Poisson integral formula

The Poisson integral formula

\[u(z_0 + re^{i\theta}) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{u(z_0 + Re^{it}) \, dt}{R^2 + r^2 - 2rR\cos(t - \theta)} \] (1)

computes the value of a harmonic function \(u \) at a point \(z = z_0 + re^{i\theta} \) inside the disc of radius \(R \) centered at \(z_0 \) by integrating \(u \) times a weighting function

\[\frac{R^2 - r^2}{R^2 + r^2 - 2rR\cos(t - \theta)} \]

called the “Poisson kernel” around the boundary of the disc. (See Caine’s textbook p. 7.7). The proof in Caine seems to come out of nowhere so I thought it might be useful to explain how an ordinary mortal could produce this formula. Of course Siméon Denis Poisson (1781-1840) was no ordinary mortal; you may read about him in Wikipedia.

The basic idea of the Poisson integral formula comes from an averaging formula called the **Mean-value property of harmonic functions** that says the value of the harmonic function \(u \) at the center \(z_0 \) of a disc of radius \(R \) is the average of its values around the boundary of the disc.

\[u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + Re^{it}) \, dt \] (2)

One consequence of the mean-value property is that if \(m \) is the minimum value of \(u \) on the boundary of the disc, and \(M \) is its maximum value on the boundary of the disc, then its value at the center must lie between \(m \) and \(M \). This is true because the average of any set of real numbers lies between the minimum and the maximum of the numbers. And, since the mean-value property is true for every disc, no matter what \(R \) is, it follows that a harmonic function cannot have a local minimum, or a local maximum, in the interior of its domain unless the function is constant.

Why is the mean-value property true?

It is a consequence of the Cauchy integral formula. (What else could it be?) To see this recall that on a simply connected region (nonempty, open, with no holes) every harmonic function is the real part of a holomorphic function. So on a region containing our disc we may assume \(u(z) \) is the real part of some holomorphic function

\[f(z) = u(z) + iv(z) \]

where \(v \) is another real-valued harmonic function. The Cauchy integral formula says

\[u(z_0) + iv(z_0) = f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z) \, dz}{z - z_0} = \frac{1}{2\pi i} \int_C \frac{(u(z) + iv(z)) \, dz}{z - z_0} = \frac{1}{2\pi i} \int_C \frac{u(z) \, dz}{z - z_0} + \frac{1}{2\pi i} \int_C \frac{iv(z) \, dz}{z - z_0} \] (3)
if z_0 is inside the simple closed curve C. Let C be the boundary of the disc of radius R centered at z_0. Parametrize C by

$$z(t) = z_0 + Re^{it}, \text{ for } 0 \leq t \leq 2\pi$$

so

$$z(t) - z_0 = Re^{it}$$

$$dz = iRe^{it} \, dt.$$

Substitute these into equations (3).

$$u(z_0) + iv(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} u(z(t)) \frac{iRe^{it}dt}{Re^{it}} + \frac{1}{2\pi i} \int_0^{2\pi} iv(z(t)) \frac{iRe^{it}dt}{Re^{it}}$$

The Re^{it}-terms cancel and the i in $2\pi i$ cancels the i in $i \, dt$, so

$$u(z_0) + iv(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z(t)) \, dt + \frac{i}{2\pi} \int_0^{2\pi} v(z(t)) \, dt$$

The left integral is real because u is real, and the right integral is imaginary because v is real. Thus one can separate real and imaginary parts:

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z(t)) \, dt$$

$$v(z_0) = \frac{1}{2\pi} \int_0^{2\pi} v(z(t)) \, dt.$$

This proves the mean value property, equation (2), for the harmonic function u (and also for v).

The mean value property is a special case of the Poisson integral formula (1) where u is evaluated at the center of the disc. (To see this set $r = 0$ in equation (1).)

To derive the full Poisson integral formula one must move away from the center of the disc. The easiest way to do that is to use a one-to-one holomorphic function g that maps the disc to itself, but moves the center z_0 of the disk to another point inside the disk.

In the figure below g maps the unit disc centered at 0 to itself, pushing points inside the disc toward the right side so $g(0) = 1/2$.

![Diagram](image-url)
Now $u(z)$ is a harmonic function of z, so it has a “harmonic conjugate” function $v(z)$ so the sum $u(z) + iv(z)$ is an analytic function of z. The composition $u(g(z)) + iv(g(z))$ is also analytic because the chain rule says the composition of two differentiable is also differentiable, and this also works for complex differentiation. Therefore the real part $u(g(z))$ is a harmonic function of z.

Let $w = g(z_0)$. Since $u(g(z))$ is a harmonic function of z he mean value property says

$$u(w) = u(g(z_0)) = \frac{1}{2\pi} \int_0^{2\pi} u(g(z(t))) \, dt$$

where

$$z(t) = z_0 + Re^{it}$$

as before.

This is almost the Poisson integral formula, but not quite, because the Poisson integral uses $u(z(t))$ not $u(g(z(t)))$. So we have to figure out a way to get rid of the annoying g on the right hand side.

We’ll use integration-by-substitution to eliminate g. Assume that g maps the boundary circle

$$z(t) = z_0 + Re^{it}, \quad 0 \leq t \leq 2\pi$$

to itself, perhaps moving points around on the circle, so for each angle t that we can write

$$g(z_0 + Re^{it}) = z_0 + Re^{is}$$

for some angle s, where $0 \leq s, t \leq 2\pi$. Then

$$z_0 + Re^{it} = g^{-1}(z_0 + Re^{is}).$$

At this point it will simplify the notation (a lot!) if we call the inverse function h so

$$h = g^{-1} \quad \text{and} \quad z_0 + Re^{it} = h(z_0 + Re^{is}).$$

Differentiating, one has

$$iRe^{it} \, dt = h'(z_0 + Re^{is})iRe^{is} \, ds$$

But $z_0 + Re^{it} = h(z_0 + Re^{is})$ so $Re^{it} = h(z_0 + Re^{is}) - z_0$. Plug that into equation (8) to obtain

$$i \left(h(z_0 + Re^{is}) - z_0 \right) \, dt = h'(z_0 + Re^{is})iRe^{is} \, ds.$$

Divide by i then solve for dt

$$dt = \frac{h'(z_0 + Re^{is})}{h(z_0 + Re^{is}) - z_0} \, Re^{is} \, ds. \quad (9)$$
We can now perform the integration by-substitution. Equations (5) and (6) say that
\[g(z(t)) = g(z_0 + Re^{it}) = z_0 + Re^{is} \]
so, using equation (9) and the fact that \(s \) runs from 0 to \(2\pi \), the integral formula (4) becomes
\[u(w) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + Re^{is}) \left(\frac{h'(z_0 + Re^{is})}{h(z_0 + Re^{is}) - z_0} \right) Re^{is} \, ds. \]

(10)

The main thing that’s left is to find a formula for \(h \). We’ll use a linear fractional transformation.

Recall that
1. Linear fractional transformations are analytic and they have inverses, which are also linear fractional transformations.
2. A linear fractional transformation is completely determined by its values at three points. In other words, given two sets of three distinct \(P_1, P_2, P_3 \) and \(Q_1, Q_2, Q_3 \) (all in the complex plane) there is exactly one linear fractional transformation \(h \) such that \(h(P_1) = Q_1, h(P_2) = Q_2 \) and \(h(P_3) = Q_3 \).
3. Linear fractional transformations map circles and lines to circles and lines.
4. Circles and lines are also uniquely determined by three points: given three points in the plane there is exactly one circle or line that contains all three points.

We’re looking for a linear fractional transformation \(h \) that maps the circle \(C \) of radius \(R \) and center \(z_0 \) to itself, and maps the center \(z_0 \) to another given point \(w \) inside the circle.

If \(w = z_0 \) then the identity function \(h(z) = z \) does this, so assume \(w \neq z_0 \).

Let \(L \) be the line through \(z_0 \) and \(w \), and let \(A \) and \(B \) be the points where \(L \) intersects \(C \).

Let \(h \) be the linear fractional transformation such that
\[h(w) = z_0 \text{ and } h(A) = A \text{ and } h(B) = B. \]
is the unique circle or line that contains the three points \(w, A \) and \(B \). Thus \(h(L) \) is the unique circle or line that contains \(h(w) = z_0, f(A) = A, \) and \(f(B) = B \). But \(L \) contains these three points so we must conclude that
\[
h(L) = L.
\]
(This means that \(h \) may move points in \(L \) to other places inside \(L \) but it can’t move them to places outside \(L \).)

\(C \) is the unique circle or line that intersects \(L \) at 90° angles at the points \(A \) and \(B \). \(h \) is a conformal map (it preserves angles) so \(h(C) \) is the unique circle or line that meets the line \(h(L) = L \) at 90° angles at the points \(h(A) = A \) and \(h(B) = B \). Thus
\[
h(C) = C.
\]

This \(h \) is the right function for our purposes. To find a formula for it, start by finding formulas for linear fractional transformations \(h_1 \) and \(h_2 \) such that
\[
1 = h_1(w) = h_2(z_0), \quad 0 = h_1(A) = h_2(A) \quad \text{and} \quad \infty = h_1(B) = h_2(B). \quad \text{Then} \quad h = h_2^{-1} \circ h_1 \quad \text{is the function we want. The algebra isn’t hard, you may work it out yourself using the trick for writing down formulas for} \ h_1 \ \text{and} \ h_2 \ \text{that we discussed in class. I’ll just give the result. To put the result in the most convenient form let} \ \theta \ \text{be the angle between} \ L \ \text{and a horizontal line, and let} \ r = |w - z_0| \ \text{and} \ R = |A - z_0| \ \text{(see the figure above). Then} \ w = z_0 + re^{i\theta} \ \text{and} \ A = z_0 + Re^{i\theta}. \]

and
\[
h(z) = z_0 + R^2 \frac{re^{i\theta} - (z - z_0)}{r(z - z_0)e^{-i\theta} - R^2}. \quad (11)
\]
Computing the quotient \(h'(z)/(h(z) - z_0) \) in equations (9) and (10) looks like a mess, but here we get a lucky break because \(z_0 \) is constant so
\[
\frac{h'(z)}{h(z) - z_0} = \frac{d}{dz}(h(z) - z_0) = \frac{d}{dz} \log (h(z) - z_0).
\]
(the last line comes from the chain rule. Remember “logarithmic differentiation” from calculus I?). This enables us to use properties of logarithms to simplify the calculations.
\[
\log(h(z) - z_0) = \log \left(R^2 \frac{re^{i\theta} - (z - z_0)}{r(z - z_0)e^{-i\theta} - R^2} \right) = \log(R^2) + \log \left(re^{i\theta} - (z - z_0) \right) - \log \left(r(z - z_0)e^{-i\theta} - R^2 \right).
\]

\(R^2 \) is constant so
\[
\frac{h'(z)}{h(z) - z_0} = \frac{d}{dz} \log (h(z) - z_0) = \left(-\frac{1}{re^{i\theta} - (z - z_0)} - \frac{re^{-i\theta}}{r(z - z_0)e^{-i\theta} - R^2} \right)
\]
Substitute $z = z_0 + R e^{i\theta}$ into the last equation to obtain

$$
\frac{h'(z_0 + R e^{i\theta})}{h(z_0 + R e^{i\theta}) - z_0} = \frac{-1}{r e^{i\theta} - R e^{i\theta}} - \frac{r e^{-i\theta}}{R e^{i\theta} e^{-i\theta} - R^2}
$$

$$
= \frac{-1}{r e^{i\theta} - R e^{i\theta}} - \frac{r e^{-i\theta}}{R^2 - r R e^{i(s-\theta)} - r e^{-i\theta} (r e^{i\theta} - R e^{i\theta})}
$$

$$
= \frac{r^2 R e^{i\theta} - r R e^{i(s-\theta)} - r^2 + r R e^{i(s-\theta)}}{R^2 - r^2}
$$

$$
= \frac{R^2 - r^2}{r^2 R e^{i\theta} - r R e^{i(s-\theta)} - r^2 + r R e^{i(s-\theta)}}
$$

Multiply by $R e^{i\theta}$ to obtain the expression $\left(\frac{h'(z_0 + R e^{i\theta})}{h(z_0 + R e^{i\theta}) - z_0} \right) R e^{i\theta}$ that occurs in the integrand of formula (10):

$$
\left(\frac{h'(z_0 + R e^{i\theta})}{h(z_0 + R e^{i\theta}) - z_0} \right) R e^{i\theta} = \frac{(R^2 - r^2) R e^{i\theta}}{r^2 R e^{i\theta} - r R e^{i(s-\theta)} - r^2 e^{-i\theta} + R^3 e^{i\theta}}
$$

$$
= \frac{(R^2 - r^2)}{r^2 - r R e^{i(s-\theta)} + R e^{i(s-\theta)} + R^2 e^{i\theta}}
$$

But

$$
e^{i(s-\theta)} + e^{i(\theta-s)} = \cos(s - \theta) + i \sin(s - \theta) + \cos(\theta - s) + i \sin(\theta - s)
$$

$$
= \cos(s - \theta) + i \sin(s - \theta) + \cos(-s + \theta) + i \sin(-s + \theta)
$$

$$
= 2 \cos(s - \theta)
$$

because $\cos(-z) = \cos(z)$ and $\sin(-z) = -\sin(z)$ for every z. Thus

$$
\left(\frac{h'(z_0 + R e^{i\theta})}{h(z_0 + R e^{i\theta}) - z_0} \right) R e^{i\theta} = \frac{(R^2 - r^2)}{r^2 - 2 r R \cos(s - \theta) + R^2 e^{i\theta}}
$$

Substituting this into the integral formula (10) we obtain the Poisson integral formula.