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Abstract. We identify the locally finite graphs that are quantifier-eliminable

and their first order theories in the signature of distance predicates.

Our study of quantifier-eliminable locally finite graphs was motivated by the re-
sults in [12, 4]. The authors of [12] showed that the theory of the complete binary
tree admits quantifier elimination (q.e.) in the signature L∞ consisting of distance
predicates. Their proofs are essentially syntactic. This prompted us to look for a
proof closer in spirit to Robinson’s message: to prove quantifier-elimination, use
model theory rather than syntactic methods whenever possible1. We ended up an-
swering the question of which locally finite graphs are quantifier-eliminable in the
signature L∞. They are precisely the 6-transitive graphs determined by Cameron
in [2] and the infinite locally finite graphs with each connected component isomor-
phic to a member of a class of graphs that we call clique-trees. As a consequence
of this result, we also show that complete rooted trees are quantifier-eliminable in
L∞∪{r} where r is the constant symbol for root. This generalizes the corresponding
result in [12] about the complete binary tree.

1. Finitely transitive Locally finite graphs

We summarize here the results of graph theory that we need. The reader can
consult [7] for the graph theoretic terms that appear subsequently. Graphs in this
article have neither loops nor multiple edges. A graph is locally finite if each of its
vertex has finite valency. In particular, finite graphs are locally finite. We now give
a family of infinite examples.

For natural numbers m,n > 1, consider the following four properties on a graph.

• The graph is connected.
• Each vertex has degree at most (m − 1)n.
• Each vertex is the intersection of n distinct m-cliques. That is, given any

vertex v there exist n disjoint sets of vertices D1,D2, ...,Dn so that for
each i, |Di| = m− 1 and the induced subgraph on Di ∪ {v} is an m-clique.
Moreover, there are no edges between Di and Dj for i 6= j.

• For n ≥ 4, no induced subgraph is an n-cycle.

Note that, with the exception of connectedness, these properties are all elementary.
It is easy to construct an isomorphism between any two graphs possessing all four
of these properties. We call the unique (up to isomorphism) graph with these
properties the (m,n) clique-tree. A clique-tree is simply an (m,n) clique-tree for
some m,n. A more concise description of clique-trees was given in [8]: let X,Y
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1Since the graph theory involved in this article is combinatorial rather than algebraic, this is our

interpretation of the Robinson’s message written on p.202 in [10].
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be the bipartition of the semi-regular tree Tm,n such that every vertex in X has
valency m and every vertex in Y has valency n. Then the (m,n) clique-tree is the
graph with vertex set Y and two vertices are adjacent if and only if they are of
distance 2 in Tm,n.

Figure 1. A portion of the (4,3) clique-tree

A graph is ultra-homogeneous if any isomorphism between finite induced sub-
graphs extends to an automorphism. Finite ultra-homogeneous graphs were classi-
fied by Gardiner in [6, Theorem 12].

Theorem 1.1. A finite graph is ultra-homogeneous if and only if it is one of the
following:

• a finite disjoint union of isomorphic finite complete graphs;
• a regular complete t-partite graph Kt;r, t ≥ 2 and r is the regularity.
• a 5-cycle;
• the line graph of K3,3.

We would also like to mention that for countable ultra-homogeneous graphs, the
isomorphism types were characterized by Lachlan and Woodrow in [11].

An isometry is a map that preserves distance. A graph is 2-transitive if any
isometry between pairs of vertices extends to an automorphism. A graph is finitely
transitive if any isometry between finite tuple of vertices extends to an automor-
phism. Finitely transitive finite graphs were classified by Cameron in [2].

Theorem 1.2. A finitely transitive graph must be one of the following:

• connected finite ultra-homogeneous graph;
• for each n:

– the n-cycle;
– the (n − 1)-regular bipartite graph with two sets of size n;

• the icosahedron;
• J(6, 3, 2) (a Johnson graph).

Remarkably, MacPherson proved that, among connected infinite locally finite
graphs, the clique-trees are precisely those graphs that are 2-transitive [13]. Using
this result, the following theorem was proved in [9].
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Theorem 1.3. Let G be a connected infinite locally finite graph. Then the following
are equivalent:

(1) G is 2-transitive;
(2) G is finitely transitive;
(3) G is a clique-tree.

2. Quantifier-eliminable Locally Finite Graphs

Let L be a first-order signature. An L-structure is quantifier-eliminable if its
complete L-theory admits quantifier elimination in L. An L-structure is ultra-
homogeneous if every isomorphism between finitely-generated substructures extends
to an automorphism of M ; and we use the term ultra-homogeneous in L if we want
to emphasize the signature. As was shown in [10, Corollary 7.4.2], these two notions
are equivalent on finite structures.

Proposition 2.1. Let M be a finite structure. Then M is quantifier-eliminable if
and only if M is ultra-homogeneous.

We give two easy applications of Proposition 2.1. Let L1 be the first-order
signature consisting of only one binary relation symbol d1. We view a graph as
an L1-structure by interpreting d1 as the edge relation. It is clear that for graphs,
ultra-homogeneous means ultra-homogeneous in L1. It follows that a finite graph
is quantifier-eliminable in L1 if and only if it is isomorphic to a graph listed in
Theorem 1.1.

Let L∞ be the signature of distance predicates, i.e. the signature obtained by
adding to L1, binary relation symbols d2, d3, . . .. We view graphs as L∞-structures
by requiring dk holds for two vertices if and only if they are distance k apart. It is
clear that for graphs, finitely transitive means ultra-homogeneous in L∞. It follows
that a finite graph is quantifier-eliminable in L∞ if and only if it is isomorphic to
a graph listed in Theorem 1.2.

The following quantifier-elimination test extends Proposition 2.1. It fits par-
ticularly well into our combinatorial setting. We found it as an exercise in [10,
Q.6 p.207] but decided to include a proof here since we cannot find a convenient
reference.

Proposition 2.2. Let L be a first-order language and T a complete theory in L.
Then T has quantifier elimination if and only if every model of T has an ultra-
homogeneous elementary extension.

Proof. If T has a finite model, then this is a consequence of Proposition 2.1; and
so, we assume T has no finite models.

Suppose T does not have quantifier elimination. Then there exist tuples ā and b̄

in a model M of T such that ā and b̄ have the same quantifier-free type but not the
same type in M . Because they have the same quantifier-free. type, there is a partial
isomorphism sending ā to b̄. Because they do not have the same type, this partial
isomorphism does not extend to an automorphism of M nor to an automorphism
of any elementary extension of M .

Conversely, suppose that T has quantifier elimination. By Proposition 2.2.7
of [1], M has a strongly ω-homogeneous elementary extension, say N . We argue that
N is ultra-homogeneous. Let f be an isomorphism between two finitely generated
substructures A and B of N . Suppose ā generates A and so b̄ := f(ā) generates B.
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Since f is an isomorphism between substructures, ā and b̄ have the same quantifier-
free type in N . Since N |= T and T admits quantifier elimination ā and b̄ have the
same type in N . By strong ω-homogeneity, there is an automorphism of N sending
ā to b̄ hence extending f . ¤

We will generalize Proposition 2.1 to locally finite graphs. However, the proofs
involved are not harder for a more general class of relational structures, so we will
argue in that generality.

3. Ultra-homogeneous relational structures

First, we introduce several notions that we need. Let M be a relational structure,
i.e. an L-structure for some first-order signature L which consists of relation sym-
bols only. For any R ∈ L, we say that two distinct elements a, b of M are R-related
if RM holds for some tuple of M which contains both a and b. In this case, we also
say that a and b are R-neighbors. The Gaifman graph of M , denoted by G(M), is
the graph with vertices elements of M and there is an edge between two vertices
if and only if they are R-related for some R ∈ L. For k ∈ N, the k-neighborhood
of a ∈ M , denote by Nk(a), is the substructure of M whose underlying set is the
set of all vertices with distance at most k from a in G(M). The component of a is
the substructure

⋃
k≥1 Nk(a). A component of M is the component of its elements.

Clearly, M is the disjoint union of its components. The reader can consult [5] for
more details about Gaifman graphs.

We say that M is L-locally finite or locally finite in L if each element of M has
finitely many R-neighbors for each R ∈ L. This generalizes the notion of locally
finite in the graph-theoretical sense to arbitrary relational structures. For graphs,
locally finite, locally finite in L1, and locally finite in L∞ are all equivalent. The
notion of L-locally finite is not to be confused with the notion of locally finite in
the model-theoretic sense. Because finitely generated substructures of a relational
structure are necessarily finite, all relational structures are locally finite in the
model-theoretic sense. An L-theory is uniformly L-locally finite if for each R ∈ L,
there exists a natural number n(R) (depends only on R) such that “for each x there
exist at most n(R) y’s that are R-related to x” is expressed by a sentence in the
theory. An L-structure is uniformly L-locally finite if its L-theory is. This is not
to be confused with the similarly named concept called “uniformly locally finite”
(c.f. [10, p.175]).

Lemma 3.1. If M is ultra-homogeneous then so are its components. Moreover if
elements of M are isomorphic as substructures then components of M are isomor-
phic.

Proof. Let f be an isomorphism between two finitely generated substructures A

and B of a component M0 of M . By ultra-homogeneity, f extends to an automor-
phism σ of M . Since σ must send the component of A to the component of B,
it restricts to an automorphism of M0. Moreover if elements of M are isomorphic
as substructures, M must be vertex-transitive (i.e. its automorphism group acts
transitively on its elements) and hence has isomorphic components. ¤

Theorem 3.2. Suppose M is an L-locally finite ultra-homogeneous structure with
isomorphic elements. Then any L-structure that is elementarily equivalent to M is
a disjoint union of copies of a connected ultra-homogeneous L-structure.
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Proof. By Lemma 3.1, components of M are isomorphic copies of a connected ultra-
homogeneous structure, say M0. Suppose M ′ is elementarily equivalent to M , it
suffices to show that components of M ′ are isomorphic to M0.

It follows from L-locally finiteness of M that for every k ∈ N, Nk(a) is a finite
structure for any a ∈ M . Since M is vertex transitive, these k-neighborhoods
are all isomorphic a finite L-structure, say Nk. Since Nk is finite, the fact every
element has Nk as its k-neighborhood is described in the L-theory of M . This
completes the proof since a component of an L-structure is the union over k of
these k-neighborhoods. ¤

For infinite structures, homogeneity is related to strong minimality. Recall that
an infinite L-structure M is said to be strongly minimal if every definable subset
of every structure M ′ elementarily equivalent to M is either finite or co-finite. By
definable, we mean definable by an L-formula with parameters from M ′. If D ⊂ M ′

is defined by an L-formula having parameters in A ⊂ M ′, then we say that D is
defined over A. If d ∈ M ′ is an element of a finite set definable over A, then d is
said to be algebraic over A. Otherwise, d is non-algebraic over A. We say that A

is algebraically closed in M ′ if every element d ∈ M ′ that is algebraic over A is an
element of A.

A structure M is homogeneous (in the model-theoretic sense) if for each A ⊂ M

with |A| < |M | and each c ∈ M , every elementary map on A can be extended to
an elementary map on A ∪ {c}.

Lemma 3.3. Strongly minimal structures are homogeneous.

Proof. Let M be strongly minimal and f : A → M be a partial elementary map
where A ⊂ M and |A| < |M |. Pick c ∈ M \ A. Without loss of generality, we can
assume both A and f(A) are algebraically closed in M (see [10, Lemma 9.2.5] for
example). Thus the type of c over A and hence its image under f are non-algebraic.
Since M is strongly minimal, the latter must be the unique non-algebraic type over
f(A) and hence satisfied by any d ∈ M \ f(A). Sending c to d extends f to an
elementary map on A ∪ {c}. Thus M is homogeneous. ¤

If we further assume the structure is quantifier-eliminable then ultra-homogeneity
follows.

Lemma 3.4. Strongly minimal structures that are quantifier-eliminable must be
ultra-homogeneous.

Proof. By Lemma 3.3, the structure is homogeneous. By quantifier elimination any
isomorphism between (finitely-generated) substructures is partial elementary and
hence is a restriction of an automorphism [14, Proposition 4.2.13]. ¤

The next two lemmas bring L-locally finiteness into the picture.

Lemma 3.5. Let M be an infinite quantifier-eliminable L-structure. Suppose that
the elements of M are isomorphic as L-structures. Then M is strongly minimal if
it is uniformly L-locally finite.

Proof. Let M ′ be an elementary extension of M . Let φ(x) be an L-formula with
parameters in M ′. By quantifier elimination, we may assume that φ(x) is a Boolean
combination of atomic formulas. To show that φ(x) defines a finite or cofinite subset
M ′, it suffices to show that each atomic formula α(x) defines a finite or cofinite
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set. If α(x) has parameters in M ′, then this follows from the assumption that M

is uniformly L-locally finite. Otherwise, if α(x) has no parameters, then it follows
from the assumption that elements of M are isomorphic as L-structures that α(x)
or its negation defines the empty set. ¤

We thank Dugald MacPherson for pointing out a mistake in our original version
of Lemma 3.5. We left out the assumption that elements of M are isomorphic as
L-structures. Without that the statement is simply wrong: for example, suppose
L consists of only a unary predicate P and M is an infinite L-structure in which
P picks out an infinite co-infinite set. Then clearly M is L-locally finite but not
strongly minimal. In addition, we remark that instead of assuming points are
isomorphic, Lemma 3.5 holds under a weaker assumption that quantifier free 0-
definable sets are either finite or cofinite. However, we state Lemma 3.5 in its
current form since we do assume points are isomorphic in the situation where it is
applied (Theorem 4.1).

Lemma 3.6. Suppose M is L-locally finite, quantifier-eliminable and elements of
M are isomorphic as L-structures then M is uniformly L-locally finite.

Proof. By Proposition 2.2, M has an ultra-homogeneous elementary extension M ′.
Since elements of M are isomorphic as L-structures, the automorphism group of
M ′ act transitively on them. Thus for each R ∈ L, the elements of M must have
the same number of R-neighbors. This common value is finite, since M is L-locally
finite, and hence must be encoded in the L-theory of M . ¤

4. Conclusion

Theorem 4.1. Suppose M is L-locally finite and elements of M are isomorphic
as substructures then the following are equivalent.

(1) M is quantifier-eliminable in L;
(2) M is ultra-homogeneous in L;
(3) There exists a connected ultra-homogeneous L-structure M0 so that every

L-structure elementarily equivalent to M is a disjoint union of copies M0.
(4) Every L-stricture elementarily equivalent to M is ultra-homogeneous in L.

Proof. By Proposition 2.1, the first two conditions are equivalent for finite struc-
tures; so we assume M is infinite. Suppose M is quantifier-eliminable in L, then M

is uniformly L-locally finite by Lemma 3.6. It then follows from Lemma 3.5 that M

is strongly minimal and hence ultra-homogeneous by Lemma 3.4. This completes
the proof that (1) implies (2). (It also shows that (1) implies (4).)

By Theorem 3.2, (2) implies (3).
Now suppose (3) holds and let M ′ be elementarily equivalent to M . Let f be

an isomorphism the substructures of M ′ generated by two finite tuples ā and b̄,
respectively. By reordering the tuples if necessary, we can assume ā = ā1, . . . , āk

and ai’s coming from distinct components. Let Ai (1 ≤ i ≤ n) be the component
of ai and Bi (1 ≤ i ≤ n) be the component of b̄i := f(āi). Note that the Bi’s are
distinct as well. Because Ai and Bi are isomorphic to M0, there is an isomorphism
gi : Ai → Bi for each 1 ≤ i ≤ n. Let c̄i be the tuple from Ai such that gi(c̄i) = b̄i.
By assumption, Ai is ultra-homogeneous so there exists σi, an automorphism of Ai,
mapping āi to c̄i. Thus gi ◦ σi is an isomorphism from Ai to Bi that maps āi to
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b̄i. Therefore, h∪
⋃k

i=1 gi ◦σi is an automorphism of M ′ extending f where h is an

isomorphism between M ′ \
⋃k

i=1 Ai and M ′ \
⋃k

i=1 Bi. This shows (3) implies (4).
Lastly, (4) implies (1) by Proposition 2.2. ¤

Since vertices of a graph are isomorphic as substructures. It follows immediately
from Theorem 4.1 and graph theoretic results Theorem 1.2 and 1.3 that

Theorem 4.2. For a locally finite graph G, the following are equivalent.

(1) G is quantifier-eliminable in L∞.
(2) G is the disjoint union of isomorphic copies of

• one of the finite graphs listed in Theorem 1.2; or
• a clique-tree.

We conclude this article by showing that the complete n-ary tree (n ≥ 1) is
quantifier-eliminable in the signature L∞(r) := L∞ ∪ {r} where r is a constant
symbol. Let Tn be the complete n-ary tree, i.e. the connected acyclic graph with a
distinguish vertex called root of valency n and every other vertex has valency n+1.
We view Tn as an L∞-structure by interpreting r as the root and dk (k ≥ 1) as the
distance k relation.

Theorem 4.3. Tn (n ≥ 1) is quantifier-eliminable in L∞(r).

Proof. By Proposition 2.2, it suffices to show that Tn is ultra-homogeneous in
L∞(r). Let T 0, T 1 be two copies of Tn with roots r0, r1, respectively. Let G

be the graph obtained by joining T 0 with T 1 at their roots by an edge. Then
G is the (2, n + 1) clique-tree. Suppose f is an L∞(r)-isomorphism between two
finitely generated L∞(r)-structure of T 0. Then in particular f is an isomorphism
between finitely generated L∞-substructures of G. Hence f extends to an L∞-
automorphism σ by ultra-homogeneity of G. Since σ fixes r0, if it maps any v ∈ T 0

to a vertex in T 1 then, by considering distances, σ has to map every vertex on the
unique path between v and r0 into T 1. That means σ has to map a neighbor of
r0 to r1. Moreover, again by considering distances, if σ maps a vertex of T 0 into
T 1, then it has to map the whole subtree below that vertex into T 1. Thus σ at
worst swaps a subtree of T 0 with root a neighbor of r0 with T 1. Fixing the rest
while swapping these subtrees again if necessary, we get an L∞-automorphism of
G fixing r0 that restricts to an automorphism of T 0. This concludes the proof. ¤
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