sin® g cos® 0 + p? sin® ¢ sin? 6 + (pcos ¢ — 1)2 =1
— p?sin? ¢ + p?cos> ¢ —2pcos ¢ = 0
— p*—2pcosp =0
< p=2cos¢Q
(c) In spherical coordinates
>+ 1y =4 < p?sin® gcos? f + p*sin® g sin? § = 4
— pz sin? =4
< psing =2

since p > 0 and 0 < ¢ < 77 so that sing > 0.
S-6: In spherical coordinates, the sphere in question is

B={(psingcosh, psingsinf, pcosg) [0<p<1,0<¢p<m,0<0<2m}
AsdV = p?sing dpdedo,

r27T T 1
Volume(S) = fj dv = def d(pf dp p?sin ¢
0 0
B

JO
= :f:n d0] U: d¢ sin (p] [Ll dp p2]
= 21|~ cosg|” {%3]: — 2m)(2) (%)
47
-3

S-7: (a) First observe that both boundaries of E, namely p = 1 and p = 1 + cos ¢, are
independent of the spherical coordinate 6. So E is invariant under rotations about the
z—axis. To sketch E we
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e first sketch the part of the boundary of E with 6 = 0 (i.e. in the half of the xz—plane
with x > 0), and then

e rotate about the z—axis.

The part of the boundary of E with 6 = 0 (i.e. in the half-plane y = 0, x > 0), consists of
two curves.

e p=1+cosg,0=0:

— When ¢ = 0 (i.e. on the positive z—axis), We have cos ¢ = 1 and hence p = 2.
So this curve starts at (0,0,2).

- As ¢ increases cos ¢, and hence p, decreases.
— When ¢ is 7 (i.e. in the xy—plane), we have cos ¢ = 0 and hence p = 1.

— When 7 < ¢ < 71, we have cos ¢ < 0 and hence p < 1. All points in E are
required to obey p > 1. So this part of the boundary stops at the point (1,0,0)
in the xy—plane.

— The curve p =1+ cos ¢, 6 0 < ¢ < 7 is sketched in the figure on the left
below. It is the outer curve from (0,0,2) to (1,0,0).
e p=1,0=0:

— The surface p = 1 is the sphere of radius 1 centred on the origin.

— As we observed above, the conditions 1 < p <1+ cos¢ force 0 < ¢ < 7, i.e.
z = 0.

— The sphere p = 1 intersects the quarter plane y = 0, x > 0, z > 0, in the quarter
circle centred on the origin that starts at (0,0, 1) on the z—axis and ends at
(1,0,0) in the xy—plane.

— Thecurvep =1,0 = 0,0 < ¢ < 7 is sketched in the figure on the left below. It
is the inner curve from (0,0,1) to (1,0,0).

To get E, rotate the shaded region in the figure on the left below about the z-axis.
The part of E in the first octant is sketched in the figure on the right below. The part
of E in the xz—plane (with x > 0) is lightly shaded and the part of E in the yz—plane
(with y > 0) is shaded a little more darkly.

(0,0,1)

(b) In E
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e ¢ runs from 0 (i.e. the positive z-axis) to 7 (i.e. the xy—plane).

e For each ¢ in that range p runs from 1 to 1 + cos ¢ and 6 runs from 0 to 277.

e In spherical coordinates dV = p? sin ¢ dp df d¢.
So
/2 1+4-cos ¢ 27T
Volume(E) = f de f dp df p*sin ¢
0 1 0

(1+cos@)®—13
3

/2
= 27TJ de sing
0

2 (!
- _?ﬂ (u3—1) du withu =1+ cos¢, du =
J2
_ 2n 'u4_u1
3 |4 »
2 [1
=5 1‘1‘4”}
_nm
6

5-8: Recall that in spherical coordinates,

x = psin ¢ cosf
y = psin@sinf
Z = pCos @

2+ y? = p?sin’ ¢
so that x? 4+ y? + z? = 4 becomes p = 2, and 4/x2 + y2 = z becomes

psing =pcosp < tang =1 <= ¢ = —

=1

Here is a sketch of the y = 0 cross—section of D.

z

4yt + 22 =4

N

N

Looking at the figure above, we see that, on D

—singdg
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¢ ¢ runs from 0 (the positive z-axis) to 7 (on the cone), and
e for each ¢ is that range, p runs from 0 to 2 and 6 runs from 0 to 27t.

So
D = { (psingcosf,psingsinb,pcos@) |0 < ¢ <7/4,0<0<2m, p<2}

and, as dV = p?sin 9 dp df de,

z

/4 27 2
I:f d(pf dGJ dp p?sin ¢ pcos ¢
0 0 0

/4 27T 2
:f dgof df)f dp p%sin ¢ cos ¢
0 0 0

24 /4

=271 — d¢ sin¢ cos ¢
4 Jo

24 | sin? @ T
=27 —
4 2

0
=2

5-9: (a) Recall that in spherical coordinates,
x = psin ¢ cosf
y = psin@sind
Z = pCos @
X+ y2 = p2 sin? ¢
so that x? + y? + z? = a® becomes p = a, and 1/x% + y? = z becomes

psing =pcosp < tang =1 = (p:g

Here is a sketch of the y = 0 cross—section of the specified region.

z

2?2+ y? + 2% = a?

i =Py

X

Looking at the figure above, we see that, on that region,

¢ ¢ runs from 0 (the positive z-axis) to 7 (on the cone), and
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e for each ¢ is that range, p runs from 0 to a and 6 runs from 0 to 27r.

so that

Volume = J: dp JOZH do JOZ dg p?sin g = { J: dp pz}{ Jozn dG}{ JOZ de sin qo}

3 s 3
a 7} a 1
_EZH[—COSQ)}O —27T§ (1—\/—5)

(b) The part of the sphere in question is

R={(xyz) |+ +22<a’, x>0,y=0,2>0}

N
NIx
—

= { (psingcosh, psingsinf, pcosg) [p<a, 0<9<F,0<6

By symmetry, the two specified integrals are equal, and are

" s s z 4 s
J clppzj2 de sin(pf2 dé pcos ¢ = a_zjz de sin¢@cos ¢
0 0 0 42 Jo

Tat (1
=5 dt t where t = sin ¢, dt = cos ¢ dg
0
_ at
16

(c) The planet in question is

P={(xyz2) | +y +z2*<a*}
= { (psingcosf, psingsinb, pcos ) [p <a, 0

N

p<m0<0<2m}

So the

density

a ) T 27T A s a pz
=1 d do si dd — =271A do si d
mass Jo 0P fo (psm(pJO Bt T {Jo (psmq)}{J0 pB—i—pz}

7 B
—4nA | do (1-
& fo p( B+p2>

a/vB 1

= 4wAa — 4tAVB ds T2 where p = v/Bs, dp = v/Bds
0
= 47A (a —+/Btan™! %)
(d) Observe that

e when ¢ = 0 (i.e. on the positive z—axis), cos ¢ = 1 so that p = a(1 — cos ¢) = 0 and
e as ¢ increases from 0 to 7, cos ¢ decreases so that p = a(1 — cos @) increases and

e when ¢ = 7 (i.e. on the xy—plane), cos ¢ = 0 so that p = a(1 — cos ¢) = a and
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e as ¢ increases from 7 to 77, cos ¢ continues to decrease so that p = a(1 — cos @)
increases still more and

e when ¢ = 7 (i.e. on the negative z—axis), cos ¢ = —1 so that p = a(1 — cos ¢) = 2a

So we have the following sketch of the intersection of the specified volume with the right
half of the yz—plane.

p=a(l —cosyp)

The volume in question is invariant under rotations about the z—axis so that

271 T a(1—cos ¢)
Volume = J d()f de sing f dp o?
0 0 0

a (T
= 27(;] dg sin ¢(1 — cos ¢)*
0

= 271; dt 13 wheret =1 —cos ¢, dt =singpdeg
0
3 04
=27 % = §7m3

S-10: Let’s use H to denote the hemispherical shell. On that shell, the spherical coordinate
@ runs from 0 (on the z—axis) to 77/2 (on the xy—plane, z = 0) and the spherical coordinate
p runs from 2, on x2 4 y2 +22 =4,t03,0on x% + yz +22=09.S0,in spherical coordinates,

H={ (psingcost, psingsinf, pcosg) [2<p<3,0<¢9<m/2,0<60<2m}

(a) In spherical coordinates dV = p?sin ¢ dp d¢ d#, so that, as the density is the constant
D,

3 27T /2
Mass(H) = J dpf d@f de D pz sin ¢
2 0 0
3

L dp p2] [ fo " de [Ln/zdgo sin (p]

3 53
=D {% — %} [27t] [cos0 — cos(rt/2)]
= ﬁnD
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We could have gotten the same result by expressing the mass as
e one half, times
e the density D, times
e the difference between the volume of a sphere of radius 3 and a sphere of radius 2.

That is

1[4 4
Mass(H) = 5D [§n33 - 57123} = 33—8711)

(b) By definition, the centre of mass is (%, 7, Z) where %, 7 and Z are the weighted averages
of x, y and z, respectively, over H. That is

yxDdV fyyDdv 5 WyzDdV

T ,pav YT, Dav [{§ DAV

As H is invariant under reflection in the yz—plane (i.e. under x — —x) we have ¥ = 0. As
H is also invariant under reflection in the xz—plane (i.e. under y — —y) we have 7 = 0. So
we just have to find zZ. We have already found the denominator in part (a), so we just
have evaluate the numerator

z

3 2m n/2

JszDdV:J dpf dGJ de D p*sing pcos ¢
2 0 0

H

3 2m /2
J dp p® f de J de sin¢ cos ¢
2 0 0

4 4
=D [3— — 2—} [27t] F sin2 % — 1sin2 0]

=D

4 4 2 2 2
81 —16 65
All together
65
2D 195
T=§=0 z=2—=-—"~128
4 Brp 152
S-11: (a) Here is a sketch
Z
p=1
Y
xr
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(b)On T,
e the spherical coordinate ¢ runs from 0 (the positive z—xis) to 77/2 (the xy—plane), and
e for each fixed ¢ in that range, 6 runs from 0 to /2, and
e for each fixed ¢ and 6, the spherical coordinate p runs from 0 to 1.
e In spherical coordinates dV = p? sin ¢ dp df d¢ and
xz = (psing@cosf)(pcosp) = p?sin ¢ cos ¢ cosf

So

/2 /2 1
I:f d(pf dGJ dp p*sin? ¢ cos ¢ cos
0 0 0

(c) In spherical coordinates,

/2 /2 1
I = J dg sin? ¢ cos qo] [J dé cos 9] [J dp p4]
0 0 0

_Sin3(P /2 p5 1
= [sin 6] 772 {—]
0

3 5

S-12: We'll use spherical coordinates. On Q,
e the spherical coordinate ¢ runs from 0 (the positive z—-axis) to 7 (the xy—plane),

e the spherical coordinate 6 runs from 0 (the half of the xz—plane with x > 0) to 7 (the
half of the yz—plane with y > 0) and

e the spherical coordinate p runs from 0 to 3.
AsdV = p?singpdpdfde,

X z

3 /2 /2 —_— )
W = qfxde:J dpj dOJ dg p?sin ¢ psin ¢ cos 6 pcos ¢
J 0 0 0
Q
3 /2 .3 9=T/2
— F dpf df p* cos 6 [sm (P]
JO 0 3 _
¢=0
1 (3 al . /2
—EL dp o [sm@]o
_r¥_8
155
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S-13: Let’s use spherical coordinates. This is an improper integral. So, to be picky, we’ll
take the limit as R — oo of the integral over 0 < p < R.

1+ (@ +2+2% dv = 1i “do [0 [“dp s
y +2z7)] = jim | dp | | dgpising
R3

R—w 1+p6
R 27 2
— p _ n
R pz
=4 limf dp c
R—0 Jg 1—|—p
47 R®
= i ithu = o° — 3p°
3R1_1’)1’C}OO du1+u2 with u = p°, du = 3p~dp
R3
= 4—” lim [arctanu]
R—0 0
272

) } T
= — since lim arctanR® = =
3 R— 2

S-14: On the domain of integration

e x runs from —1 to 1.

e For each fixed x in that range, y runs from —+/1 — x2 to v/1 — x2. In inequalities, that
is —v1 — 22 <y < V1 — x2, which is equivalent to x> + > < 1.

e For each fixed (x,y) obeying x> + y?> < 1, z runs from 1 — 4/1 — x2 — y2 to

14 4/1—x? — y2. Ininequalities, thatis 1 — /1 —x2 —y? <z < 1+ /1 —x%2 — 12,

which is equivalent to x? +y? + (z — 1) < 1.

So the domain of integration is
V={(vyz2) |+ +(z-1)*<1}
In spherical coordinates, the condition x? + > + (z —1)2 < 11is

(psin ¢ cosB)? + (psin @sinf)? + (pcosp —1)2 < 1
<1
— p*sin® ¢ + p?cos® ¢ —2pcosp +1 <1

— p?sin? @+ (pcosp —1)?

— p?<2pcos¢@
< p<2cos¢

Note that V is contained in the upper half, z > 0, of R? and that the xy—plane in tangent
to V. So as (x,y,z) runs over V, the spherical coordinate ¢ runs from 0 (the positive
z—axis) to 7/2 (the xy—plane). Here is a sketch of the side view of V.
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AsdV = p?sing dpdgde and (x2 + y* + 22)5/2 = 0, the integral is

J f V1=x2  ply/1-x2—y2

(x> +y* +2%)*? dzdydx = ane md 2COS(Pd 2sin ¢ p°
e y ydx = ¢ ppsingp

277 rr/2 28
f dGJ cos’ (Psmq)

COS /2
—32f dé)[ ‘P}
0 9 0

32 6477
— 220 = 2
g (21 =5

S-15: The top of the cylinder has equation z = h, i.e. pcos ¢ = h. The side of the cylinder
2

has equation x> + > = a
ie. =7

,1.e. psin ¢ = a. The bottom of the cylinder has equation z = 0,

For each fixed ¢, (at the top of the
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can, if ¢ < tan! ) or ;2 (at the side of the can, if ¢ > tan"! £). So the

27T a/ sin ¢
de J de f dp p?sin ¢
0 0

sin <p

tan—! 4 271 h/ cos ¢
Volume = f d J de f dp p*sin ¢ + J
0

T

—la
tan i

tan—! ¢ h . T 3 .
=27'(J hdq) 51r31q0+2njz dgoa .51r31g0
0 3cos’ ¢ tan~1 4 3sin’ ¢

0 a3

:27I{deth§3t— hdsg}

where t = tan ¢, dt = sec? pdg, s = cot ¢, ds = —csc? pdg
1 a\2 a®h ah®  a’h 5
—2”{35(5) +§;} 2 {6 +T}—””h

-16: In spherical coordinates,

X = psin¢cosf Yy = psingsin® Z = pCos @

so that the sphere x? + y? + z? = 4 is p?> = 4 or p = 2 and the cone x? + y? = 2% is
p?sin® ¢ = p?cos? portang = +lorp =%, 3. So

/4 27T 2 /4
moment = J dpj do | d6 p?*sing (pcos¢)* = 27TJ dp p* f dg sin ¢ cos® ¢
0 0 0

1 T4 64 1
=277 — =~ cos® 1— —— ) ~8.665
{510 [ 3 QDL 15 ( 2@)

5-17: (a) In spherical coordinates,
X = psin¢gcos0 y = psin¢gsind z = pcos¢
so that
e the sphere x> + 12 + 22 =1isp =1,
e the xy-plane,z = 0,is¢ = 7
e the positive half of the xz-plane, y = 0, x > 0,is 0 = 0 and
e the positive half of the yz-plane, x =0,y > 0,is 8 = 7

So

Z

JHZOW = E dp fom d¢ fom d0 p? sin ¢ (p cos ¢)
Q

T (1 /2
:—f dpf d¢ p> sin ¢ cos ¢
2Jo " Jo

1 1
_ 31 .- ”“_EJ 3_ T
_2f0dpp 2sm""o RS T
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(b) The hemlspherlcal ball given by z > 0, x> + y* + z? < 1 (call it H) has centroid (%,
with ¥ = 7 = 0 (by symmetry) and

_ [yzdv_4fflgzdv 3

Wi dV = bxdnr  F 8

NS

S-18: (a) In spherical coordinates,

x = psin¢cost y = psin¢gsind Z = pcos¢
the sphere x? + 1% 4+ z2 = 4is p> = 4 or p = 2 and the xy-plane is ¢ = F. So

density

2 /2 27T —_—
mass = J dpj dp | d6 p?sing (90 cos )
0 0 0

(b) The mass of the half ball is

2 /2 27T 2 /2 27T
3 _ 3 .
9J0 dpfo d¢ . do p sm<pcosqb—9{J0 dpp}{fo d¢ sm(pcosq)} {fo dG}

In spherical coordinates, the cone x> + y? = 22 is p?sin® ¢ = p? cos? ¢ or tan¢ = +1 or

¢ =7 3f So the mass of the part that is inside the cone is

/4 27T /4 277
3. _ 3 .
9f0 dpfo d¢ . do p s1n<pcos<p—9{Jo dpp}{fo d¢ sm(pcosgb} [fo d@}

The fraction inside the cone is

n/4 1

dp singcos¢p 2sin2cp‘g/4 1
d¢ sin ¢ cos ¢ %sinch‘g/z 2

7r/2

S-19: The disk of radius 2 centred at the origin in the xy—plane is x* + y? < 4. So
V={(xyz) |x +y? <4, 0<z<2}
The cone with vertex at the origin that contains the top edge, x + y*> = 4,z = 2, of U is
x? +y? =22 So
u={ (x,y,z)\x2+y2<4, 0<z<2, x2+y2>zz}
Here are sketches of the y = 0 cross—section of V, on the left, and U, on the right.
2

z 2 2?4y’ =z
(2,0,2)

(2,0,2)

174 ?+y? =4 2+ y? =4

Ny
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(a) In cylindrical coordinates, x> + 2

< 4 becomes r < 2 and x% + y? > z%isr > |z|, and
the density is 1/x? + y? = r. So
U={(rcosf,rsinb,z) |r<2,0<z<2,r=>z}
Looking at the figure on the left below, we see that, on U
e z runs from 0 to 2, and
e for each z is that range, r runs from z to 2 and 6 runs from 0 to 277.
o dV =rdrdfdz
So
2 - > den51ty -
Mass:f dzf dOJ drr "r 0 f dzf dHJ dr r?
0 0 z
z
=1
U u 7 psinp = 2

(b) Recall that in spherical coordinates,

x = psin ¢ cos 6
Yy = psin @sinf
Z = pCos @

2+ y* = p*sin® ¢

so that x? 4+ y? < 4 becomes psin ¢ < 2, and x> + y? > z? becomes

psing > pcosg < tanp=>1 <= ¢ >

and the density 1/x2 + y2 = psin ¢. So
U = { (psingcosh,psingsinf,pcos¢) | 7/4 < ¢ <7/2,0

=]

<60 <2m, psing <2}
Looking at the figure on the right above, we see that, on U

e ¢ runs from ¥ (on the cone) to 7 (on the xy—plane) and

e for each ¢ is that range, p runs from 0 to

sh <P and 6 runs from 0 to 27r.

So
density
/2 27T 2/ sin @ A
Mass:f d(pf dOJ dp p*sin ¢ psin g
/4

/2 27T 2/ sin ¢
= f de f do f dp p%sin® ¢
m/4 0 0
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(c) We'll use the cylindrical form.

27T
Mass—J dzj d@f dr r?

—27‘(J dz 82

27T 24
=" |16 - =—
=87

5-20: (a) Call the solid V. In cylindrical coordinates
o X2 +y?+22<2isr*+ 22 <2and
o /X2 +y2<zisr <zand
e the density 6 = 12, and
o dVisrdrdfdz

Observe that 72 + z2 = 2 and r = z intersect when 2r2 = 2 so thatr = z = 1. Here is a
sketch of the y = 0 cross—section of E.

(1’0’1)
24yt + 22 =2

Z:\/W

So
V={_(rcosf,rsinf,z) [0<r<1,0<0<2m, r<z<V2-r2}

and

1 27 \2-r? r—’&\ 1 277 V212
M= JJJP(X,]/,Z) dV = f drf dGJ dzr (r*) = J drf dGJ dz7°
0 0 r 0 0 7
14

(b) In spherical coordinates
o ¥4+ y* 422 <2isp <2 and

o \V/x2+y?2<zispsing <pcosg,ortang <1or¢ < %, and
o the density x> + 12 = p?sin’ ¢, and
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e dVisp?sinpdpdfde
So

V ={(psingcost, psingsind, pcos9) |0<p <2, 0<0<2m, 0< 9 <7/4a}
and, since the integrand x% + y2 = pz sin? @,

V2 27T /4
Mzﬁ” (x* +1?) dV:f dpJ dGJ dg p?sin @ p?sin® ¢
0 0 0
v

V2 21 /4
= f dp f de f dg p*sin’ ¢
0 0 0

(c) We'll use the spherical coordinate form.

V2 27 /4
M:J dpf dﬁf dg p*sin® @
0 0 0

V2 27T /4
= J do f de J de p*sin ¢[1 — cos® ¢]
0 0 0

3 Tt/4

—) e 4[_ s q)] :2”[" }
JO pp cos ¢ 3 0 3 6\/§

422 5 16v2 4

\/E
f dp p*
0

=2

3 62

S-21: (a) On E,
e the spherical coordinate ¢ runs from 0 (the positive z—xis) to 77/2 (the xy—plane), and
e for each fixed ¢ in that range, 6 runs from 0 to 77/2, and
e for each fixed ¢ and 6, the spherical coordinate p runs from 0 to 1.

e In spherical coordinates dV = p? sin ¢ dp df d¢ and
xz = (psingcosf)(pcosp) = p?sin ¢ cos ¢ cosf

So

/2 /2 1
I:J d(pf dGJ dp p*sin? ¢ cos ¢ cos @
0 0 0

(b) In cylindrical coordinates, the condition x? 4+ y? +z? < 1 becomes 12 +z> < 1. So,on E
e the cylindrical coordinate z runs from 0 (in the xy—plane) to 1 (at (0,0,1)) and
e for each fixed z in that range, 6 runs from 0 to 7t/2 and

e for each such fixed z and 6, the cylindrical coordinate r runs from 0 to v/'1 — z2
(recall that 7% + z2 < 1).
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e In cylindrical coordinates dV = rdrdf dz and
xz = (rcosf)(z) =rz cos6

So

1 /2 A\/1-22
I:f dzf d@f dr 2z cos®
0 0 0

(c) Both spherical and cylindrical integrals are straight forward to evaluate. Here
are both. First, in spherical coordinates,

/2 /2 1
I = J dg sin” ¢ cos qo] f do cos 9] [J dp p4]
0 0 0

-Sin3q) /2 ‘05 1
= [sin6]7/% | =
3 5],
0

_ 1
15

Now in cylindrical coordinates

1 /2 A\/1-22
I:f dzf dOJ dr 7%z cos@
0 0 0
1 /2
- 1J dzf do z(1 —22)3/2 cos 6
3 Jo 0
1
_ 1[ dzz(1-22)°"?
3 Jo

1

_1 [_1 (1_22)5/2]

3 2 5/2 0
1

—_

5

S-22: (a) Recall that in spherical coordinates

x = p sing cos0 y = psing sin® Z = COoS @
so that
o 24+ 1y2+22<9isp < 3,and
. 3x2—|—3y2<zisﬁpsinq)<pcosgo,ortang0<\%orgoé%,and
o the integrand x? + y2 = p?sin? ¢, and

e dVisp?sinpdpdfde
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So
T = { (psingcosf, psingsinf, pcos @) ]0 <p<30<0<2m,0<9< 7r/6}
and,

x2+y2
3 27T /6 —_—
szjf(xz—kyz) dV:J dpf d@f dg p?sin g p*sin® ¢
0 0 0
T

3 27T /6
=J dpf d@f dg p*sin®
0 0 0

(b) In cylindrical coordinates
o x>+ y?>+22<9isr?* + 2> <9and
o /312 +3y2 < zis/3r < zand
e the integand x? + y? = 2, and
e dVisrdrdfdz

Observe that r> + z> = 9 and v/3r = z intersect when 7% + 31> = 9 so that r = % and

z= # Here is a sketch of the y = 0 cross—section of T.

z 2z =4/3r
3 ,_3V3
27 2
r?+22=9
T
So
Tz{(rcos@,rsin@,z)‘O<r<§,0<9<2n, \@rgzgx/g_rz}

and

x2+y2

3/2 27 \/9—7 — 3/2 27T \/9—7
I= fjj(xz +y?) dV = J drf dGJ dzr (r*) = f drf dOJ dz
7 0 0 \V3r 0 0 V3r
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(c) We'll use the spherical coordinate form.
3 27T /6
I:J dpf dGJ dg p*sin’ ¢
0 0 0
3 27T /6
:J dpf d@f de p*sin ¢[1 — cos? ¢]
0 0 0

:an dPP4 {—COS([)—{—COZ (P] =27 {_£+§+1_1}Jdpp4
0 0 0

2 8 3

3° {2 3\@}:#/\ [i 92\0@

T ———] ~ 5.24

S-23: (a) In cylindrical coordinates

e x>+ +22<1isr? +z2 < land

20 42

ox—l—y <z < z% and

o dVisrdrdfdz

1sr

Observe that 72 + z2 = 1 and 72 = z2 intersect when 72 = z2 = % Here is a sketch of the
y = 0 cross—section of E.

(1/+/2,0,1/v2)
4y +22=1
22— 22 442

So
E={(rcosf,rsinf,z) [ 0<r<1/v2,0<0<2m, r<z<vV1-r%}

and
1/v2 27 V112
]zJJJq/xz—kyz—kzde:J er dQJ dz rv/r? + 22
0 0 r
E

(b) In spherical coordinates
e x>’ +y>+2z2<1lisp<1land
o x? —l—y z? 1sp sin? g0<p cos? ¢,ortang < lor ¢ < 7, and

e dVisp?singpdpdfde
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So
E={(psingcost, psingsin, pcosg) [0<p<1,0<0<2m, 0<¢<7/4}

and, since the integrand +/x% + y% + 2% = p,

1 27T /4
= x2 + Z—i-zde:J d J dGJ do 0?sin
J fl—ﬂ\/ y 0 £ . . pp pp

1 27T /4
=f dpJ dBJ dg p®sin @
0 0 0
(c) We'll use the spherical coordinate form to evaluate

1 27T /4
]:J dpJ dGJ dg p?sin ¢
0 0 0

1 /4 1 1
=27‘(J do 03| — cos =27 {1——}
0 0 %]~ cosg| >

0
-2

i |

S-24: (a) As a check, the body of the snow man has radius V12 = 24/3 ~ 3.46, which is
between 2 (the low point of the head) and 4 (the center of the head). Here is a sketch of a
side view of the snowman.

z

Pyt + (-4 =4

24 y?+ 22 =12

We want to determine the volume of the intersection of the body and the head, whose
side view is the darker shaded region in the sketch.

e The outer boundary of the body and the outer boundary of the head intersect when
both x? 4+ y? + z? = 12 and x? + y? + (z — 4)? = 4. Subtracting the second equation
from the first gives

22— (z-4)2=12-4 < 82-16=8 «— z=3

Then substituting z = 3 into either equation gives x? + y? = 3. So the intersection of
the outer boundaries of the head and body (i.e. the neck) is the circle x2 + y2 =3,
z=3.
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e The top boundary of the intersection is part of the top half of the snowman’s body
and so has equation z = +4/12 — x2 — /2.

e The bottom boundary of the intersection is part of the bottom half of the
snowman’s head, and so has equation z = 4 — /4 — x> — y/?

The intersection of the head and body is thus

V={(rvyz|?+y* <3, 4—4/4-x2 -2 <z< /1222 -2}

We'll compute the volume of V using cylindrical coordinates

V3 27 \12—12
Volume(V) = J er dé dzr
0 0 4—r/4—12

V3
:J dr2mr[vV12 =12 — 4 + /4 — 1?]
0

i V3
=2 —1(12—#)3/2—2#—1(4-#)”]
3 3 0
_» 1,032 1,372 1 3/2 > 1,.3/2
=27 |=3(9)""=203) = 3(1)"" +3(12)77 +2(0)" + 3 (4)
P PSP SO PRI
~2m|-9—6-3+3(12) +3]
o [Laay2 38
= 2m |3(12 3]
So the volume of the snowman is
4 o\3/2 43 1,32 38
3 (12)™ " + 3 27— 27 {3(12) 3}
_2r 3/2
= 5 [(12)"7 +-54]

(b) The figure on the left below is another side view of the snowman. This time it is
divided into a lighter gray top part, a darker gray middle part and a lighter gray bottom
part. The figure on the right below is an enlarged view of the central part of the figure on
the left.
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4yt (z—4)2 =4

24y + 22 =12

i. The top part is the Pac-Man

part of the snowman’s head. It is the part of the sphere
PP+ (z—4)%<4

that is above the cone

x2 + yZ
3

(which contains the points (0,0,4) and (1/3,0,3)).

z—4=—

ii. The middle part is the diamond shaped

(v/3,0,3)
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part of the snowman’s head and body. It is bounded on the top by the cone

x2 +y?
4= T
z V"3

(which contains the points (0,0,4) and (1/3,0,3)) and is bounded on the bottom by the
cone

z=4/3(x2 +y?)
(which contains the points (0,0,0) and (1/3,0,3)).
iii. The bottom part is the Pac-Man

part of the snowman’s body. It is the part of the sphere

P42 <12

z=4/3(x2 +y?)

(which contains the points (0,0,0) and (1/3,0,3)).

that is below the cone

S-25: (a) Recall that, in spherical coordinates, ¢ runs from 0 (that’s the positive z—axis) to
7t (that’s the negative z—axis), 6 runs from 0 to 27t (6 is the regular polar or cylindrical
coordinate) and dV = p? sin ¢ dpdf d¢. So

3 27T 8 sin ¢
Volume = f dqoj df)f dp p? sin ¢
0 0 0

T 27T : 3
= f de de —(8 sin ¢) sin ¢
0

0 3

3 7T
— M f de sin* @

3 0

3 7T
2@ {l(lz(p—Ssin(Zq)) +sin(4¢))

3 32 0
B 2(83) m12m 2
= S =128
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(b) Fix any ¢ between 0 and 7. If p = 8sin ¢, then as 6 runs from 0 to 27,

(x,y,z) = (psingcosB, psingsinb, pcos @)
= (8sin® ¢ cos @, 8sin® ¢sind, 8sin ¢ cos @)
= (Rcos®, Rsinf, Z)  with R = 8sin? ¢, Z = 8sin ¢ cos ¢

sweeps out a circle of radius R = 8sin? ¢ contained in the plane z = Z = 8sin ¢ cos ¢
and centred on (0,0, Z = 8sin ¢ cos ¢). So the surface is a bunch of circles stacked one on
top of the other. It is a surface of revolution. We can sketch it by

o first sketching the & = 0 section of the surface (that’s the part of the surface in the
right half of the xz—plane)

e and then rotate the result about the z—axis.
The 6 = 0 part of the surface is

{ (x,y,2) ‘ X = 881n2q0, y=0,z=8singcosgp, 0<p<T }
={(vyz)|x=4—4cos(2¢), y=0, z=4sin(2¢), 0< p < 7 }

It’s a circle of radius 4, contained in the xz—plane (i.e. y = 0) and centred on (4,0,0)! The
tigure on the left below is a sketch of the top half of the circle. When we rotate the circle
about the z—axis we get a torus (a donut) but with the hole in the centre shrunk to a point.
The figure on the right below is a sketch of the part of the torus in the first octant.

=

S-26: (a) In cylindrical coordinates 0 < z < /x2 + y2 becomes 0 < z < r, and x> + y?> < 1
becomes 0 < 7 < 1. So

E={(rcosf,rsinf,z)[0<r<1,0<60<2m, 0<z<r}

and, since dV = rdrdf dz,
T
I-JJI zA/ X2+ y? +22dV = f drf def dzrz |[r*+2°
0 ~——
x24y2+22

(b) Here is a sketch of a constant 6 section of E.
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Recall that the spherical coordinate ¢ is the angle between the z—axis and the radius
vector. So, in spherical coordinates z = r (which makes an angle 7 with the z axis)
becomes ¢ = 7, and the plane z = 0, i.e. the xy—plane, becomes ¢ = 7, and r = 1
becomes psing = 1. So

=]

E:{(psin(pcos9,psin(psin9,pc05(p)‘ <(p<§,0<9<27{,0<p< .1 }

sin @
and, since dV = p?sin 9 dpdf dg,

z

/2 27T 1/sing
Izjffz\/xz—kjﬂ—kzzd\/zj dq)J dQJ dp p?sing pcos @ p
0 0
E

/4

/2 277 1/sin¢
:f dgof dGJ dp p*sin ¢ cos ¢
n/4 0 0

(c) We'll integrate using the spherical coordinate version.

t/2 27T 1/sing
I:J dqof dQJ dp p*sin ¢ cos ¢
n/4 0 0

t/2 27T 1
:f dqof d6 ———~—sing cos¢
/4 0 5sin” ¢
2 (‘7‘(/2
_ de C.Oiq)
5 Jr/a sin® ¢
2t (1 d
_ —Z with u = sin ¢, du = cos pde¢
5 hyvau
1

5 L3112
(2vV2-1)m
15

N

S-27: The main step is to figure out what the domain of integration looks like.

e The outside integral says that x runs from —a to 0.
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e The middle integrals says that, for each x in that range, y runs from —+/a? — x2 to 0.
We can rewrite y = —+/a%2 — x2 in the more familiar form x> + y? = 4%, y < 0. So
(x,y) runs over the third quadrant part of the disk of radius a, centred on the origin.

e Finally, the inside integral says that, for each (x, y) in the quarter disk, z runs from 0
a? — x2 — y?. We can also rewrite z = 4/a? — x? — y? in the more familiar form
x> +y?+2z2=a%z=0.

So the domain of integration is the part of the interior of the sphere of radius a, centred
on the origin, that lies in the octant x <0,y <0,z > 0.

V={(xyz)| —a<x<0, Va2 —x2<y<0,0<z</a®> —x2—y?}

:{(x,y,z)]x2+y2+22<a2, x<0,y<0,z

V
(e}
—

z

2+ y* + 2% = ad?

X

(a) Note that, in V, (x,y) is restricted to the third quadrant, which in cylindrical
coordinates is 7T < 0 < 37” So, in cylindrical coordinates,

3
V = {(rcos@,rsin@,z) ‘ P +z22<a? <0< n, zZ > 0}

N
S
N

= {(rcos@,rsinf),z) ‘ 0<z<am

and

1= fff (x + %+ 22)2014 dV = ffj (r* + 22)2014 rdrdfdz
14 14

a 37/2 A/ a?—z2
= J dzJ dQJ drr(r* + 22)2014
0 T 0
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(b) The spherical coordinate ¢ runs from 0 (when the radius vector is along the positive
z—axis) to 7/2 (when the radius vector lies in the xy—plane) so that

I= fﬁ[ (x?+ 2+ 22)2014 dv = ﬁUszZW‘ p?sing dpdfde
v v

/2 3m/2 a
= f de f de J dp p**sin ¢
0 T 0

(c) Using the spherical coordinate version

/2 31/2 a
I = J dqof de f dp 0*®%sin ¢
0 ys 0

114031 /2 37/2
= d J df sin
4031 fo ¢ ¢

_ ﬂ40317'( 7'(/2d '
- 8062J0 psmne

24031 2
8062

S-28: (a) In cylindrical coordinates, the paraboloid is z = r? and the cone is z = r. The
two meet when 72 = r. That is, when r = 0 and when r = 1. So, in cylindrical coordinates

1 27T 7
I:J drrf dGJ dz z(r* + 2%)
0 0 2

(b) In spherical coordinates, the paraboloid is

cos @

pcos @ = p?sin® ¢ or pP=—-
sin” ¢
and the cone is

; 7T
pcosp = psing or tangp:1 or (P:Z

The figure below shows a constant 6 cross—section of E. Looking at that figure, we see
that ¢ runs from 7 (i.e. the cone) to 7 (i.e. the xy—plane).

z zZ =T
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So, is spherical coordinates,

/2 , , , X 2y 422
T T COS ¢ sin? @ f—/&
I:f f dGJ dp p*sing pcosg p?
/4
/2 27 cos ¢/ sin”
:f dgof d@f dp p° sin ¢ cos @
/4 0 0

(c) The cylindrical coordinates integral looks easier.

27T
I—f drrf dﬁf dz z(r 24z
27T
fdrrf dG[ ]
7’2

S-29: Note that both the sphere x> + 4> + (z — 1) =1 and the cone z = 1 /x% 4+ y? are
invariant under rotations around the z-axis. The sphere x? + 1 + (Z —1)2 =1 and the

cone z = 4/x2 + y?2 intersect when z = 1/x2 + 2, so that x> + y? = z2, and

PP+ (z-1)2 =224+ (z-1)2=1 < 222 -22=0 < 2z(z—1)=0

= z=0,1

So the surfaces intersect on the circle z = 1, 2 + y> = 1 and

S={(xyz)|xy=0 +y* <L A/22+12<z<1+4/1-22—y2}

Here is a sketch of the y = 0 cross section of S.

z

S
Py [RURNMRNN WM ... (1,0,1)
_ 4y +(z-1)2%2=1
4 or z—1==44/1—22—y>?
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(a) In cylindrical coordinates
e the condition x,y > 0is 0 < 6 < 71/2,
e the condition x> + y?> < 1isr < 1,and
o the conditions 4/x2+ 12 <z <1++/1—x2—y2arer <z<1++1-7r% and
o dV = rdrdfdz.

So

1 /2 1—+/1—12
V:fj dV:Jer dGJ dzr
5 0 0 r

(b) In spherical coordinates,

e the cone z = 1/x2 + y2 becomes

pcosq):\/pzsinzgoc0526+pzsin2gosin29:psingo — tang =1 < go:g

e so that, on S, the spherical coordinate ¢ runs from ¢ = 0 (the positive z —axis) to
¢ = 7/4 (the cone z = 1/x% + y?), which keeps us above the cone,

e the condition x,y > 0is 0 < 6 < 71/2,

e the condition x? + y? + (z — 1)? < 1, (which keeps us inside the sphere), becomes

p?sin® ¢ cos® 0 + p*sin® ¢ sin® 0 + (pcos ¢ — 1)2 <1
— 0% sin® @+ p?cos’ ¢ —2pcos @ +1 < 1

— p?>—20cosp <0

< p<2co8¢

e and dV = p?sinpdpdfde.

So

/4 /2 2.Cos @
V:JJ dV:J dq)J d@f dp p?sin ¢
’ 0 0 0
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(c) We'll evaluate V using the spherical coordinate integral of part (b).

t/4 /2 2 cos ¢
V:J dqof dOJ dp p?sin ¢
0 0 0

8 /4 /2
J d(pJ df cos® ¢ sin @
0 0

3

87 [ coste]™*
:55{_ 4 ]o
e

3 (vV2)*

7
T

S-30: (a) In cylindrical coordinates, the density of is 6 = x? + y? = r2, the bottom of the

solid is at z = 4/3x2 + 3y2 = 1/3r and the top of the solid is at
z=14/9 — x2 — 42 = V9 — r2. The top and bottom meet when

V3r=4v9-12 «—= 317 =9-1? «— 4 =9 — r:g

The mass is

5
27 3/2 A/9—12 A
m= J deo dr rf dz 12
0 0 V37

2Z24+rt=9

N[ —

(b) In spherical coordinates, the density of is 6 = x> + y> = p?sin’ @, the bottom of the
solid is at

7T

1
z=137r < pcosp =V3psing < tang=— — =y

V3

and the top of the solid is at x> + y? + z% = p?> = 9. The mass is

27T /6 3 ,_j%
m = J de J d(pJ dp (p?sin ¢) (o sin® @)
0 0 0
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(c) Solution 1: Making the change of variables s = cos ¢, ds = — sin ¢ d¢, in the integral
of part (b),

27 /6 3
m :f df)f dgof dp p*sin ¢ (1 — cos? @)
0 0 0
35 27T /6
= —J dQJ de sin ¢ (1 — cos® )
5 Jo 0

35 27T V3/2
= —— d@f ds (1—s?)
5 Jo 1

35 27T

$3 V3/2
=—— de [s——}
3° 1 /3 /3
4“3[“5‘7*?]
3° [2 3\@}

3 8

(c) Solution 2: As an alternate solution, we can also evaluate the integral of part (a).

27 3/2 \/9—12
m= J do dr rf dz r?

0 0 V37
2 3/2
:J de drr3(\/9—r2—\/§r)
0 0
3/2

=27 drr3(\/9—r2—\@r)

0
The second term

3/2 /513/2 35
-2 dr V37t = —2nV3 — = —271V3 5
For the first term, we substitute s = 9 — r2, ds = —2rdr.
rdr
7‘2

3/2 27 /4 27/4

—
ds —— 2
27 dr r3\/9—r2:27tf —; (9—s)vs=-m [653/2——55/2]

0 9 — 5

353 . 3 3°
- _ -2 - = o
7T { 1 x 3 2455\/65—% 5 }

9

Adding the two terms together,

5 5 5 5 5

5 32 5 8 53 5 32 5
35 5 1 5 9

=25 [(31) ¥ (m s 2)]

753 8
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