
Rank Inequalities in the Theory of
Differentially Closed Fields

Wai Yan Pong
California State University Dominguez Hills

May 7, 2004

Let m ≥ 1 be an integer. The theory of differentially closed fields with m
commuting derivations (m-DCF0) has been actively studied recently [11, 14,
2, 1] and [12]. Readers who are interested in the model theory of differential
fields and its applications can consult [8, 9, 13] and [21]. In this article, I
limit myself to give a “road-map” of the proof of the following result:

Theorem. Let p be a complete n-type in m-DCF0 over a differential field
K. Suppose d and e are the typical differential dimension and the differential
type of p respectively and that e ≥ 1. Then 1 ≤ d ≤ n and

ωed ≤ RU(p) ≤ RM(p) ≤ RH(p) ≤ RD(p) < ωe(d + 1). (*)

For 1-types over an ordinary differential field K, the inequalities are due to
Poizat [15]. Their generalization to n-types are fairly easy and were obtained
by the author in [17] with RH replaced by ∆-dimension and RD(p) replaced
by ωd+ b where dT + b is the Kolchin polynomial of the type p. Since both d
and b in that case are natural numbers so the map dT + b 7→ ωd + b induces
a well-order on the set of Kolchin polynomials. At that time, however, I did
not realize that this assignment can be regarded as a generalization of RD.
Later Benoist generalized the definitions of both RH and RD to n-types over
ordinary differential fields and proved the inequalities for these ranks in [3].
His definition of the rank RD is different from ours, we will address this issue
in Section 2. Let us also note that each of the inequalities appeared can be
strict (even in the ordinary case). Examples that illustrate these phenomena
are nontrivial except for the first inequality (see § 3). In particular, the
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question of whether RU=RM in DCF0 was open for quite a while until it
was settled by Hrushovski and Scanlon in [5].

The proof of these inequalities become considerably harder when the dif-
ferential field is equipped with more than one derivation. McGrail in her
thesis (see [11]) succeeded in proving the theorem without RD and with RH
replaced by the ∆-dimension. So our primary goal here is to clarify the re-
lationship between the rank RD, RH and ∆-dimension. The use of Kolchin
polynomials in McGrail works is prominent. In fact, with a perfect hindsight
one sees that she had already developed the results of RD that are necessary
in proving these inequalities.

One of the difficulties in generalizing the definition of RD to the several
derivations case is that the coefficients of the Kolchin polynomials in this
case are merely rational numbers. Therefore, it is no longer obvious that
the simple idea of assigning the Kolchin polynomials to their values at ω
will yield a well ordering on them. It was not until a meeting in 2000 that
I first learned that the Kolchin polynomials are well ordered by dominance.
Again with a perfect hindsight, this result of Sit [20] can be seen as an easily
consequence of the results in [11] (Lemma 4.2.13 and Proposition 4.2.15).
At the same meeting, Scanlon suggested that one should investigate the
“meanings” of the coefficients of the Kolchin polynomials. Around the same
time, an application of McGrail’s version of the theorem also prompted me to
take a closer look of it again: it follows immediately from these inequalities
that RU = RM for types with RM of the form ωed with e ≥ 1. This fact is
a crucial ingredient in showing that RU=RM for generic types of definable
groups in m-DCF0 [14]. On the other hand, Benoist in [3] showed that RM
and RH of a definable group in DCF0 can be different. Moreover, he showed
that the notion of RM-generic and RH-generic are different.

In the first version of [2], I defined the rank RD using sequence of mini-
mizing coefficients (see § 2) and proved a result about the RD of the fibers
in definable families. The proofs there used some algebra of monomial ide-
als. However, it is Aschenbrenner who first recognized the full potential of
relating the study of the Kolchin polynomials to that of the monomial ide-
als. Later through our study of Noetherian orderings we are able to give a
conceptual proof of Sit’s Theorem and a definition of RD that works in the
several derivations case [1, 2].

Acknowledgement. I thank the referee for many useful suggestions and
comments.
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1 Preliminaries

We start with a brief review of the facts about differential algebra and the
model theory of differential fields that will be used later. Readers may find
it helpful to have [6, 7] and [11] at hand.

By a differential ring we mean a commutative ring with 1 equipped with
m commuting derivations. We use ∆ = {δ1, . . . , δm} to denote the set of
derivations. A Ritt ring is a differential ring containing the field of rational
numbers. A differential field is a Ritt ring which is also a field. In particular,
it has characteristic 0. We use the adjective “ordinary” to emphasize the
case m = 1. Let R be a differential ring, an ideal I of R is a differential ideal
if it is closed under the derivations, i.e. δiI ⊆ I for all 1 ≤ i ≤ m. An ideal
I is perfect if it equals to its own radical. In a Ritt ring, the radical of a
differential ideal is still a differential ideal [7, Theorem 3.2.12]. Moreover, any
maximal differential ideal of a Ritt ring is prime and the nilradical of a Ritt
ring is the intersection of all prime differential ideals [7, Corollary 3.2.20]. In
particular, every Ritt ring possesses a differential prime ideal. We use Spec R
and ∆-Spec R to denote the set of prime ideals and the set of differential
prime ideals of R respectively.

Let Θ be the free commutative monoid generated by the derivations. A
typical element of Θ is of the form δe1

1 · · · δem
m where the ei’s are non-negative

integers. The sum of the ei’s is called the order of δe1
1 · · · δem

m . Let a be an
element of a differential ring R. A derivative of a is an element of R of the
form θa for some θ ∈ Θ. The order of a derivative b of a is defined to be
the smallest integer s such that b = θa for some θ ∈ Θ of order s. Let L
be a differential field extension of a differential field K. A subset A of L is
differentially independent over K if the set of derivatives of elements of A is
algebraically independent over K. In the case where A is a singleton {a}, we
say that the element a is differentially transcendental over K. An element is
differentially algebraic over K if is not differentially transcendental over K.

Let R be a differential ring. The differential polynomial ring over R with
variables y1, . . . , yn is the polynomial ring

R{y1, . . . , yn} := R[θyj : θ ∈ Θ, 1 ≤ j ≤ n].

The derivations δ1, . . . , δm on R extend naturally to R{ȳ} = R{y1, . . . , yn}
making it into a differential ring extension of R. In general differential poly-
nomial rings, unlike their algebraic counterparts, are not Noetherian. How-
ever, it follows from the Ritt-Raudenbush basis theorem (or the differential

3



basis theorem) [7, Theorem 3.2.23, 5.3.17] that the set of perfect differential
ideals of a differential polynomial ring over a differential field satisfies the
ascending chain condition.

Let Lm be the language of fields {+,−, ·, −1, 0, 1} together with the set of
unary function symbols ∆ = {δ1, . . . , δm}. From the model theoretic point
of view, a differential field can be regarded as an Lm structure with the
symbols interpreted as the usual field operations and the δi’s as derivations.
A differential field is differentially closed if it is existentially closed in the
sense of model theory. It turns out that the class of differentially closed fields
is elementary. We use m-DCF0 to denote the common first order theory of
differentially closed fields in Lm. A relatively simple set of axioms for m-
DCF0 can be found in [11, §3]. Recently, a “coordinate free” approach to the
axiomatization of the class of differentially closed fields is given by Pierce [12].

The theory m-DCF0 admits quantifiers elimination [11, Theorem 3.1.7].
A consequence of this fact is the “type-ideal correspondence”. Let p ∈ Sn(K)
be a complete n-type over a differential field K. Denote by Ip the set

{f ∈ K{y1, . . . , yn} : “f(y1, . . . , yn) = 0” ∈ p}.

One checks directly that Ip is a prime differential ideal. It follows from
the quantifier elimination of m-DCF0 that the association p ↔ Ip is a 1-1
correspondence between Sn(K) and ∆-Spec K{y1, . . . , yn}. Moreover, one
can verify readily that a tuple is a realization of a type p ∈ S(K) if and only
if its vanishing ideal over K is Ip. Using the type-ideal correspondence and
the differential basis theorem, one can show that m-DCF0 is ω-stable by a
type-counting argument [11, Theorem 3.2.1].

It is convenient to fix a universal domain U of m-DCF0 and consider all
differential fields other than U as its small subfields. For each n ∈ N, we
equip Un with the Kolchin topology. The closed sets in this topology are of
the form

V (S) = {a ∈ Un : f(a) = 0 for all f ∈ S}
where S is a subset of U{y1, . . . , yn}. It is easy to check that V (S) = V ({S})
where {S} is the prefect differential ideal in U{y1, . . . , yn} generated by S.
On the other hand, given X a Kolchin closed subset of Un, the set

I(X) = {f ∈ U{y1, . . . , yn} : f(a) = 0, for all a ∈ X}

is a perfect differential ideal of U{y1, . . . , yn}. A Kolchin closed set is irre-
ducible if it not empty and is not a union of two proper nonempty closed
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subsets. Let X be a Kolchin closed set, a maximal irreducible Kolchin closed
subset of X is called an irreducible component of X. Let K be a differ-
ential field, a Kolchin closed subset of Un is K-closed if it is of the form
V (S) for some S ⊆ K{y1, . . . , yn}. It is not hard to see that the K-closed
sets form a topology on Un. We understand the terms K-irreducible and
K-irreducible component in the obvious way. Let L be a differential field
extension of K, then the K-closed subsets of Un induces a topology on Ln.
We write VL(S) for the set Ln ∩ V (S) and IL(V ) for the perfect differential
ideal I(V ) ∩ L{y1, . . . , yn} of L{y1, . . . , yn}. In the case when L is differen-
tially closed, the differential nullstellensatz [6, Corollary 1, Theorem 2, p.148]
states that X 7→ IL(X) is an inclusion reserving 1-1 correspondence between
the L-closed subsets of Ln and the perfect differential ideals of L{y1, . . . , yn}.

2 RH, RD and ∆-dimension

All results in this section, besides the definition of RD and Proposition 2.10,
are either folklore or appear in some form in [4, 11].

In Section 1, we have remarked that the differential spectrum of a differ-
ential polynomial ring over a differential field satisfies the ascending chain
condition. In general, we can make the following definition:

Definition 2.1. Let R be a differential ring. Suppose ∆-Spec R satisfies the
ascending chain condition then for P ∈ ∆-Spec R, we define inductively the
∆-dimension of P , denoted by ∆-dim P , to be the ordinal

sup{∆-dim Q + 1 : Q ∈ ∆-Spec R,Q ) P}.

In particular, maximal elements of ∆-Spec R have ∆-dimension 0. For p ∈
Sn(K), we define its ∆-dimension, ∆-dim p, to be

sup{∆-dim P : L ⊇ K, P ∈ ∆-Spec L{ȳ}, P ∩K{ȳ} = Ip}.

Poizat introduced the differential height (RH) for 1-types over ordinary
differential fields in [15]. Benoist generalized this definition to n-types over
ordinary differential fields in [4] (see also [3]). His definition works equally
well in the several derivations case without any modification.

Definition 2.2. Let p ∈ S(K), the ordinal RH(p) is defined inductively as
follows:
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• For α a limit ordinal, RH(p) ≥ α if RH(p) ≥ β for all β < α.

• RH(p) ≥ α + 1 if there exist L a differential field extension of K and
q, r ∈ S(L) such that q is an extension of p to L, Iq ( Ir and RH(r) ≥ α.

• RH(p) = α if RH(p) ≥ α and RH(p) 6≥ α + 1.

The following proposition records some basic properties of RH and ∆-
dimension. The first two of them are satisfied by every notion of rank [16,
Chapter 17].

Proposition 2.3. Let L ⊇ K be differential fields.

1. Both RH and ∆-dimension are invariant under automorphisms of dif-
ferential fields.

2. Let p ∈ S(K) and q be an extension of p over L, then RH(p) ≥ RH(q).

3. Suppose p1, p2 ∈ S(K) and Ip1 ( Ip2 then RH(p1) > RH(p2).

4. ∆-dim Ip ≤ RH(p).

Proof. Both (1) and (2) follow immediately from the definitions. For (3),
one simply takes L = K, q = p1 and r = p2 in the definition of RH. To show
(4), suppose ∆-dim Ip ≥ α; then for each β < α there exists Iq ) Ip such
that ∆-dim Iq ≥ β. By induction hypothesis, RH(q) ≥ β. Hence by (3),
RH(p) ≥ β + 1. Since β < α is arbitrary, we conclude that RH(p) ≥ α.

The differential order (RD) was also introduced by Poizat in for 1-types
over ordinary differential fields in [15] (see also [16, Chapter 6]). In that case,
RD(a/K) is defined to be the order of the minimal polynomial of the vanish-
ing ideal of a over K. When a is differentially algebraic over K, RD(a/K)
coincides with the transcendence degree over K of the differential field gen-
erated by a and K. Recently, a generalization of RD to n-types in m-DCF0

has been worked out by Aschenbrenner and the author in [2]. Here we will
only give a quick introduction to this rank and refer our readers to [1] and [2]
for a thorough treatment.

A polynomial f(T ) ∈ Q[T ] is numerical if f(s) is an integer for all suffi-
ciently large integer s. For f(T ), g(T ) ∈ Q[T ], we say that f dominates g,
denoted by f ≥ g, if f(s) ≥ g(s) for all sufficient large integer s. It is straight
forward to check that dominance is a total order on Q[T ].
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Let a be a tuple in some differential extension of K. Denote by K〈a〉s
the field generated over K by the derivatives of a of order at most s. For
sufficiently large s, the transcendence degree of K〈a〉s over K is given by
a numerical polynomial [6, Theorem 6, p.115]. We call this polynomial the
Kolchin polynomial of a over K and denote it by χa/K . It is easy to see
that χa/K is completely determined by the type of a over K; so we can
define, χp, the Kolchin polynomial of a type p ∈ S(K) to be χa/K where a
is any realization of p. Using the type-ideal correspondence (see § 1), we
define the Kolchin polynomial of a prime differential ideal to be the Kolchin
polynomial of its corresponding type. Let p be an n-type over K. Since χp

is a numerical polynomial, it can be written as
∑e

i=0 ai

(
T+i

i

)
where ai ∈ Z

(e.g. see [19, Lemma 1 Ch.II B]). We call e, the degree of the polynomial χp,
the differential type of p and ae the typical differential dimension of p.1 By
Theorem 6 of [6, p.115], e ≤ m the number of derivations and 0 ≤ ae ≤ n.
Moreover, ae = 0 if and only if p is an algebraic type. By a theorem of Sit [20,
Proposition 5] (also see [1]), the set of Kolchin polynomials is well-ordered
by dominance. The order type of the set of Kolchin polynomials is ωm+1 [1,
§3].

Definition 2.4. The differential order of a tuple a over K, denoted by
RD(a/K) is defined to be the ordinal corresponding to χa/K under the domi-
nance order. Similarly, we define the differential order of a type (a differential
prime ideal) to be the ordinal corresponds to its Kolchin polynomial under
the dominance order.

For each Kolchin polynomial χ, there is a tuple (be, . . . , b0) ∈ Ne where e is
the degree of χ such that RD(χ) =

∑e
i=0 ωibi [1, § 3]. The tuple (be, . . . , b0) is

called the sequence of minimizing coefficients of χ (see Definition 2.4.9 and
Proposition 2.4.10 in [7]). As an example, let us compute the differential
order of a linear Kolchin polynomial χ(T ) = dT + b. Write χ(T ) as d

(
T+1

1

)
+

(b − d). Then according to [7, Definition 2.4.9], the sequence of minimizing
coefficients of χ is (d, v) where

v = χ(T + d)−
(

T + d + 2

2

)
+

(
T + 2

2

)
=

(
d

2

)
+ (b− d).

1The differential type and the typical differential dimension of a type over K are called
the K-type and K-degree in [11]. However, the latter terminology may cause confusion
when used in conjunction with various model-theoretic notions.
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So RD(χ) = ωd +
(

d
2

)
+ (b− d). In particular, if a is differentially transcen-

dental over an ordinary differential field K, then χa/K = T + 1 and hence
RD(a/K) = ω.

Let us explain the relationship between our definition of RD and the one
given by Benoist in [3]. As we have seen, the RD of dT +b is ωd+

(
b
2

)
+(b−d)

while according to Benoist’s definition it will be ωd+(b−d). The discrepancy
here is due to the fact that the Kolchin polynomials considered in [3] only
come from types over ordinary differential fields. They form a proper subset
of the set of all linear Kolchin polynomials, for example in the ordinary case
the constant term of a Kolchin polynomial is always non-negative, in fact it
never smaller than the leading coefficient.

Let us also point out that Kolchin polynomial is not a differential bi-
rational invariant, i.e. two tuples may generate the same differential field
over K yet their Kolchin polynomials over K are different. This can be seen
from the following “silly” example: Let a be differentially transcendental over
an ordinary differential field K. Clearly a and the pair (a, a′) are differential
bi-rational with each other. But their Kolchin polynomials over K are T + 1
and T + 2 respectively. This phenomenon can also arise from the interplay
between the derivations. An example can be found in [7, Example 2.4.5].

Our next proposition gathers some basic properties of RD.

Proposition 2.5. Let p and q be complete types over K and L respectively.

1. q extends p if and only if Iq lies over Ip.

2. If q extends p then χp ≥ χq hence RD(p) ≥ RD(q).

3. Let P ∈ ∆-Spec K{ȳ}. There are finitely many minimal prime dif-
ferential ideals in L{ȳ} containing the perfect ideal generated by P in
L{ȳ}. If Q is one of them then Q lies over P and χP = χQ.

Proof. Statement (1) follows immediately from quantifier elimination. State-
ment (3) is the characteristic 0 case of [6, Proposition 3(b), p.131]. Finally,
if q is an extension of p, by (1) Iq lies over Ip. It follows from (3) and
the type-ideal correspondence that there exists a type p′ over L such that
Ip′ ⊆ Iq is lying over Ip. Moreover χp′ = χp. So by [6, Proposition 2, p.130],
χq ≤ χp′ = χp.

A prime differential ideal Q satisfying (3) in the above proposition is
called a prime differential component of P over L or simply an L-component
of P .
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Lemma 2.6. Let L be a |K|+-saturated differentially closed field containing
K. Suppose V is a K-irreducible closed set. Then the L-irreducible com-
ponents of V are conjugate with each other under AutK(L), the differential
automorphisms group of L over K.

Proof. Since V is defined over K, AutK(L) acts on the L-irreducible com-
ponents of V . There are only finitely many L-irreducible components of V ,
therefore the union of the elements of each orbit is an L-closed set. These
unions are stabilized by AutK(L) and since L is |K|+-saturated, we conclude
that they are all K-closed. The union of all these K-closed sets is V itself
and since V is K-irreducible therefore AutK(L) must act transitively on the
L-irreducible components of V .

Using the differential nullstellensatz, we obtain the following algebraic
version of Lemma 2.6: Let L/K be the same as stated in the lemma. Let P
be a prime differential ideal of K{y1, . . . , yn}, then AutK(L) acts transitively
on the L-components of P . One can also prove this directly by using the
several derivations version of Corollary 3.6 in [8].

We say that the Going-Down theorem for (differential) prime ideals holds
for a (differential) ring extension A ⊆ B if for P2 ( P1 (differential) prime
ideals of A and Q1 a (differential) prime ideal of B lying over P1, there exists
Q2 a (differential) prime ideal of B contained in Q1 lying over P2.

Proposition 2.7. Let L/K be a differential field extension. The Going-
Down theorem for differential prime ideals holds for the differential ring ex-
tension K{y1, . . . , yn} ⊆ L{y1, . . . , yn}.

Proof. Since the natural inclusion K ↪→ L is a flat map and flatness is stable
under base change, therefore B := L{y1, . . . , yn} = L ⊗K K{y1, . . . , yn} is
flat over A := K{y1, . . . , yn}. So the Going-Down Theorem for prime ideal
holds for this extension [10, Theorem 9.5]. Therefore, if P2 ( P1 are two
prime differential ideals in A and Q1 is a prime differential ideal in B lying
over P1, then the differential ring BQ1 ⊗AP1

κ(P2AP1) has a prime ideal and
hence it is not the zero ring. Thus the canonical map from Q into this ring is
injective so it is a Ritt ring and therefore possesses a prime differential ideal
(see § 1). The preimage of this prime differential ideal in B is contained in
Q1 and lying over P2.

Our study of RH and RD leads to the following characterization of forking
in m-DCF0 (see also [11, Theorem 4.3.10]).

9



Proposition 2.8 (Characterization of Forking). Let K ⊆ L be an ex-
tension of differential fields. Let p ∈ S(K) and q ∈ S(L) be an extension of
p. Then the following are equivalent:

1. q is a non-forking extension of p.

2. χq = χp.

3. RD(p) = RD(q).

4. Iq is an L-component of Ip.

5. RH(p) = RH(q).

Proof. (1) ⇐⇒ (2) follows from (2) of Proposition 2.5 and the equivalence
of (1) and (3) in [11, Theorem 4.3.10].

(2) ⇒ (3). Follows from definition of RD.
(3) ⇒ (4). Suppose (4) is not true, then Ip ⊆ Ir ( Iq for some r ∈ S(L).

By Proposition 2.5 (1), we have Ip = Iq ∩ K{ȳ} = Ir ∩ K{ȳ} and r is an
extension of p; but then by [6, Proposition 2 p.130] χq < χr ≤ χp hence
RD(q) < RD(p).

(4) ⇒ (5). Since RH can only go down under extension, we can assume
L is a |K|+-saturated differentially closed field. We prove by induction that

RH(p) ≥ α ⇒ RH(q) ≥ α.

The limit case is clear. Suppose RH(p) ≥ α + 1. Then there exist K ′ ⊇ K
and r, s ∈ S(K ′) such that r is an extension of p with Ir ( Is and RH(s) ≥ α.
Let L′ be a differentially closed field containing both K ′ and L. Let Is′ be
an L′-component of Is. By the induction hypothesis, RH(s′) = RH(s) ≥ α.
Let Iq′ be an L′-component of Ip contained in Is′ . The containment must
be strict, otherwise Iq′ lies over Is ) Ir and therefore by Proposition 2.7
(differential polynomial ring version of the Going-Down theorem), Iq′ cannot
be an L′-component of Ip. Thus RH(q′) ≥ α+1. Let q′′ = q′|L then it follows
from Proposition 2.7 again then Iq′′ = Iq′ ∩L{ȳ} must be an L-component of
Ip. By Lemma 2.6, Iq′′ and Iq are conjugates hence so are q′′ and q. Therefore,

RH(q) = RH(q′′) ≥ RH(q′) ≥ α + 1.

(5) ⇒ (2). Let Ir be an L-component of Ip containing in Iq. In particular,
r extends p. If Ir ( Iq, then RH(q) < RH(r) ≤ RH(p) contradicting (5). This
shows that Iq is an L-component of Ip thus χq = χp by (3) of Proposition 2.5.
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If L is differentially closed, then by the differential nullstellensatz, one can
replace condition (4) by “VL(Iq) is an L-irreducible component of VL(Ip)”.
The main part of the following proof is taken from the proof of [4, Proposi-
tion 0.1.3], again the argument given there works equally well in the several
derivations case.

Proposition 2.9. Let p ∈ S(K), if K is ω-saturated, then ∆-dim Ip =
RH(p).

Proof. By (4) of Proposition 2.3, it suffices to show that ∆-dim Ip ≥ RH(p).
The limit case is immediate. Suppose RH(p) ≥ α+1 then there exist q, r over,
L, some extension of K such that q extends p and Iq ( Ir with RH(r) ≥ α.
By taking nonforking extensions if necessary, we can assume L is ω-saturated.
Suppose b is a tuple from L consisting of the coefficients of a basis of Ir, say
φ(y, b) is a conjunction of differential polynomial equations defining V (Ir).
Here we simply say that b is a tuple of parameters of Ir. Let a be a tuple of
parameters of Ip from K. Then it is easy to see that

1. “V (Ip) ) V (Ir)” is expressible by a formula in tp(b/a) and,

2. “V (Ir) is irreducible” is expressible by an infinite collection of formulas
in tp(b).

By ω-saturation, let b′ be a tuple in K realizing the type tp(b/a). Hence
by (2) the realizations of φ(y, b′) in K and L are irreducible closed sets. By
differential nullstellensatz, they determine prime differential ideals and hence
types s′ and s over L and K respectively with s′ extending s. By condition (1)
and the differential nullstellensatz, we have Is ) Ip. Since b and b′ have the
same type over a and L is ω-saturated, therefore b and b′ hence r and s′

are conjugates under an automorphism of L. Therefore, RH(s) ≥ RH(s′) =
RH(r) ≥ α. Hence ∆-dim Ip > ∆-dim Is ≥ α by induction hypothesis.

Finally we show that in m-DCF0 ∆-dimension and RH are the same for
complete types.

Proposition 2.10. ∆-dim p = RH(p)

Proof. By definition, for every β < ∆-dim p, there exists some prime differ-
ential ideal P lying over Ip such that ∆-dim P ≥ β + 1. Since P = Ip′ for
some p′ extending p, therefore by (2) and (4) of Proposition 2.3,

β + 1 ≤ ∆-dim Ip′ ≤ RH(p′) ≤ RH(p).
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We now show the reverse inequality by induction. Again the limit case is
easy. Suppose RH(p) ≥ α + 1. Then there are types q, r over some L ⊇ K
such that q extends p, Iq ( Ir and RH(r) ≥ α. Let L′ be an ω-saturated
extension of L and r′ be a nonforking extension of r over L′. Let q′ be a type
over L′ such that V (Iq′) is an L′-irreducible component of V (Iq) containing
V (Ir′). Hence Iq′ ( Ir′ , by Proposition 2.9 and Proposition 2.8 we have

∆-dim p ≥ ∆-dim Iq′ > ∆-dim Ir′ = RH(r′) = RH(r) ≥ α.

This concludes the proof.

3 Rank Inequalities

Let us recall the theorem that we want to prove.

Theorem 3.1. Let p be a complete n-type in m-DCF0 over a differential field
K. Suppose d and e are the typical differential dimension and the differential
type of p respectively and that e ≥ 1. Then 1 ≤ d ≤ n and

ωed ≤ RU(p) ≤ RM(p) ≤ RH(p) ≤ RD(p) < ωe(d + 1). (*)

Proof. Most of the work has been done in [11]. We have proved in Proposi-
tion 2.10 that ∆-dim = RH. The inequality RD(p) < ωe(d + 1) is clear from
the sequence of minimizing coefficient approach (§ 2). Therefore, it remains
to show that RH(p) ≤ RD(p). We prove this by induction. The limit case
is clear. Suppose RH(p) ≥ α + 1. Then there are types q and r with q an
extension of p and Iq ( Ir and RH(r) ≥ α. By the induction hypothesis,
RD(r) ≥ α. Since Iq ( Ir, χq > χr [6, Proposition 2, p.130] and hence
RD(q) > RD(r). By (2) of Proposition 2.5, RD(r) < RD(q) so we have

RD(p) ≥ RD(q) > RD(r) ≥ α.

This completes the proof.

Examples 3.2. We conclude this article with some known examples in DCF0

showing that each of the inequalities in Theorem 3.1 can be strict. These can
certainly be viewed as evidence in supporting the claim made by Sack in the
introduction of [18]: the least misleading example of a totally transcendental
theory is the theory of differentially closed fields of characteristic 0.
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1. It is easy to see that the first inequality can be strict. For example, let a
be differentially transcendental over Q and b be a generic constant over
Q(a). Then tp(a, b) has U-rank ω + 1. However, both its differential
type and typical differential dimension are 1.

2. Let a be differentially transcendental over Q and Ea be the elliptic curve
with j-invariant a. Let b be a realization of the generic type (over a)
of the Manin kernel of Ea. Then tp(a, b) has U-rank ω but Morley
rank ω + 1. This example is due to Hrushovski, see [17, addendum]
for details. In [5], Hrushovski and Scanlon showed that in DCF0 the
Morley rank can be strictly greater than the U-rank even for types of
finite Morley rank.

3. The type of a generic solution to the equation yδ2y − δy = 0 has
Morley rank 1 and differential height 2. This example is due to Poizat,
for details see [8, p.64].

4. The type of a generic solution of the Painlevé equation δ2y = 6y2 + a
where a is an element such that δa = 1 has differential height 1 and
differential order 2. The analysis of this Painlevé equation is due to
Kolchin, see [8, p.66] for details.
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