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Completeness is one of the most fundamental notions in algebraic geom-
etry. This article is an attempt to understand the “complete sets” in the
case of differential algebraic geometry. The methods that we use here come
from both model theory and differential algebra. The model theoretic part is
taken from a paper by van den Dries [15]. Using what he called a “Lyndon-
Robinson” type result, van den Dries gave a proof of the main theorem of
classical elimination theory. The completeness of projective varieties easily
follows from this.

Differential completeness was studied in different settings by Blum in [2]
and by Kolchin in [8]. In [8], Kolchin proved that the set of constant points of
a projective space is differentially complete while the whole projective space
is not. However, those were the only examples and differentially complete
sets have not been extensively studied since then.

Throughout this article, F is a fixed differentially closed field of char-
acteristic 0 with a unique derivation ¢ and C is the field of constants of
F. All 4-varieties that we consider are defined over F. The affine n-
space and the projective n-space over F are denoted by A" and P™ respec-
tively. All d-varieties that we consider are defined over F. Also we iden-
tify a d-variety with its set of F-points. The language for our discussion is
L5(F) ={0,1,+,—,-,9,¢; : f € F} where c; is a constant symbol for the
element f of F. In this context, we show that every d-complete set is affine
and is definably isomorphic to a d-complete subset of the line Al. This is
exactly “opposite” to the phenomenon that happens in algebraic geometry
since a complete variety is never affine unless it is a point. Next we obtain
a valuative criterion for d-completeness. Using this criterion, we are able to



obtain Kolchin’s result on the differential completeness of P*(C). Also we
find a new family of §-complete sets. Some members of this family are or-
thogonal to the field of constants. Hence, from the model theoretic point of
view, these d-complete sets are quite different from the set of constant points
in a projective space.

I would like to thank David Marker and Lawrence Ein for many helpful
discussions. I would also like to thank Phyllis Cassidy who introduced me to
[8], [11] and [12] and showed me Ritt’s example of “anomaly of differential
dimension of intersections” which is closely related to Kolchin’s example in
section 2.

1 Differential Completeness and Properties
of Differentially Complete Sets

We say a subset X of the affine space A" is d-closed if it is the zero set
of a collection of -polynomials in F{yi,...,y,}. By the differential basis
theorem, we can assume the collection is finite.

Definition 1.1. Let f be a non-constant polynomial in F{yo,...,y,}. We
say that f is 0-homogeneous of degree d if

f(ty()a s 7tyn) = tdf(y0: . ':yn)7

for some t d-transcendental over F{yo, ..., Yn}-

Just like ordinary homogeneous polynomials, -homogeneous polynomials

can be obtained by homogenization. Let f be a d-polynomial in yq, ..., y,.
One can easily check that, for d sufficiently large, ygf(g—;, ey Z—z) is a o-

homogeneous polynomial of degree d. For example f = §(y;), then y26 (z—;) =
Y00 (y1) — y16(yo) is a d-homogeneous polynomial of degree 2.

In general, we say a subset X of an F-variety V is d-closed if the inter-
section of X with every affine Zariski open subset of V' is an affine -closed
set. However, using d-homogeneous polynomial, we can give a more direct
characterization for J-closed subsets of P* and P™ x A™.

e A subset of P" is d-closed if it is the zero set of a collection of 6-
homogeneous polynomials in F{yo, ..., ¥yn}



e A subset of P* x A™ is d-closed if it is the zero set of a collection
of d-polynomials {f;} in F{yo,.--,Yn,21,--.,2m} such that f; is o-
homogeneous in 7, for each 1.

Let us give an example.

Example 1.2. Consider Z, the é-closed subset of A? defined by:

2(0y)* + (y* = 1) =0
2202 (y) + 820y + 4y = 0.

Homogenizing the first equation with respect to y, we get

2(y16yo — yoduy1)* + yo — yi = 0.

Note that the d-closed set defined by this equation does not intersect the line
[1:0] x Al. Hence Z is actually d-closed in P! x Al.

The following notion is the differential counterpart of completeness in
algebraic geometry.

Definition 1.3. A §-closed set X C P” is j-complete if the second projec-
tion m : X XY — Y is a d-closed map for every quasiprojective d-variety
Y.

It is easy to see that X is d-complete if and only if all its d-irreducible
components are, so we may assume X is d-irreducible.

The next proposition records some properties of d-complete sets that we
are going to use later.

Proposition 1.4. Let X be a é-complete set and Y be a quasiprojective
0-variety.

1. Let f: X =Y be continuous in the d-topology. Then f(X) is d-closed
in'Y and is 6-complete.

2. Any 0-closed subset of X 1is d-complete.

3. If Y is another §-complete set, then so is X x Y.



Proof. (1) Suppose Y C P™. We may view f as a map from X to P™ which
factors through Y. If f(X) is d-closed in P™ it is d-closed in Y. Replacing
Y by P, we consider the map f x id: X x P™ — P™ x P™. Note that the
graph of f is the inverse image of the diagonal of P™ x P which is d-closed.
Therefore the graph of f is d-closed and by the d-completeness of X so is
f(X) = ma(graph of f). Moreover, f(X) is 6-complete because the following
diagram commute:

(2) Let Z be a d-closed subset of X. The assertion holds because X
is 0-complete and the projection Z x Y — Y factors through the inclusion
Z xY — X x Y which is a d-closed map.

(3) The projection X x Y x Z — Z factors through Y x Z — Z. O

Remark 1.5. Note that whether a subset is d-closed is a local question, so by
a standard reduction argument (cf [14] Chapter 1, §5, Theorem. 3), “X is
d0-complete” is equivalent to: Vm € N, m: X x A — A™ is a J-closed
map.

2 Differentially Complete Sets are Affine

There is a fundamental difference between d-completeness and complete-
ness in algebraic geometry: Projective spaces are complete but not
d-complete. In [8], Kolchin gives a family of examples which shows that P"
is not d-complete for any n > 1. Here we will give Kolchin’s example for P!
explicitly by exhibiting the defining equations of a d-closed set in P' x Al
and argue that the projection is not d-closed.

Proposition 2.1. P" is not d-complete.

Proof. We have shown, in example 1.2, that the set Z defined by

2(0y)* + (y* 1) =0 (1)
226%y + 820y + 41° = 0. (2)



is a d-closed subset of P! x Al. We will argue that m5Z is not d-closed in Al.

First note that equation (2) is obtained by differentiating equation (1) and
then dividing by dy. So any solution, (yo, z9) of equation (1) with dyo # 0
is a solution to the whole system. Let b be J-transcendental over F. By
the axioms of differentially closed field, we can find a, in some differentially
closed field containing F(b), a solution to the following system:

by’ + (y* —1) =0
yt—1#0.

In particular, da # 0 and hence (a, b) is a point in Z. Thus b € 757 is dense
in the J-topology of Al. However, 0 is not in mZ, since y* — 1 and 47°
have no common zeros. So 7,7 is not d-closed. This shows that P! is not
d-complete. Finally since P! can be imbedded as a é-closed subset of P,
so by Proposition 1.4 (2), we conclude that P" is not §-complete. O]

Using the fact that P" is not d-complete, we argue that d-complete sets
are “small”—that means having finite U-rank. For the definition of U-rank,
readers can consult Chapter 4 of [9]. Also, [13] contains a summary of prop-
erties of U-rank that we use here.

Let I D F be an w-saturated differentially closed field.

Proposition 2.2. Let X be a proper 6-closed subset of P* and p € P\ X.
Suppose RU(X) > w. Then RU(mp(X)) > w.

Proof. Let a € K be a generic point of X and b = mp(a). Then we have
a € X N pb. The intersection does not contain p so it is a proper d-closed
subset of the projective line pb. Hence RU(a/b) is finite. By the Lascar
inequalities,

w < RU(a) < RU(a,b) < RU(a/b) ® RU(b)
therefore we have w < RU(b) < RU(7p(X)). O
Theorem 2.3. Fvery d-complete set is of finite U-rank.

Proof. Suppose X is an infinite U-rank d-complete set in P". By Proposi-
tion 2.2 and 1.4 (1), the projections of X will have infinite U-rank and are
§-complete. Since P! is irreducible in the d-topology and RU(P') = w, any
infinite U-rank d-closed subset of P! must be the whole space. So by repeat-
edly projecting X to lower dimensional spaces, we conclude that the image
must be the whole projective space which is not d-complete by Proposition
2.1. This is a contradiction. O



Now we can show that every d-complete set in projective space is actually
sitting inside an affine Zariski open set. In fact, we have

Corollary 2.4. Every 6-complete subset is definably isomorphic to an affine
§-closed set. In fact, it is definably isomorphic to a §-complete set in Al.

Proof. Let X be ¢-complete. By Theorem 2.3, RU(X) < w. Then by Propo-
sition 1.1 and Theorem 1.7 in [13], we know that

K E “X is contained in the complement of a hyperplane and
there exists a definable isomorphism from X into Al”.

So by model completeness of the theory of differentially closed fields, the
same statement is true in F. Finally, since the definable isomorphism is
a composition of projections, in particular it is continuous with respect to
the d-topology, therefore by Proposition 1.4 (1) the image is d-complete as
well. O

3 A Model Theoretic Fact

Using the results from the previous section, we can, and will, assume that X
is an affine d-closed set. Our next goal is to derive a general test to decide
if a given d-closed set is d-complete. Our approach to this problem is quite
naive, namely verify the definition directly. For each m € N, we pick an
arbitrary d-closed subset of X x A™ and argue that its projection is d-closed.
The reason why model theoretic methods are useful to us is that the basic
geometric objects, in this case affine d-closed sets, are definable. In fact, an
affine d-closed set over F is nothing but a set that is definable by a positive
quantifier free formula in our language. With this observation, showing that
a definable set Y is d-closed is equivalent to showing that F =z € Y +» ¢(2)
for some positive quantifier free formula ). Therefore the first thing we need
is a way to tell whether a given formula is equivalent to a positive quantifier
free formula. Fortunately, in [15] van den Dries told us one such test.

Proposition 3.1 (van den Dries).
Let T be a complete £-theory and ¢(vi, ..., vy) an L-formula ! (without
parameters), then the following are equivalent:

'In case m = 0, we assume that £ has a constant symbol.



1. There exists a positive quantifier free formula 1 such that

T VYo ¢(v) + (D).

2. For any models K and L of T and each homomorphism f: A — L from
a substructure A of K into L we have:

ifa € A™ and K = ¢(a), then L = ¢(f(a)).

4 Valuative Criterion for Differential Com-
pleteness

We continue our search for a test for d-completeness. The result of van den
Dries in the previous section ties this problem with the problem of extending
d-homomorphisms. The latter subject was studied by Blum in [3] and Mor-
rison in [11] and [12]. Here we gather a few basic facts and introduce some
terminology that we are going to use.

Proposition 4.1. Let R be a §-ring containing Q. Then every d-ideal in R
s contained in some prime d-ideal.

Proof. Given a d6-ideal Z of R. By Zorn’s lemma, let P be a maximal element
among the d-ideals that contain Z. Since R D Q, the radical of a d-ideal in R
is still a d-ideal (see [7], p.62 or (1.3-1.6) in [4]). So P is radical. By (1.6) in
[4], every radical d-ideal in R is an intersection of prime d-ideals. Therefore
by maximalilty of P, it is a prime ideal. O

Let IC be a d-field, consider the set

Hy ={(A, f, L) : Ais a é-subring of K, L is a d-field and
f:A— L is a 6-homomorphism.}

Let (A;, fi, £;) € Hy, i = 1,2. We say that fy extends f; if Ay D Ay, Lo is
a d-field extension of £; and fa|4, = fi. We denote this by (As, fa, L2) >
(Ai, f1, L£1). The relation > is a partial order on Hyx and it is a consequence
of Zorn’s Lemma that any element in Hy extends to a maximal one. We call
a maximal element of Hx a maximal /-homomorphism of K.

Definition 4.2.



e A j-subring of I is called maximal if it is the domain of a maximal
0-homomorphism of IC.

e A f-ring is called a local d-ring if it is a local ring and its maximal
ideal is a d-ideal.

Proposition 4.3. Let (R, f, L) be a mazimal element of Hx. Then
1. R is a local §-ring and m = kerf is the mazimal ideal of R.
2. € C\R <= m{z}=R{z}

Proof. (1) As the kernel of a 6-homomorphism, m is clearly a d-ideal. Suppose
x & ker f, then we can extend f to the localization of R at = by sending z~*
to f(xz)~!. By maximality of R, z=! € R. Hence z is a unit. This shows
that (R, m) is a local d-ring.

(2) If m{z} = R{z}, then 1 can be expressed as

1=mP(z) +---+mpPy(x)

for some m; € m and P, € R{y}. So if x € R, we get the contradiction
“1=0” by applying f on both sides of the above equation.

Conversely if m{z} # R{z}, then by Proposition 4.1 there is a prime 4-
ideal m’ of R{z} containing m{z}. Let £’ be the field of fractions of R{z}/m’
and £’ be a common differential field extension of ¥’ and £ over k. Then we
have the following diagram commute.

R{SL‘} — sk — El

RN

R k L

By maximality of R, we have x € R. O

Now we set £ := £5(F), T := The(F). A model, K, of T is simply a
differentially closed field extending F. An £-substructure of K is a d-subring
of I containing F and an £ homomorphism f is simply a d-homomorphism
fixing F pointwise.

Theorem 4.4 (Valuative criterion for differential completeness).
Let X be a 0-closed subset of A™. Then the following are equivalent:



1. X is d-complete.

2. For any K =T and any, R, mazimal §-subring of KC containing F, we
have X(K) = X(R).

Proof. (2 = 1) Let Z be an arbitrary é-closed subset of X x A™. We have
to show that mZ is d-closed. Suppose we are given K, f: A — L as in
Proposition 3.1 and a tuple @ in A such that K = @ € mZ. Then there
exists £ € K" such that K = (z,a) € Z Az € X. Extend f to a maximal
6-homomorphism f:R — £'. By taking differential closure, we can assume
L' is differentially closed. Note that R 2 A O F. So by (2), Z is in
fact a tuple in R. Since both X and Z are affine d-closed sets (defined
by positive quantifier free formulas), £' = (f(z), f(@) € Z A f(z) € X.
That means £’ = f(@) € mZ. Since f(a) = f(a), by model completeness
L= f(a) € mZ. And we conclude that 757 is d-closed by Proposition 3.1.

(1 = 2) Suppose (2) does not hold. That means there exists f: R — L a
maximal §-homomorphism of K with R 2 F and Z € X(K) such that some
coordinate z; of Z is not in R. By Proposition 4.3 (1),

for some my,...,my € m and Pi(y),...,Pr(y) € R{y}. Now consider the
d-closed subset Z of X x A* defined by the formula (7, z):

(ZLO Zij(yi)) +1=0AF€X.

Let £ be the differential closure of R/m and f be the canonical map. Since
the restriction of f to F is injective, L is still a model of 7. On one hand,
we have KC = 3y ¢(y,m), since T is a witness. On the other hand, the m;’s
are in the kernel of f hence o(y, f(m)) is the formula “1 = 0A g € X”. So
L~ 3y o(y, f(m)). And now by (3.1) again, we conclude that m2Z is not
0-closed and hence X is not d-complete. O

Remark 4.5. One should compare Theorem 4.4 to the valuative criterion of
properness in algebraic geometry (c.f. [6] Chapter II Theorem 4.7). In fact,
since X is an affine d-closed set, let A be the d-coordinate ring of X and we
can rephrase Theorem 4.4 in the following way:



For any K = T, R maximal d-subring of I containing F and
for any commutative square as shown, there exists a unique map
from SpecR to SpecA which makes the diagram commute

SpeckC —— SpecA

SpecR —— SpecF

where the maps are induced by d-homomorphisms between o-
rings.

5 Kolchin’s Example: P"(C) is Differentially
Complete

All the results in this section are due to Kolchin. However, the proofs we
give here are slightly different, mainly because we will make use of the model
theoretic lemma (3.1) and results in Section 4.

We are going to prove that P"(C) is d-complete. But first we need the
following well-known result from commutative algebra ([1] Lemma 5.20).

Lemma 5.1. Let x be a non-zero element of o field K. Let (R, m) be a local
ring in K. Let R[x] be the subring of K generated by x over R and let m[z]
be the extension of m in R[z]. Then either m[z] # R[z] or m[z '] # R[z'].

Lemma 5.1 guarantees that we can always extend our J-homomorphism
to a constant point.

Proposition 5.2. Let IC, L be 6-fields. Let x € K be a constant. Let f: A —
L be a 0-homomorphism from a 0-subring A of K into L. If C., the field of
constants of L, is algebraically closed then f extends to a map from either

A{z} or A{1} to L.

Proof. The case when x = 0 is trivial. So assume x # 0. Extend f to a
maximal §-homomorphism f:R — L£'. Since z is a constant, m{z} = m[z]
and m{z~'} = m[z~!]. By Lemma 5.1, at least one of these is not the unit
ideal. Hence, by Proposition 4.3, (2) either z or 7! is in R. Without loss
of generality, suppose x € R. This already shows that f can always be
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extended either to A{z} or A{z '} . However, we still have to show that
there is an extension of f with range inside £. Let B C L be the range of
f and f(z) = ¢. Consider the maps A[z] — Blc] obtained by restricting f
to Alz](= A{z}) and Bc] — L which extends the inclusion by sending c¢ to
0. If ¢ is transcendental over B then their composition extends f. Otherwise
c is algebraic over B C £. Suppose y™ + l;y" ! + --- + [, is the minimal
polynomial of ¢ over £. Apply § to ¢® + ;"' +---+1, = 0 and we get
§(l)c ™t +--- 4+ 6(I,) = 0. By minimality of n, 6(1;) = --- = 6(l,) =

Therefore c is actually algebraic over C, which is algebraically closed by the
assumption. Thus ¢ € C; and this shows that the range of the extension can
always be taken inside L. O

We keep the same notation as in Proposition 5.2.

Corollary 5.3. Let f: A — L be a §-homomorphism and let ¢y, ...,c, € K
not all are zero such that -+ € C whenever c; # 0. Then there e:msts 0<

J < mn with ¢; # 0 such that f can be extended to a d-homomorphism from
A{cj c]'} to L.

Proof. We have two cases:

Case 1: Exactly one of the ¢; # 0.

In this case A{%,..., %} = A so the result is trivial.

Case 2: At least two of the ¢; are nonzero.

Without loss of generality ¢, # 0 and ¢; # 0 for some 0 < 7 < n — 1. By
induction on n and ( 2), we can assume f extends to a d-homomorphism
g from B = A{CO , =2} to L. By Proposition 5.2 again g extends

to either B{c”}— ‘éo,f.. s =bor B{ZA} = A{2,.., 2 5 D
A&, .., - L 1}. This shows that We can extend f to the required domain
in any case. O

Theorem 5.4. For any n € N, P*(C) is §-complete.
Proof. Suppose Z C P*(C) x A™ is a d-closed set defined by

Pl(yO:"'ayn;Zla"'azm):"':Pk(y07"':yn;zla"'azm):O

where P;(g,z) € F{y, 2} is 0-homogeneous in g for each 1 < ¢ < k. Then
moZ is defined by 3y (7, Z), where (7, Z) is the formula

/\H(ﬂa z)=0A \/ (?Jj # 0N _/\5(%‘)% — 6 (y;) = 0) :

4Using model completeness, this weaker version is enough to prove Theorem 5.4.
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Again suppose we are given I, L, f: A — L and a as in (3.1). Then
there exists ¢ € K™ such that not all the ¢;’s are zero and 2—; is a constant
whenever ¢; # 0 and P(co,...,¢y,a) = 0 for 1 < i < k. By Corollary 5.3,
[ extends to A{%,..., %} for some 0 < j < n. By d-homogeneity of the

J J
Py’s, R(i—?,...,l,...%,&) = 0. So (f(c—‘?),...,l,...,f(f:—;‘)) is a solution to

Cj

o(y, f(a)) in L. O

6 New Examples

So far all the examples we saw are related to the field of constants. From
the point of view of model theory, it is natural to ask whether all the
d-complete sets are nonorthogonal to the constants. We will give a
negative answer to this question in this section.

Definition 6.1. Let A be a d-subring of K. An element of A{y} is monic if
it is of the form y™ + f(y) where the total degree of f (i.e. the degree of f as
an element in Aly, dy, 6%y, ...]) is less than n. An element z € K is monic
over A if x is a zero of some monic J-polynomial over A.

We will use the following result of Blum [3] in the form that appears in
[11].

Proposition 6.2 (Blum).
Let (R,m) be a mazimal §-subring of K. Then x € K is monic over R if
and only if v=! & m.

The following theorem gives a family of é-complete sets. Some members
of this family are orthogonal to the field of constants.

Theorem 6.3. Let P(y) be an ordinary polynomial over F. Then the 6-
closure in P! of the set defined by dy — P(y) = 0 is §-complete.

Proof. Let X be the 0-closed set defined by dy — P(y) = 0. First consider
the case where degP(y) < 1. In this case, P(y) is of the form ay + b where a
may be zero. Let y, be any point of X. Then X — g, is the set of solutions
of the equation 0z = az. In any case, even if a = 0, the solution set is simply
the C-span of z; where z; is a nonzero solution of the equation. Hence the
d-closure of X in P! is isomorphic to P*(C) which is §-complete by (5.4). So
let us assume degP > 2. By homogenizing the equation, one sees that X is
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already d-closed in P'. Now let z € X (K) and R be a maximal §-subring of
K containing F. By Theorem 4.4, the assertion is true if we can show that
z € R. By (4.3 (2)), it suffices to show that m{z} # R{z}. Since dz = P(x),
m{z} = m[z| and R{z} = R[z]. So by Lemma 5.1, it is enough to show that
m[z '] is the unit ideal. Since degP > 2, a!(dy — P(y)) is monic where a is
the leading coefficient of P(y). It follows from Proposition 6.2 that 2! ¢ m.
Therefore, if 7! is in R, so is x. So let us assume that z7! ¢ R. By (4.3
(2)) again, we conclude that m{z~'} is the unit ideal. Moreover, we have

§(x7!) = —x72P(x). So there is a nontrivial expression of 1 as:
1 1 )
1:w_rg+---+w_1;+wo+w1x+---+ws:c (1)

where w; € m. We move wy to the other side of the equation. Note that
1 — wq is a unit in R, so dividing both sides by 1 — wg, we get the equation

1 1
1=m_,;+---+m_15+m1x+---+msxs (m; € m) (2)
Applying § to both sides of (2) we get

1
4ot (moy) = +

1 1 (_P(x))

0=9¢ —-r) - 7
(m )mr-l-rm .

x? x
P
+m_4 (— gg)) + oo+ 8(my)z® + smya® TP ()
0 = lower degree terms + sam,z°+t%"! (3)

where d = deg P > 2. The important point here is that the coefficient of the
highest degree term is a unit times m,. Divides (3) by sax?! and eliminates
msz® with (2) we get

1
1=n_t;+---+no+---+nk3€k (4)

where k£ < s. Since m is a d-ideal, (cf. 4.3 (1)) all the n;’s are still in m.
Again by performing the same trick to (4) as we did to (1), we can assume
no = 0. Thus we get a similar expression for 1 with degree less than s. So by
iterating this process, we conclude that m[z~!] is the unit ideal. This finishes
the proof. O

Remark 6.4. If the degree of P is equal to 2, then dy = P(y) is a Riccati
equation. In [5], Cassidy points out that for each Riccati equation there is a
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projective transformation of P! which maps the corresponding -variety onto
P!(C). In particular, we see that the Riccati varieties are §-complete by (5.4)
as well.

Example 6.5. Let X be the d-closed set defined by dy = y® — 3%, It is J-
complete, strongly minimal and orthogonal to the constants. We will sketch
a proof here and refer our readers to [10] for the details. By Theorem 6.3,
we know that X is d-complete. Since X is defined by an order one equation,
RM(X) = 1. The d-ideal Z generated by dy = y> — y? is prime since the
quotient of F{y} by Z is clearly isomorphic to F[y]. From this we conclude
that X is d-irreducible. So X is strongly minimal.

It remains to argue that X is orthogonal to the constants. Let a be the
generic point of X over F. In particular, a is transcendental over F. Let us
recall that C is an algebraically closed field. So by (6.12) in [10], C#() = C.
In fact, we have Cr(,y = C since F(a) = F(a) as a satisfies 6y = y* — y*. Let
K be the differential closure of F(a). By Lemma 7.3 in [10], to show that
X is orthogonal to the constants all we have to show is that K has no new
constants. By Lemma 2.1 in [10], we have Cx algebraic over Cr(q = C which
is algebraically closed, hence Cx = C. This completes the proof.
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