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Abstract. A connected graph G is said to be z-homogeneous if any isomor-

phism between connected induced subgraphs of G extends to an automorphism
of G. Finite z-homogeneous graphs were classified in [14]. We show that z-
homogeneity is equivalent to finite-transitivity on the class of locally finite

infinite graphs. Moreover, we classify the graphs satisfying these properties.
Our study of bipartite z-homogeneous graphs leads to a new characterization
for hypercubes.
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1. Homogeneous Graphs

We study various notions of homogeneity for graphs. We begin by fixing some

terminology that will be used throughout this article. The reader may consult [10]

for undefined graph theoretic terms that appear here.

We view each graph G as a set of vertices with a binary edge relation that is

both symmetric and irreflexive. In particular, all graphs in this paper are undirected

graphs with neither loops nor multiple edges. If the edge relation holds for vertices

a and b of graph G, then we refer to the set {a, b} as an edge of G and say that a

and b are adjacent in G or a and b are neighbors in G. We denote the set of vertices

and the set of edges by V (G) and E(G), respectively. However, we often simply

write G for V (G). We let |G| denote the cardinality of V (G).

A path of length r from a to b in a graph G is a sequence of r+1 distinct vertices

starting from a and ending with b such that consecutive vertices are adjacent.

We speak of an (a, b)-path if we want to emphasis the start and the end point. We

sometime speak of a path in G when we actually mean the subgraph of G consisting

of the vertices of the path and the edges between consecutive vertices. A graph is

connected if there is a path between any pair of vertices. For a connected graph

G, the distance δ(a, b) := δG(a, b) between two vertices a and b is the length of a
1



2 SHAWN HEDMAN AND WAI YAN PONG

shortest (a, b)-path. The interval I(a, b) between a and b is the set of all vertices

on shortest (a, b)-paths, that is,

IG(a, b) := I(a, b) = {c ∈ V : δ(a, c) + δ(c, b) = δ(a, b)}.

A cycle is a finite connected graph where every vertex has exactly two neighbors.

More specifically, an n-cycle is a cycle with n vertices. By a proper cycle we mean

a cycle with more than 3 vertices.

Let H and G be graphs. An embedding from H to G is an injective map f

from V (H) to V (G) such that for any a, b ∈ V (H), {a, b} ∈ E(H) if and only if

{f(a), f(b)} ∈ E(G). A surjective embedding is an isomorphism. An automorphism

of a graph G is an isomorphism of G to itself. A map from a subset of V (H) to

V (G) is an isometry if dH(a, b) = dG(f(a), f(b)) for all a, b ∈ H. An isometry is

necessarily an injective map.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H

of G is an induced subgraph if the inclusion of V (H) into V (G) is an embedding. An

induced subgraph H of G is convex if V (H) contains IG(a, b) for any a, b ∈ H. The

intersection of convex subgraphs is convex and the convex hull of a set of vertices

X in G is the smallest convex subgraph of G that contains X.

A graph G is a tree if and only if it is connected and has no cycles. A graph is

locally finite if every vertex has finitely many neighbors. A graph is e-regular if each

vertex has e neighbors. For any e ≥ 2, the e-regular tree is a uniquely determined

countably infinite graph. We shall call this graph the e-tree for short. The m-clique,

denoted Km, is the (m − 1)-regular graph on m vertices.

Definition 1.1. An (m,n) clique-tree (for n,m > 1) is a graph G with the following

properties:

• G is connected.

• G is (m − 1)n-regular.

• Each vertex of G is the intersection of n distinct m-cliques. That is, given

any vertex v there exist n disjoint sets of vertices D1,D2, ...,Dn so that
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for each i, |Di| = m − 1 and the induced subgraph of G on Di ∪ {v} is an

m-clique. Moreover, there are no edges between Di and Dj for i 6= j.

• G contains no proper cycle as induced subgraph.

We say that G is a clique-tree if it is an (m,n) clique-tree for some m and n.

It follows immediately from the definition above that every edge in a clique-tree

belongs to a unique maximal clique. An easy consequence of this observation is

that if a proper cycle is a subgraph of a clique-tree then it must be part of a clique.

There is a more concise description of clique-trees in [11]. Our (m,n) clique-tree is

the graph Xm−1,n in [11].

Figure 1. A portion of the (4,3) clique-tree

This paper was motivated by considering the homogeneity of e-trees. We show

that various homogeneity properties possessed by e-trees are possessed by all clique-

trees and by no other locally finite infinite graphs. Intuitively, the e-tree is homo-

geneous in the sense that every region of the graph looks the same. For example,

Figure 2 depicts a subgraph of the 3-tree. This subgraph occurs everywhere in

the 3-tree; the vertex labeled “a” could be any one of the graph’s infinitely many

vertices. To make the notion of homogeneity precise, we consider the action of the

automorphism group on the graph G. Let ISub(G) denote the set of all induced
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a

Figure 2. A portion of the 3-tree

subgraphs of G. For any C ⊂ ISub(G), we say that G is C-homogeneous if any iso-

morphism between members A and B of C extends to an automorphism of G. If G is

C-homogeneous where C is the class of all finite members of ISub(G), then G is said

to be ultra-homogeneous. Trees do not possess this strong form of homogeneity. To

see this, take A and B to be two pairs of non-adjacent vertices of different distances.

We see that in a connected ultra-homogeneous graph, the maximum distance be-

tween vertices is 2. In particular, any infinite ultra-homogeneous connected graph

has infinite degree. There are only countably many ultra-homogeneous graphs.

Gardiner classified finite ultra-homogeneous graphs in [7]. Lachlan and Woodrow

described the isomorphism types of countably infinite ultra-homogeneous graphs in

[12].

To obtain a meaningful notion of homogeneity for locally finite infinite graphs

such as the e-trees, we consider proper subsets C of ISub(G). To say that ver-

tex a in Figure 2 could represent any vertex of the 3-tree is to say the 3-tree is

vertex-transitive. This means the graph is C-homogeneous where C is the set of all

singletons. For e-trees, something much stronger is true.

Definition 1.2. A graph G is said to be z-homogeneous if G is connected and is

C-homogeneous where C is the set of all finite connected graphs in ISub(G).
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The term “z-homogeneous” was introduced by Richard Weiss who classified all

finite z-homogeneous graphs in [14]. Locally finite z-homogeneous graphs were

determined by Gardiner [8] and Enomoto [6]. In particular, they showed that a

locally finite infinite graph is z-homogeneous if and only if is it distance-transitive.

Remarkably, Macpherson proved in [13] the locally finite distance-transitive infinite

graphs are precisely the clique-trees. Gray and Macpherson have recently classified

all (locally finite or not) countable z-homogeneous graphs (see [11]).

Definition 1.3. A connected graph G is said to be k-transitive if, for any pair of

isometric k-tuples of vertices of G, there is an automorphism mapping one to the

other. In order words, any ordered k-tuples (x1, . . . , xk) and (y1, . . . , yk) of vertices

satisfying δ(xi, xj) = δ(yi, yj) for all 1 ≤ i, j ≤ k, there is an automorphism of G

mapping xi to yi for each i.. We call G finitely-transitive if it is k-transitive for all

k ≥ 1.

Distance-transitive graphs are hence the same as 2-transitive graphs. In [4],

Cameron showed that every finite 6-transitive graph is finitely-transitive. This

result followed from Cameron’s classification of all finite 6-transitive graphs and

the observation that each of these graphs is finitely-transitive. In light of these

results, we have the following.

Theorem 1.4. Let G be a locally finite infinite graph. The following are equivalent.

(I) G is 2-transitive.

(II) G is finitely-transitive.

(III) G is z-homogeneous.

(IV) G is a clique-tree.

By the works of Macpherson [13], Gardiner [8] and Enomoto [6], we already

know that (I), (III) and (IV) are equivalent for locally finite infinite graphs. Hence

to prove Theorem 1.4 it suffices to verify that clique-trees are finitely-transitive.

We will show this in section 2. In section 3, we restrict our attention to bipartite
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graphs and obtain a characterization for hypercubes without assuming the graph

is finite.

Before giving the proofs, we note that the assumption that G is infinite is essential

for Theorem 1.4. For example, the Petersen graph is z-homogeneous but not 3-

transitive. The 4-cube (which we shall discuss in Section 3) is 3-transitive but not

4-transitive. We note too that Theorem 1.4 implies the equivalence of multiple

notions of homogeneity on infinite locally finite graphs. For example, say that a

graph G is T -homogeneous if it is C-homogeneous where C is the set of trees in

ISub(G). It is easy to see that T -homogeneity is a consequence of z-homogeneity

and also that any T -homogeneous graph is 2-transitive. It follows that the notion of

T -homogeneous is equivalent to these other notions on locally finite infinite graphs.

The authors would like to thank Dugald Macpherson for his helpful comments

and for calling their attention to references [6] and [8].

2. Clique-Trees are finitely-transitive

We begin with the following lemma.

Lemma 2.1. For any two vertices of a clique-tree there is a unique shortest path

connecting them.

Proof. Let G be a clique-tree. Suppose there are pairs of vertices of G invalidating

the lemma. Choose a pair (u, v) with shortest distance among all the counter-

examples. With this choice, any two paths connecting u and v share no vertices

except u and v. So u and v are on a cycle and, since G is a clique-tree, it must be

part of a maximal clique. Therefore, δ(u, v) = 1. But this is a contradiction since

our graphs have no multiple edges. �

Note that in a clique-tree the set of vertices on the unique shortest path from

u to v is simply I(u, v) and the induced subgraph on I(u, v) is Conv({u, v}). We

write Conv(u, v) instead of Conv({u, v}) for simplicity. It is clear that a convex

hull contains the interval of any of two of its vertices. And for a clique-tree, that is

all a convex hull contains:
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Proposition 2.2. Let X be a set of vertices of a clique-tree. Then Conv(X) is

the union of Conv(a, b) where a, b run through the vertices of X. In other words,

Conv(X) is the induced subgraph on
⋃

a,b∈X I(a, b).

Proof. We need to show that the union is convex. Suppose u ∈ I(a1, a2) and

v ∈ I(a3, a4) where a1, a2, a3, a4 ∈ X (not necessarily distinct). Clearly, we can

assume at least three of the ai’s are distinct otherwise the result is trivial. We will

show that I(u, v) ⊆ I(ai, aj) for some 1 ≤ i, j ≤ 4. Let γ be the unique shortest path

from u to v. Let K be the unique clique (since we are in a clique-tree) containing the

first edge of γ. Then either I(a1, u) or I(u, a2) intersects V (K) at u only. Otherwise,

there will be a shorter path from a1 to a2 bypassing u, contradicting u ∈ I(a1, a2).

So without loss of generality, we can assume I(a1, u) ∩ V (K) = {u}. Similarly, we

can assume I(a3, v) ∩ V (K ′) = {v} where K ′ is the unique clique containing the

last edge of γ. We claim that u, v ∈ I(a1, a3). This implies I(u, v) ⊆ I(a1, a3) since

I(a1, a3) is convex. Suppose x is the vertex in I(a1, u) ∩ I(a1, a3) that is closest to

u and y is the vertex in I(a3, v) ∩ I(a1, a3) that is closest to v. Unless x = u and

y = v, the union of Conv(x, u), Conv(u, v), Conv(v, y) and Conv(y, x) will be a

cycle and hence must be part of a clique. In particular, x, y are vertices on K = K ′

but this contradicts the assumption on either a1 or a3. Thus we establish the claim

and hence the proposition. �

Lemma 2.3. Clique-trees are 3-transitive.

Proof. It is easy to see that z-homogeneous graphs are 2-transitive. In particular,

clique-trees are 2-transitive.

Let G be a clique-tree and let A = {a1, a2, a3} be a set of three distinct vertices

of G. Let di be the distance between aj and ak for {i, j, k} = {1, 2, 3}. We show

that these three distances determine Conv(A) up to isomorphism.

For {i, j, k} = {1, 2, 3}, let yi be the vertex in I(ai, aj) and I(ai, ak) furthest

away from ai. Consider Y = {y1, y2, y3}. If |Y | = 1, then the three paths intersect
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at a single vertex. If |Y | = 3, then Y is a triangle (since no induced subgraph of G

is a proper cycle). Clearly, |Y | cannot equal 2.

For i = 1, 2, and 3, let xi = δ(ai, yi), x̄ = (x1, x2, x3), d̄ = (d3, d2, d1), and

d̄0 = (d3 − 1, d2 − 1, d1 − 1). Let M =
(

1 1 0
1 0 1
0 1 1

)

.

If |Y | = 1, then Mx̄T = d̄T . If |Y | = 3, then Mx̄T = d̄0
T
.

Given the distances d1, d2, and d3, consider both M−1d̄T and M−1d̄0
T
. Since

their difference is (−1/2,−1/2,−1/2)T , exactly one of these two column vectors has

integer entries and these must be equal to x1, x2 and x3. Thus, the distances d1, d2,

and d3 determine whether |Y | = 1 or |Y | = 3 and also determine the distances

xi from ai to yi. This information determines the induced subgraph Conv(A)

up to isomorphism. Thus we have shown that any isometry on A extends to an

isomorphism on Conv(A). By z-homogeneity of clique-trees, this isomorphism can

be extended to an automorphism of G. �

Theorem 2.4. Clique-trees are finitely transitive.

Proof. We have already shown that clique-trees are 3-transitive. Fix k ≥ 4. Let G

be a clique-tree and f : ai 7→ bi (1 ≤ i ≤ k) be an isometry between two subsets of

vertices of G of size k. We need to show that f extends to an automorphism of G.

For i ≤ k, let Ai = {a1, . . . , ai} and Bi = {b1, . . . , bi}. Let f1 be the map sending

a1 to b1. For i ≥ 1, suppose by induction that we have built an isomorphism fi

from Conv(Ai) into Conv(Bi) such that fi(aj) = bj for all 1 ≤ j ≤ i. We build fi+1

from fi as follows. Pick any vertex c in Conv(Ai+1) but not in Conv(Ai). Then

by Proposition 2.2 c ∈ I(ai+1, aj) for some 1 ≤ j ≤ i. We set fi+1(c) = c′ where

c′ be the unique vertex in I(bi+1, bj) such that δ(ai+1, c) = δ(bi+1, c
′). We need to

argue that c′ is independent of the choice of j. Suppose c is also on I(ai+1, am)

for some m. Since G is 3-transitive (Lemma 2.3), there is an automorphism σ of

G moving the triple (ai+1, aj , am) to (bi+1, bj , bm). And σ induces an isomorphism

between the convex hulls of these tuples. Hence c′ must be in I(bi+1, bm) as well.

This shows that fi+1 is well defined.
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By the definition of fi+1 and Proposition 2.2, fi+1 maps each Conv(ai+1, aj)

isomorphically onto Conv(bi+1, bj) and hence fi+1 is an isomorphism (extending

fi) from Conv(Ai+1) onto Conv(Bi+1). By induction, we show that f can be ex-

tended to an isomorphism between the connected induced subgraphs Conv(Ak) and

Conv(Bk) and hence by z-homogeneity of clique-trees, f extends to an automor-

phism of G. �

3. A characterization of hypercubes

Let G be a locally finite graph and for u ∈ G, let Di(u) of the set of vertices of

G of distance i from u. If the number of common neighbors of any pair of distance

two vertices of G is a constant, then we denote this constant by c2 otherwise we say

that c2 is undefined for G. At an early stage in our investigation of z-homogeneous

graphs, we realize that:

Proposition 3.1. If G is a locally finite z-homogeneous bipartite graph with regu-

larity e, then a pair of distance 2 vertices of G have either 1, 2, e− 1, or e common

neighbors.

Proof. Since a locally finite (connected) z-homogeneous graph is distance transitive,

it is clear that |D1(u)∩D1(v)| is a constant for any pair (u, v) of distance 2 vertices.

So c2 is a number.

Take v ∈ G and w ∈ D2(v). Let X be any subset of D1(v) of size c2. Because

G is bipartite there are no triangles and X ∪ {v} ∼= (D1(v) ∩ D1(w)) ∪ {v}. By

z-homogeneity, there is an automorphism of G fixing v and taking D1(v) ∩ D1(w)

to X. Let wX be the image of w under this automorphism. If X 6= D1(v)∩D1(w),

then w 6= wX since w is adjacent to no more than c2 vertices in D1(v). For fixed

u ∈ D1(v), there are exactly
(

e−1
c2−1

)

subsets of D1(v) of size c2 that contain u. For

each one of these subsets, there is a corresponding image of w. But there are only

e vertices adjacent to c, one of which is a. So
(

e−1
c2−1

)

≤ (e − 1). This inequality

holds if and only if c2 − 1 = 0, 1, e − 2, or e − 1. �
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Certainly this is a rather weak result, especially now we know, thanks to the

classification of Weiss and Theorem 1.4, precisely what are the locally finite z-

homogeneous graphs. In particular, the bipartite ones are:

• the regular (infinite) trees.

• the even cycle C2n, n ≥ 2.

• the complete bipartite graphs, Kn,n, n ≥ 1.

• the almost complete bipartite graphs K̃n,n, i.e. Kn,n with a perfect match-

ing deleted.

We note that except for c2 = 2 each of the possibilities for c2 in Proposition p:c2 is

realized infinitely often. For regular-trees and even cycles of length greater than 4,

c2 = 1. For complete bipartite graphs, c2 is the regularity and for almost complete

bipartite graphs, c2 is one less than the regularity. But there are only two bipartite

z-homogeneous graphs with c2 = 2, namely the square K2,2 and the cube K̃4,4.

Both graphs are hypercubes and hypercubes all have c2 = 2. So we wonder if we

can recover the family of hypercubes by replacing the z-homogeneous assumption

with some weaker condition.

A hypercube is a graph with binary strings of a fixed length as vertices. Two

vertices have an edge between them if and only if they differ in exactly one place. It

is clear that hypercubes are regular. For e ≥ 1, we denote the e-regular hypercube

by Qe. There are many ways to characterize hypercubes. The following is due to

Mulder [2].

Theorem 3.2. A connected bipartite e-regular graph is isomorphic to Qe if and

only if it has 2e vertices and c2 = 2.

For the rest of this section, we will show that the global assumption on the

size of the graph in 3.2 can be replaced by a mild convexity assumption, called

meshed, on the distance function. A graph G is meshed if for any three vertices

u, v, w with δ(v, w) = 2, there exists a common neighbor x of v and w such that
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2δ(u, x) ≤ δ(u, v) + δ(u,w). We remark that weakly modular graphs are meshed.

For more details on meshed graphs, the reader can consult [3].

Lemma 3.3. Let G be a bipartite meshed graph. Suppose a, b, b′ are vertices of G

such that δ(a, b) = δ(a, b′) and δ(b, b′) = 2. Then there exists a common neighbor c

of b and b′ such that δ(a, c) = δ(a, b) − 1.

Proof. Suppose b, b′ are of distance m from a. By the definition of meshed graph,

there exists a common neighbor c of b and b′ such that 2δ(a, c) ≤ δ(a, b)+δ(a, b′) =

2m. So δ(a, c) ≤ m but the inequality must be string since G is bipartite. Finally,

the distance between a and c cannot be less than m−1 otherwise since c is neighbor

of b (and b′), this contradicts the fact that b (and b′) is of distance m from a. �

Theorem 3.4. Let G be a connected bipartite e-regular meshed graph. Then G ∼=

Qe if and only if c2 = 2.

Proof. It is clear that c2 = 2 for hypercubes. Conversely, suppose G is a connected

e-regular meshed graph with c2 = 2. By Theorem 3.2, it suffices to show that

|G| = 2e.

Fix a ∈ G. We show that |Di(a)| =
(

e
i

)

for each i. This is obvious for i = 0 or 1.

For any path u, v, w in G, there exists v′ ∈ G so that u, v′, w is a path, {v, v′} is

not an edge of G, and v and v′ are distinct. This is because c2 = 2 and the graph is

bipartite. We use this fact repeatedly and refer to the set {u, v, w, v′} as a square.

Claim 1: Let [D1(u)]2 denote the set of two element subsets of D1(u) for arbitrary

u ∈ G. There is a one-to-one correspondence between D2(u) and [D1(u)]2.

Proof of Claim 1: Given c ∈ D2(u), let f(c) = D1(u) ∩ D1(c). Since c2 = 2,

f(c) ∈ [D1(u)]2. To see that f maps onto [D1(u)]2, take {b, b′} in [D1(u)]2. Because

bub′ is a proper path, there exists c such that {b, u, b′, c} is a square. Clearly,

c ∈ D2(u) and f(c) = {b, b′}. Next, we show that the domain and range of f

have the same size. Since each b ∈ D1(u) has degree e and no two vertices of

D1(u) share an edge (since the graph is bipartite), each vertex in D1(u) is adjacent
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to (e − 1) vertices in D2(u). By assumption, each vertex of D2(u) is adjacent to

c2 = 2 vertices of D1(u). It follows that |D1(u)| · (e− 1) = |D2(u)| · 2 which implies

|D2(u)| =
(

e
2

)

= |[D1(u)]2|. It follows that the function f from D2(u) onto [D1(u)]2

must be one-to-one.

We proceed by induction. Our induction hypothesis is that |Di(a)| =
(

e
i

)

for

each i less than m for some m ≥ 3. More specifically, for 1 ≤ i < m, we assume

the following:

(1) each vertex of Di(a) is adjacent to exactly i elements of Di−1(a).

(2) each vertex of Di(a) is distance two from exactly
(

i
2

)

vertices in Di−2(a).

(3) |Di(a)| =
(

e
i

)

.

Fix v ∈ Dm(a). Let X = Dm−1(a) ∩ D1(v) and let Y = Dm−2(a) ∩ D2(v). Let

x = |X| and y = |Y |. Our goal is to show that x = m, y = m(m − 1)/2, and

|Dm(a)| =
(

e
m

)

.

First, we show that y =
(

x
2

)

. Let f : D2(v) → [D1(v)]2 be as in the proof of

Claim 1. Given c ∈ Y , there exists b ∈ X so that c, b, v is a path. There must exist

b′ ∈ X such that {c, b, v, b′} is a square. On the other hand, given {b, b′} ∈ [X]2,

according to Lemma 3.3 there exists a common neighbor c of b and b′ which is of

distance m−2 from a. So c ∈ D2(v)∩Dm−2(a) = Y and f is one-to-one. Therefore,

(1) y =
x(x − 1)

2
.

Consider next the correspondence between Dm(a) and Dm−1(a). Any vertex of

Dm(a) is adjacent to x vertices of Dm−1(a). By assumption (i), every vertex of

Dm−1(a) is adjacent to (m−1) vertices of Dm−2(a). Since each vertex has degree e

and since there are no edges within Dm−1(a) (because G is bipartite), each vertex

of Dm−1(a) must be adjacent to e − (m − 1) vertices of Dm(a). We conclude

|Dm−1(a)| · (e − (m − 1)) = |Dm(a)| · x. By assumption (iii), |Dm−1(a)| =
(

e
m−1

)

.

Solving for |Dm(a)| yields:
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(2) |Dm(a)| =
e(e − 1)...(e − (m − 1))

(m − 1)!x

Now consider the correspondence between Dm(a) and Dm−2(a). Each vertex of

Dm(a) is distance 2 from exactly y vertices of Dm−2(a). If each vertex of Dm−2(a)

is distance 2 from z vertices of Dm(a), then |Dm(a)|y = |Dm−2(a)|z and so

(3) |Dm(a)| =
|Dm−2(a)|z

y
=

e(e − 1)...(e − (m − 3))z

(m − 2)!y

We seek to determine the value of z.

Fix c ∈ Dm−2(a). By Claim 1, there are e(e−1)
2 vertices of distance 2 from c.

Some of these are in D(m−4)(a), some are in Dm−2(a), and the remaining z of these

vertices are in Dm(a). By assumption (ii), the number of vertices in D(m−4)(a) of

distance 2 from c is exactly (m−2)(m−3)
2 .

To count the number of vertices in Dm−2(a) of distance 2 from c, we count the

number of paths c, d, c′ with d ∈ Dm−1(a) and c′ ∈ Dm−2(a). To justify this, we

must show that for any c′ ∈ Dm−2(a) of distance 2 from c, there exists a unique

d ∈ Dm−1(a) adjacent to both c and c′. By Lemma 3.3, there exists b ∈ Dm−3(a)

adjacent to both c and c′. Because c2 = 2, there is exactly one other vertex

d ∈ D1(c) ∩ D1(c
′). Suppose for a contradiction that d ∈ Dm−3(a). Then b and

d are of distance 2 and are both in Dm−3(a). By Lemma 3.3 again, there exists

c′′ ∈ Dm−4(a) adjacent to both b and d. But then, {c, c′, c′′} ⊂ D1(b) ∩ D1(d)

contradicting c2 = 2.

By assumption (i), there are (m−2) vertices of Dm−3(a) adjacent to c. It follows

that the other e − (m − 2) vertices adjacent to c must be in Dm−1(a). So we have

e− (m−2) choices for d. Again by assumption (i), d is adjacent to (m−1) vertices

of Dm−2(a). One of these is c, the other (m−1)−1 = (m−2) of these are distance

2 from c. It follows that there are [e− (m−2)](m−2) vertices in Dm−2(a) distance

two from a.



14 SHAWN HEDMAN AND WAI YAN PONG

To summarize, there are e(e − 1)/2 vertices of distance 2 from c. Of these,

(m− 2)(m− 3)/2 are in Dm−4(a), [e− (m− 2)](m− 2) are in Dm−2(a), and z are

in Dm(a). We have:

e(e − 1)

2
= (m−2)(m−3)/2+ [e− (m−2)](m−2)+ z =

(m − 2)(2e − m + 1)

2
+ z.

And so:

z =
e(e − 1)

2
−

(m − 2)(2e − m + 1)

2
=

(e − (m − 2))(e − (m − 1))

2
.

Substitution this into Equation 3 yields:

|Dm(a)| =
|Dm−2(a)|z

y
=

e(e − 1)...(e − (m − 3))(e − (m − 2))(e − (m − 1))

(m − 2)!2y

from which we obtain:

(m − 1)x = 2y.

Comparing this with Equation (1), we see that x = m and y = m(m − 1)/2 as

we wanted to show. It follows from either Equation (2) or (3) that |Dm(a)| =
(

e
m

)

.

By induction, |Di(a)| =
(

e
i

)

for all i as claimed. Finally, |G| = Σi|Di(a)| = 2e and

G ∼= Qe by Theorem 3.2. �

We end this article by remarking that the assumption that G is a meshed graph

in Theorem 3.4 cannot be removed. For example, the incident graph of the unique

Hadamard 2-(11,5,2) design is a bipartite 5-regular (in fact distance transitive)

graph with c2 = 2. We will give a realization of the graph here but refer the reader

to [10, Chapter 5], [1] and [9] for more details. This graph has 22 vertices. The

vertices in one partition are called points, say 0, 1, . . . , 9, A and the vertices of the

other partition are called lines, they are 5-element sets of points. Here are the 11

lines:
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01368, 01479, 02569, 0248A, 0357A, 12345, 1267A, 1589A, 23789,

3469A, 45678.

There is an edge between a point and a line if the point is a member of the line.
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